Notes on Menger Curvature

F. F. Leymarie (leymarie@lems.brown.edu)

January 2000 - Updated in September 2003
Update (Sept. 2003):
The number $K\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{R}$, where R is the radius of the circumcircle through the three points x_{1}, x_{2}, x_{3}, is called the Menger curvature of the triple [3]. The derivation of the formula below, then relies on using the well known relation between the area of the triangle, A, through these three points and R : $K=\frac{1}{R}=\frac{4 A}{a b c}$, where a, b and c are the length of the sides of the triangle. Note that Heron's formula gives us: $16 A^{2}=(a+b+c)(b+c-a)(a+c-a)(a+b-c)$, and this directly give the formula below. An alternative formula is provided by the Cayley-Menger determinant [1], which avoids directly computing the side lengths (as square roots): $16 A^{2}=\left|a^{2}\left(a^{2}-b^{2}-c^{2}\right)+b^{2}\left(b^{2}-a^{2}-c^{2}\right)+c^{2}\left(c^{2}-a^{2}-b^{2}\right)\right|$.

Let f be a regular curve of class C^{2} in a Euclidean space, E^{n}. Let x_{1}, x_{2}, x_{3} be distinct points of f. Let the length of "side" vectors through each pair of points be denote by $x_{i} x_{j}=\left|x_{j}-x_{i}\right|$. Then, define [1, vol.1, p.273]:
$K\left(x_{1}, x_{2}, x_{3}\right)=\frac{\sqrt{\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)\left(x_{1} x_{2}+x_{2} x_{3}-x_{3} x_{1}\right)\left(x_{1} x_{2}-x_{2} x_{3}+x_{3} x_{1}\right)\left(x_{1} x_{2}-x_{2} x_{3}-x_{3} x_{1}\right)}}{x_{1} x_{2} \cdot x_{2} x_{3} \cdot x_{3} x_{1}}$,
where the (non-negative) number K is called Menger's curvature. As x_{2} and x_{3} approach x_{1} on $f, K\left(x_{1}, x_{2}, x_{3}\right)$ tends towards the curvature of f at x_{1}. Also, $K=0$ if and only if x_{1}, x_{2} and x_{3} are collinear.

In the complex domain, for $z_{1}, z_{2}, z_{3} \in C$, this notion is called the Menger-Melnikov curvature [2]:

$$
c\left(z_{1}, z_{2}, z_{3}\right)^{2}=\sum_{\sigma} \frac{1}{\left(z_{\sigma(1)}-z_{\sigma(3)}\right) \overline{\left(z_{\sigma(2)}-z_{\sigma(3)}\right)}}
$$

where the sum is taken over all permutations of σ of $\{1,2,3\}$. This identity is transformed for 1-sets in E^{n} to:

$$
c\left(x_{1}, x_{2}, x_{3}\right)^{2}=\sum_{\sigma} \frac{\left(x_{\sigma(1)}-x_{\sigma(3)}\right) \cdot\left(x_{\sigma(2)}-x_{\sigma(3)}\right)}{\left|x_{\sigma(1)}-x_{\sigma(3)}\right|^{2}\left|x_{\sigma(2)}-x_{\sigma(3)}\right|^{2}},
$$

or equivalently, after some manipulations:

$$
c\left(x_{1}, x_{2}, x_{3}\right)^{2}=4\left\{\frac{\left|x_{1}-x_{3}\right|^{2}\left|x_{2}-x_{3}\right|^{2}-\left(\left(x_{1}-x_{3}\right) \cdot\left(x_{2}-x_{3}\right)\right)^{2}}{\left|x_{1}-x_{3}\right|^{2}\left|x_{2}-x_{3}\right|^{2}\left|x_{1}-x_{2}\right|^{2}}\right\}
$$

which, by Schwartz inequality, can be shown to always be non-negative.

References

[1] Marcel Berger. Geometry. Universitext. Springer-Verlag, Berlin. Translation by M.Cole and S.Levy of the French 1977 edition. 2 volumes.
[2] Hany M. Farag. Curvatures of the Melnikov type, Hausdorff dimension, rectifiability, and singular integrals on r^{n}. Pacific Journal of Math., 196(2):317-339, 2000.
[3] J. C. Léger. Menger curvature and rectifiability. Annals of Mathematics, 149:831-869, 1999.

