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Update (Sept. 2003):
The number
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, is called the Menger curvature of the triple [3]. The derivation of the formula below, then relies

on using the well known relation between the area of the triangle, � , through these three points and � :��� �� ��������! , where " , # and $ are the length of the sides of the triangle. Note that Heron’s formula gives us:%�& � 
 �'� ")(�#*(+$ �,� #*(+$.-/" �,� "0(+$.-/" �,� ")(�#1-/$ � , and this directly give the formula below. An alternative
formula is provided by the Cayley-Menger determinant [1], which avoids directly computing the side lengths
(as square roots):
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Let 8 be a regular curve of class 9 
 in a Euclidean space, :<; . Let
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be distinct points of 8 . Let

the length of “side” vectors through each pair of points be denote by
�>=?�A@B�DC �A@ - ��=	C . Then, define [1, vol.1,
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where the (non-negative) number

�
is called Menger’s curvature. As
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tends towards the curvature of 8 at
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. Also,
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are collinear.
In the complex domain, for P ��� P 
Q� P 
SR 9 , this notion is called the Menger-Melnikov curvature [2]:$ � P ��� P 
�� P 
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where the sum is taken over all permutations of [ of \ % �K]^�K_a` . This identity is transformed for 1-sets in :b;
to: $ ���J���	��
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or equivalently, after some manipulations:
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which, by Schwartz inequality, can be shown to always be non-negative.
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