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Abstract

In this thesis we consider a number of issues in developing techniques and algorithms to
automate the visual tracking of deformable objects in the plane. We have applied these tech-
niques in cell locomotion and tracking studies. We examine two classes of computer vision
problems. First, we consider the segmentation of a noisy intensity image and the tracking
of a nonrigid object. Second, we consider the shape analysis of an amorphous object. In
evaluating these problems, we explore a new technique based on an active contour model
commonly called a “snake.” The snake permits us to simultaneously solve, in constrained
cases, both the segmentation and tracking problems. We present a detailed analysis of the
snake model, emphasizing its limitations and shortcomings, and propose various improve-
ments to the original description of the model. Then, we study the two complementary
types of shape descriptors: boundary- and region-based. We propose to combine these
within the context of the grassfire transform. Two new algorithms are described. First, we
present a contour segmentation technique using mathematical morphology on the curva-
ture function. Accurate localization for different scales of curvature features is achieved.
Second, the snake model is used to simulate the grassfire transform using the previously
extracted contour features. This permits us to produce a multiscale skeleton representation
of shape which is based on the Euclidean distance metric. New significance criteria for
our shape descriptors, such as the “region-support” of curvature extrema and the “ridge-
support” of skeleton branches are also proposed. Finally, numerous implementation details
are discussed; for example, the description of an efficient sequential Euclidean distance
transform.
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Sommaire

Dans cette thèse nous considérons différents algorithmes et techniques afin d’automatiser le
suivi visuel d’objets déformables dans le plan; nous avons appliqué ces techniques à l’étude
du mouvement de la cellule. Pour ce faire, nous examinons deux classes de problèmes
dans le cadre de la vision par ordinateur. Premièrement, nous considérons la segmentation
d’image et le suivi visuel d’un objet informe. En second lieu, nous considérons l’analyse
morphologique d’objets “informes.” Afin de résoudre ces problèmes, nous explorons une
nouvelle technique basée sur le concept d’un “modèle de contour actif,” communément ap-
pelé snake. Cette technique nous permet de solutionner simultanément la segmentation et le
suivi visuel. Nous présentons une analyse détaillée du snake, mettant l’accent sur ses lim-
ites d’application et ses défauts, et nous proposons plusieurs améliorations relatives à la de-
scription du modèle original. Par la suite, nous étudions deux types complémentaires de de-
scripteurs de forme, basés respectivement sur les notions de contour de l’objet et de région
intérieure à ce contour. Nous proposons de combiner ces descripteurs par l’intermédiaire
de la transformée dite du grassfire. Deux nouveaux algorithmes sont alors décrits. Nous
présentons d’abord une technique de segmentation de contour utilisant la morphologie
mathématique appliquée à la fonction de courbure. Nous obtenons ainsi une localisation
précise de certaines caractéristiques de la fonction de courbure, tels ses extrema, et ce, pour
différentes échelles. Ensuite, le modèle du snake est utilisé afin de simuler la transformée du
grassfire tout en utilisant les résultats obtenus lors de la segmentation du contour. Ceci nous
permet de produire une représentation de forme par son “squelette” à différentes échelles,
tout en utilisant une métrique de distance euclidienne. De plus, de nouveaux critères de
sélection sont proposés pour nos descripteurs de forme. Finalement, plusieurs problèmes
de mise en application sont discutés, entre autres la description d’un algorithme de tran-
formée de distance euclidienne, optimisé au niveau de sa complexité numérique.
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Chapter 1

Introduction

This thesis addresses a number of issues in developing techniques and algorithms to permit
the computerized automation of the visual tracking of deformable objects in the plane. We
seek to give the computer the capacity to recognize, identify and describe nonrigid objects
as they deform and move. More specifically we are interested in the visual tracking of
living cells, such as human fibroblasts [115] as they move on a planar surface such as
glass. We think of such living cells as constituting an ideal amorphous object for testing
our algorithms since their boundary can deform simultaneously at different subparts to take
virtually any form (Figure 1.1).

Our interest in the study of cell movement arises from a long term research project to
characterize the dynamic behavior of those living human cells which use pseudopods, that
is, protrusions of their cellular membrane, as a mean for locomotion.1 Cell movement is
a fundamental process of importance to cell biology [115, 83]. Comprehension of aspects
of cell biology as diverse as migrations of cells in embryological development and host
defense mechanisms is directly dependent on the study of cell movement [161]. Such a
study may be performed by first recording sequences of images of cells obtained with a

1This project has emerged from a collaboration between the faculties of Dentistry, Medicine and Engi-
neering at McGill University. The following reference list constitutes a good summary of the research work
which has been accomplished in our group during the last thirteen years [34, 58, 89, 60, 161, 88, 115, 52].

Figure 1.1: Example of various forms taken by a living cell.

1
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Figure 1.2: Example of an image sequence of a deforming and moving cell.

digitizing camera mounted on a microscope. Cell tracking is then achieved, and the cells
are followed from frame to frame (Figure 1.2), in order to detect changes in position and
variation in shape properties, that is, shape attributes of the cell’s body and subparts or
pseudopods. Cell dynamics can then be characterized by these variations in time of the
cells’ shape features.

1.1 The Cell Tracking Problem

Imagine being a technician or researcher in a physiology laboratory, performing visual
analyses for experiments on cell motion. Below follows a brief summary of a typical day
in “your” life:

Here you are again. Fixing your eyes to the eyepiece of the microscope. For
hours you have been meticulously noticing any change in the cell’s form, seek-
ing any special event that will reveal why and how it moves, sleeps and de-
forms, or reacts to the presence of an intruder or a companion, or catastrophi-
cally divides itself giving birth to two new sisters.

The work is painful. The images are sometimes clear, sometimes blurred or
corrupted by extraneous moving objects and noise. The experiments become
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worthwhile when tracking many of the “companion” cells. How can one char-
acterize the shape of these amorphous living beings?

It is late at night now. But you must continue as the results of your work may be
considerably impoverished if you lose contact with one of the cells and start to
mistakenly track another. You cannot use a radioactive isotope to mark the cells
and help your sleepy visual system since it would corrupt the cell’s behavior.

You start thinking that you still have to repeat such an experiment tens of times
and for tens of different cells in different chemical environments. Analyzing
the data is the essence of your work, but it seems now to be a long term goal.
You close your eyes.

The engineering problems we are facing can be situated at two levels. First is the need
for automation. It should now be evident that the visual analysis of cell motion requires
its automation on a computer to perform numerous tedious computations, such a job being
impractical for a human to realize efficiently. This automation system should provide the
human experimenter with reliable qualitative as well as quantitative informations, such as
shape deformation dynamics, average motion or multicellular interactions. In a sense, we
can think of this system as a tool to extract and summarize, from the raw data, the essential
information of the tracking for the benefit of the experimenter.

At a second and more profound level, is the need to develop “qualitatively accurate” as
well as “numerically efficient” techniques. Such methods should permit us to solve a num-
ber of essential computer vision problems. By qualitatively accurate we mean to say that we
are looking for techniques and processes giving us meaningful qualitative information, such
as the position of relatively significant corners, bumps and parts of a cell’s shape. Further-
more, such information should be robustly computed in the presence of noise. Numerical
efficiency refers to our need to provide algorithmic implementations which are optimized
for speed, since the amount of data to be processed is enormous. In our particular case we
will restrict ourselves to algorithms for sequential computers. Within the objectives of this
thesis, we will try to address two classes of computer vision problems summarized in the
following two questions:

1. How to segment an image and track significant events of a nonrigid object as it de-
forms and moves?

2. How to identify and describe the shape of an amorphous object in both the static and
dynamic cases?

1.2 Approach and Motivations

Until recently there has not existed a method for quantifying the observable changes in the
shape of a cell membrane that occur during locomotion [115, 119]. Changes in cellular
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membrane shape activity, such as the formation of pseudopods, are the first morphological
events visible as the cells respond to chemotactic agents. Moreover, many important types
of cells, such as polynuclear leukocytes (PMN) and lymphocytes are known to use their
locomotory organs, the pseudopods, to locomote. Little is known of the pseudopod kinetics
of these cells during locomotion [115]. Many attempts to study and characterize locomo-
tory paths, considering cells as points moving on a planar surface,2 have lead to advances
in the understanding of chemotaxis3 and chemokinesis.4 However, it is only recently that
an image interpretation system capable of describing and quantifying, not only the proper-
ties of locomotion of a moving cell, but also its shape and structural dynamics, has been
designed and implemented on a computerized environment [60, 161, 88, 115, 52].

It is on the basis of the results of this research that we have decided to approach the
problems of “tracking and describing deformable objects” such as living human cells. We
have decided to focus our attention on the essential first processing steps of image seg-
mentation and shape description and not consider higher level tasks, such as the feedback
monitoring and the control of a complete image understanding system (for examples of
such systems, see [60, 161]). Image segmentation and shape description are two basic, but
complex, domains of research in computer vision; and even if many attempts at providing
solutions to them have been proposed in the past, no definitive answers have yet been given
[87].

Segmentation of an image to extract cell boundaries or contours is the first task required
to identify what is a cell and what is not in a digitized image. Many techniques are actually
available. Techniques based on “classical” segmentation algorithms, such as region grow-
ing, edge detection and relaxation labeling, usually require too much computation to obtain
accurate results [67]. Therefore, we have explored a new segmentation technique based on
the work of Kass et al. [78] which introduces the concept of an active contour model, also
commonly called a snake. We are interested in this new concept, because the snake per-
mits us to simultaneously solve both the segmentation and tracking problems. Snakes can
be represented as energy-minimizing splines guided by external constraint forces and im-
age forces such as lines, edges, subjective contours and region homogeneities found in the
image. Furthermore, internal spline forces impose smoothness constraints on the modeled
contours. By combining and integrating various types of information found in an image,
snakes can lead to results at least comparable to other image segmentation techniques. But
it is the dynamic behavior of the snakes which is mainly of interest here. From frame to
frame, a snake will stick to the cell contour by following any small deformations which

2Looking at cell movement without regard to its membrane activity constitutes the large majority of the
research done so far; for example, see [129, 34, 17, 89, 163, 50].

3Chemotaxis: Reaction by which the direction of locomotion of cells is determined by substances in their
environment [115].

4Chemokinesis: Reaction by which the direction of locomotion of cells and/or the frequency of turning of
cells, moving at random, is determined by substances in their environment [115].
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may occur when a cell moves. However, an essential assumption is required: a cell can
move only a small distance between frames. This is needed because the snake is in some
sense relatively “blind” in its search for the optimal contour. The snake is able to track only
small deformations on its own, that is, without the help of higher level or more complex
processes. Consequently, most of the processing time required by the snake to converge
to the cell boundary is consumed in the initial frame. In addition, some amount of user
interaction to provide an initial position for the snake is required in the first analyzed frame.
Then, snakes implicitly take care of tracking the cell by dynamically sticking to boundaries.

Shape description is considered once the cell boundaries are available, that is, when
they are segmented from the digitized image. Following the research of our predecessors
[52], we have tried to optimize shape description algorithms based on the notion of the
skeleton of a shape, that is, on its representation by “idealized thin lines” that retain the
connectivity or topology of the original shape. The skeleton is believed to be the most
powerful representation available at present for characterizing the shape deformations and
evolution of shape subparts of nonrigid natural forms [115, 52]. The skeletonization of a
shape, that is, the process by which the skeleton is obtained, permits us to explicitly relate
significant boundary features to the internal structure of an object. In particular, we have
used, as a skeletonization process, the grassfire transform where an object’s boundary is
taken as an initial fire front which propagates within the object’s interior region. Points
where the fire front folds or interacts with itself are retained as indicators of shape features
such as symmetries, subparts, protrusions and depressions. To simulate the fire propaga-
tion we again use the snake model and show its advantages over previous approaches for
shape skeletonization [94]. However, our shape skeletonization method requires some ini-
tial processing of the object boundary to identify those curvature extrema where the fire
front collapses as soon as we “ignite” the fire. To do so we have designed a new method for
extracting contour features on the basis of morphological operators applied to the curvature
function of the boundary [90].

1.3 Overview and Contributions

Our goals are twofold. First we wish to provide and implement robust techniques for the
segmentation and tracking of nonrigid objects such as cells, as they deform and move. Sec-
ond we must consider the shape description problem. Since the keystone of our approach
to these problems relies on the notion of an active contour model, we first discuss this topic
in Chapter 2. There we give a detailed analysis of the model in both the continuous and
discrete domains. We have included this material because of the lack of such a detailed de-
scription in the existing literature. These insights lead us to propose various improvements
to the original model. In particular, we demonstrate the need for normalizing the forces
acting on the snake so that it remains stable under adverse conditions. We also propose
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(a) (b)

(c) (d)

Figure 1.3: Intensity image seen as a topographic map. This three-dimensional (3-D) sur-
face representation is produced by taking the intensity values as heights. White is consid-
ered the zero level height, while black is the highest level. In (a) is shown the image of a
cell blurred using a Gaussian filter. In (b) is shown its representation as a 3-D surface. In
(c) is shown the gradient of the image in (a), and in (d) is shown its representation as a 3-D
surface.

a new criterion for the optimization of the search of the image contours which is based
on topographic concerns, where the intensity image is seen as a kind of topographic map
(Figure 1.3). Finally, we emphasize the limitations of the active contour model which re-
quires powerful initialization processes and which arbitrarily imposes certain smoothness
constraints on the raw data.

We then consider in Chapter 3 noisy intensity images and use the snake model to per-
form image segmentation. The first step consists of producing a potential surface or topo-
graphic map representation of the image (Figure 1.3). This surface is filtered to emphasize
those features we wish the snake to be sensitive to (e.g., edges, lines). Therefore, in Chap-
ter 3, we first consider the problem of efficient image filtering. We study a certain class of
algorithms known as Hierarchical Discrete Correlation [38] and propose some improve-
ments especially suited to the snake model. Once the image is appropriately filtered, we
impose the snake on its potential surface representation to perform the segmentation of the
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(a) (b) (c)

Figure 1.4: Image segmentation using the snake. In (a) is shown the original intensity
image. In (b) is shown the line drawing obtained from the optimal snake position. In (c),
the snake in (b) is superimposed on the image in (a).

object’s boundary in the intensity image (Figure 1.4). Although our results for the image
segmentation of a nonrigid object are promising, we do demonstrate that the snake model
fails in certain particular cases due to its lack of ability to accurately sense the local shape
of the potential surface.

We then apply the snake model to the tracking of cells as they deform and move (Fig-
ure 1.5).5 In general, the snake model provides satisfying results, but fails in certain adverse
cases. In particular, a cell may locally and temporarily leave the focal plane (e.g., a pseu-
dopod grows above the glass surface). When the cell returns to the focal plane, the snake
may be unable to track what corresponds to large deformations.

After image segmentation and tracking, we consider the shape description problem. In
Chapter 4, we first present a new method for extracting contour features such as extrema
of curvature and straight line segments (Figure 1.6). Our new method is an application of
mathematical morphology to functions [135] used to process the curvature function of an
object contour. The main contribution of this approach is a new scale-space representation,
obtained with the use of nonlinear morphological operators, which possess a number of
advantages over the more traditional representations based solely on Gaussian smoothing.

Finally, in Chapter 5, we combine the extracted contour features with a new implemen-
tation of the grassfire transform, simulated using the snake model (Figure 1.7).6 This per-
mits us to explicitly relate boundary and region information, a departure from most shape
description techniques found in the literature. We also make other more practical contribu-
tions. Specifically, we propose the new concept of a dynamic skeleton (i.e., a deformable
skeleton), we address the subject of branch significance of a skeleton and propose the con-
cept of ridge support to characterize it. We also consider a number of implementational

5Addendum (February 2003): A journal article based on Chapters 2 and 3 was published in IEEE-PAMI
in 1993 [98].

6Addendum (February 2003): A journal article based on Chapter 5 was published in IEEE-PAMI in 1992
[97].
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(a) (b) (c)

(d) (e) (f)

Figure 1.5: Cell tracking using the snake model. All frames have their optimal snakes
superimposed to show the extracted contour. In (f) are shown the extracted contours in the
first frame (grey dotted contour) and the last one (dark connected contour) to illustrate the
total deformation that was recovered from the observed sequence.
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(a)

(b)

(c) (d)

Figure 1.6: Segmentation of a contour. We use mathematical morphology operators on the
curvature function to help us extract contour features. In (a) are shown the initial object
outline on the left-hand-side and its smoothed discrete curvature function

����� ���
on the

right-hand-side. In (b) are shown the extracted peaks of the positive part of
���	� �
�

. These
will correspond to significant convexities along the boundary. In (c) are shown the extracted
peaks of the negative part of

����� �
�
. These will correspond to significant concavities along

the boundary. Finally, in (d) is shown the resulting segmentation of the object outline in
terms of arcs and curvature extrema.
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Figure 1.7: Simulating the grassfire transform (i.e., shape skeletonization) using the snake
model. The potential surface is shown at the top right corner. The fire is ignited at time
�����

where time corresponds to iteration. The stable state occurs at
�����	�

iterations. This
last picture shows the final result when the number of snake elements is increased so that
the snake is spatially connected, that is, without any gaps.

issues. In particular, we provide details of an optimized implementation of an Euclidean
distance mapping algorithm, which gives us a suitable potential surface representation for
the snake model when simulating the grassfire transform (Appendix D).7

7Addendum (February 2003): A journal article based on Appendix D was published in CVGIP-IU in 1992
[96].



Chapter 2

The Snake Model

The snake model arose from the regularization paradigm applied to computer vision in
which vision is seen as a problem of inverse optics [142], therefore being in general un-
derconstrained. Within this regularization framework, the problem is further constrained or
regularized by imposing smoothness constraints on an object fitting the data. A measure
of the discrepancy between the data and the fitted object is also used to relate the model to
this data in an attempt to recover the embedded features. Since we are mainly interested
in the problem of reconstructing or recovering contours of cells in images, we have only
considered one-dimensional (1-D) objects. Such an object is the active contour, also called
“snake,” first proposed by Kass et al. [78] as a possible tool for solving the segmentation
problem. It consists of an energy-minimizing spline guided by external constraint forces
and influenced by potential field forces that maneuver it toward desirable features. Further-
more, internal constraints can be used to enforce smoothness or to introduce a discontinuity
at a point on the snake. The snake model was originally intended to be applied to graph
of functions when searching for local minima of these graph of functions. Specifically, an
image can be seen as a 2-D function (see the following section for more details), and, by
an appropriate filtering scheme, significant image features such as edges and contours will
correspond to local minima of the graph of this function.

The snake is made active by always minimizing its energy function. If it is positioned
“close enough” to significant contours in the image, that is, close enough so that potential
field forces exist in relation to these contours, the snake will move and ultimately reach
a local energy minimum corresponding to that image contour. Therefore, the snake relies
on external mechanisms to place it close to salient contours. Although this approach does
not completely solve the image segmentation problem, the snake’s dynamic behavior and
implicit connectivity prove to be key factors in the decision to use it for cell tracking, or
more generally for the tracking of deformable shapes.

The problem of selecting an initial position for the snake becomes almost negligible
when one considers a sequence of images; for example, when attempting to perform a mo-

11
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tion analysis of deformable shapes. In such a case, only the very first frame or image causes
a real initialization problem, which can always be solved by permitting user interaction.
For the following frames, the “optimal” snake position found in the preceding frame may
be used as a good initial position for the analysis of the current frame. This technique will
work quite satisfactorily if one assumes that “large deformations” will not occur from frame
to frame. By “‘large deformations” we mean to say deformations for which potential field
forces, corresponding to the newly deformed contour, will not influence the snake. These
field forces may be situated far enough from the snake, as an effect of the deformation, so
that the snake is out of range from them. In the case of cell tracking “large deformations”
will, in general, not occur as a cell deforms slowly and continuously. Other advantages
will also become apparent when the snake model will be effectively applied to problems
such as contour extraction and the tracking (Chapter 3) and shape description (Chapter 5)
of deformable objects such as cells.

In this chapter, we first introduce the basic concepts of the snake model in section 2.1.
The next two sections, “Dynamics of the Snake in the Continuous Domain” and “Discretiza-
tion of the Model,” constitute a complete summary of the roots of the snake model inspired
by the very first papers on the subject by Terzopoulos and Kass et al. [145, 144, 78]. Sec-
tion 2.4 concerning “Solving the Discrete Equations of Motion” is a brief summary of an
efficient algorithm for matrix factorization proposed by Benson and Evans and referred to
by Terzopoulos [18, 144]. The following section, “Snake Parameters: the Original Model,”
is a discussion that arose from our experience gained with the original snake model and
which has its basis in papers by Terzopoulos and Kass et al. The real contribution to the
subject though, comes in the last two sections, “The Original Snake Model: Advantages
and Limitations” and “Improving the Original Snake Model,” and in Appendix C dealing
with the “Normalization of the Snake Forces.” Finally, Appendix B, entitled “Inserting
Discontinuities Along the Snake,” is inspired by a paper by Terzopoulos [141].

2.1 Basic Concepts

A snake is a model of a deformable curve or contour (if closed) composed of abstract elastic
materials. This elastic contour, in the model, is made of two types of materials: strings and
rods. The former make the snake resistant to stretching while the latter make it resistant
to bending. Such a deformable curve is activated by making it sensitive to the graph of
a function of two variables (e.g., the graph of an image

���������
	
) embedded in � � . Such a

graph can be seen as a three-dimensional (3-D) surface,  . The snake is constrained to lie
on  under the action of some gravitational force g. In other words, a weight is assigned
to the snake to make it fall down the slopes of the surface  .

Depending on the nature of the surface considered in this thesis, the snake will be used
for different purposes. A typical case is to treat the image data as the surface  . The
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(a)

0

X

Y

(b)

Figure 2.1: Image seen as a 3-D surface. In (a) is shown the image of intensities of a
blurred rectangle. In (b) is shown its representation as a 3-D surface. This representation
corresponds to the graph of the function � ������� � 	 .

image
������� � 	

can be represented as a 3-D surface with coordinates
����� � 	

used as the planar
Cartesian reference system. Then, the surface  ����� � 	

may corresponds to image intensities
(i.e.,  ��� ������� � 	

) or to contrast values (e.g.,  ��� ���������
	
). Once  is determined, the

idea is to have the snake lie on the surface allowing it to deform according to the surface
topography, while under the influence of g. An illustration of how the image may be seen
as a 3-D surface is given in Figure 2.1. Throughout this thesis, we will fix the magnitude of
the gravitational force to be constant, that is, � ��� �	� ��
�� , where



is the constant mass

of the snake and
�

is the magnitude of the constant gravitational acceleration.
Other useful types of surfaces can be obtained from range data [59], distance transforms

applied to shapes or regions (see Chapter 5), and tangent fields [164, 47, 48]. The snake
is positioned on such a surface, and, under the influence of gravity, will seek out valleys
or ridges of the surface until it achieves some sort of equilibrium state. Such behavior is
obtained by associating with the snake an energy function that depends on the height of the
surface at the snake’s location (similar to a potential energy). The snake will then attempt
to minimize its energy by seeking out local minima in height in a neighborhood around the
contour.

A critical step in the process is obtaining a surface where deep valleys correspond to
significant events or features of the function represented by that surface. For example, let
us again consider the function  �� ������� � 	

, the intensity values of the image. Significant
or interesting features in an image are edges and contours, that is, regions of high contrast,
or homogeneous regions possessing some uniform characteristic. A proper surface should
have valleys positioned at places corresponding to such features as edges, contours or re-
gions boundaries. Therefore, in general, the original data, such as image intensities, will
first have to be filtered in an appropriate way to enhance such features. An example of the
kind of filtering used on an image to obtain an appropriate surface for an active contour
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0
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Y

(a) (b)

0

X

Y

(c)

Figure 2.2: Example of a surface, obtained by filtering an image, to be used with a snake. In
(a) is shown the image of intensities of the gradient of a blurred rectangle. In (b) is shown
its representation as a 3-D surface. This representation corresponds to the graph of the
function � � � ������� � 	 � . In (c) is shown the position of a snake superimposed over the image
of intensities (a). This snake has crawled down the 3-D surface until it reached the bottom
of a valley of the surface. Note that the snake is not perfectly symmetrically positioned
because of discretization effects.

model is given in Figure 2.2. More details and examples will be given in Chapter 3 when
applying the snake model to the problems of segmentation and tracking.

An obvious question arises: what if the snake gets “stuck” at some local minimum or
valley corresponding to noise or some other undesirable feature in the image? The orig-
inal snake model [78] provides an “indirect” solution to such problems by permitting the
addition of external constraints or forces that will push the snake away from undesirable fea-
tures. A complementary kind of external force is also provided, which permits the snakes
to be pulled towards significant features.

Such a method of imposing external constraints or forces is indirect because it relies
on other external mechanisms, such as a pre-analysis of the image data or user interaction
to place these constraints near the identified features. This process of imposing external
constraints will be clarified with examples of image segmentation (Chapter 3) and shape
skeletonization (Chapter 5).

In summary, we have an elastic contour positioned on a 3-D surface, and on which
external forces can be imposed. In addition, a mass is assigned to the snake which is then
embedded in an uniform gravitational field.1 Furthermore, the surface,  , on which it lies

1Gravitational field: A region of space in which a body (e.g., the Earth) exerts a force, � , on another body
(e.g., the snake) through space, �

�
. We consider in the case of the snake model that the former body is much

more massive than the second one, the snake, and that it exerts a constant force of magnitude ������� on this
snake.
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(a) (b)

Figure 2.3: The snake and the forces acting on it. In (a) is shown the potential surface
 obtained from the gradient of the blurred rectangle shown in Figure 2.2. Also in (a) is
shown a closed snake positioned on the verge of the valley of  (contour in black). A small
square window (in (a)) has been selected to illustrate (in (b)) the different forces acting
on the snake. In (b) a portion of the snake is shown. Points of the snake are shown as
circular dots. The black links between the snake points represent the internal constraints
of elasticity that exist between them (i.e.,

�������
). A square dot represents the position of an

external constraint (acting on one snake point here). A white link represents the external
force (i.e.,

���
	��
). Finally,

��������
represents the gravitational force which will have a tendency

to make the snake crawl down the slopes of  .

can be seen to specify its gravitational potential energy function � .2 Hereafter, in this thesis,
we will refer to such a surface by using the term potential surface, to make clear how
it influences the snake motion. The gravitational field is defined spatially by the surface
coordinates

����� � 	
, while the gravitational potential energy values are given by the surface

height, � �  � ��� � 	
. Depending upon where a snake is positioned on the potential surface,

that is, at a certain height, it will have a given gravitational potential energy term. Other
influences will also come from the previously mentioned internal and external constraints
(Figure 2.3).

We observe that a natural way of causing the snake to move in order to reach a lower
gravitational potential energy, by seeking valleys in the potential surface, is to convert po-
tential energy to kinetic energy. The potential energy of the snake is given by the sum of its
gravitational potential energy and of the potential energy terms obtained from the internal
and external constraints acting on it. Then, the kinetic energy is dissipated by damping,
resulting in the snake reaching a new lower equilibrium, that is, lower in terms of potential
energy and, thereby, lower in terms of height. By following such a natural description of the

2Gravitational potential energy: The work an object at height can do by falling under the influence of a
gravity force. The “gravitational potential energy function” is then obtained as the possible states (or heights)
this object can assume in a gravitational field. In the case of the snake model these states are fixed by the
surface � on which the snake is constrained to lie on.
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dynamics of an active contour, the snake model was first described in terms of a Lagrangian
formulation of the motion [145, 144]. The dynamics of the snake defined within such a for-
malism in the continuous domain are described in the next section. A discretization of the
model for practical implementation will then follow.

2.2 Dynamics of the Snake in the Continuous Domain

Consider a deformable curve � ��� � � 	 , with parameters
�

(spatial index) and
�

(time), defined
on given open intervals

�
and � respectively. Let us consider this deformable curve to be a

function of two variables
�

and
�

(e.g., spatial coordinates) having the same parameteriza-
tion as � :

� ��� � � 	 � � � ��� � � 	 ��� ��� � � 	�	����
	 � � � 	 ��� (2.1)

The potential energy function of the snake, ���������� � � 	 , is defined as [78]:

���������� � � 	 ���� ��� � "!#�%$ � � 	'& ���()$ � � 	*& �+)!#��,.- � � 	0/213� � (2.2)

"!#�%$ represents the internal potential energy of the snake. It is a function of both bending
and stretching forces applied to the snake. 4��()$ gives rise to external constraint forces.�+�!5��,.- gives rise to gravitational field forces.

The internal potential energy of the snake, 6!7��$ , is defined as follows:

"!#��$ � � ��� 	�	 �98;: ��� 	 � � � � < & 8 < ��� 	 � � ��� � < � (2.3)

where � �>= ?)@? � and � ���A= ?%B�@? � B . The first order term,
8C: ��� 	 � � � � < , makes the snake behave

like a string (i.e., resists stretching), while the second order term,
8 < ��� 	 � � ��� � < , makes the

snake behave like a rod (i.e., resists bending). The weight
8D: ��� 	

regulates the tension
of the snake, while

8 < ��� 	 regulates its rigidity. Two types of discontinuities, position or
tangent discontinuities, may be introduced along a snake by setting these weights to zero
[145, 144]. If we set

8 < ����E 	 � � , thereby removing any rigidity constraint at
�FE

, a tangent
discontinuity can occur at this point, or element, on the snake. Furthermore, if we set both8G: ����E 	 �H8 < ����E 	 � � , no internal constraint exists at

�IE
, forcing a position discontinuity at

this snake element. Hereafter, in this thesis, we will refer to such points or elements of the
snake by using the term snaxel, a contraction of the two words “snake element.”

The external potential energy, 6��()$ , arises from two complementary types of forces:
springs and volcanos. A spring force, JK�ML)NO!#��P � �4Q �RL)NO!#�%P ��S : � S < 	 , may be created between
a fixed point

S : ��� : � � : 	
on the potential surface and a snaxel with coordinates

S < � � < � � < 	
by adding the energy term, 4�MLTN�!#��P � � :< Q �RL)NO!#�%P ��S : � S < 	 < , to ���()$ . A volcano or cone of
energy may be created by defining a repulsive force, J @VU ,.W �

:
< �VX�Y�Z [N B , where \ represents the

radius of the volcano base. The effect of this volcano force is implemented by adding the
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cone of energy associated with the force,  @�U , W � � � X�Y�Z [N , to ���()$ . This cone of energy can
be seen as a small conic surface or patch which can be used to fill-in valleys and to create
mounts or peaks on the potential surface. Springs are used to force the snake to attach to
desirable features, such as curvature extrema of a contour, while volcanos are used to push
the snake away from undesirable local minima of the potential field, like those due to noise.
Hence we see the complementary nature of the spring and volcano forces, the former being
an attractive force, while the latter is a repulsive force.

The potential field energy, 4+�!5��,.- , can be derived from the classical gravitational poten-
tial energy equation (see for example [68]) in a point-by-point fashion as follows:

�+�!5��,.- � � ��� � � 	 	 � � � � � � ��� � � 	�	 � (2.4)

where � is the constant mass density of the snake,
�

is the magnitude of the gravitational
acceleration discussed previously, and � � � ��� � � 	 	 is the height or potential value at snaxel

�
and at time

�
on the potential surface  .

Given the potential energy function, 4�����V��� (equation (2.2)), for a specific initial posi-
tion, a minimization procedure can be applied to reach a more stable energy state by con-
verting potential energy to kinetic energy and then dissipating this kinetic energy through
an energy dissipation function [145, 144].

The minimization process can easily be seen as a problem of classical mechanics. Ac-
cording to the principle of least action [68], the motion of a deformable curve under the
influence of conservative forces, that is, derivatives of a potential function, during a time
interval � , is described by those functions � ��� � � 	 for which the line integral

���
:

��� � � � � � � 	V1 � � (2.5)

is a minimum. The Lagrangian
� � � 	 is, by definition, given as

� � � 	 � � � � 	 ��� � � 	 , where� � � 	 expresses the kinetic energy of the curve, � , and � � � 	 is its potential energy. The
kinetic energy function � � � 	 is defined as:

� � � 	 � �� ��� � � � $ � < 13� � (2.6)

where � $'= ?T@? $ . The potential energy function � � � 	 is the previously defined  � ���V��� � � 	 , that
is, the total instantaneous potential energy of the snake. Therefore, combining equations
(2.2), (2.5) and (2.6),

���
can be rewritten as the double integral:

��� � �� � � � �
	 � � � $ � < � "!#��$ � � ��� 	�	 � ���()$ � � ��� 	�	 � �+�!5��,.- � � ��� 	 	�� 13� 1 � � (2.7)

From the calculus of variations, it is known that an extremum of
���

must satisfy the
Euler-Lagrange equations. From equations (2.3), (2.4) and (2.6) we have that the La-
grangian is a function such that:
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� � � ��� � � ��� ��� � � 	 � � ��� � � 	 ��� $ � � $ ��� � ��� � ��� ��� � � ��� 	 � (2.8)

In such a case the Euler-Lagrange equations of motion are the following [62]:

�
� � � � 	 �

�
� � �

�
� � $ � � 	�� �

�
� � � �

� � � � � 	���&
� <� � <

� �
� � ��� � � 	�� � � �

�
� � � � 	 �

�
� � �

�
� � $ � � 	�� �

�
� � � �

� � � � � 	��4&
� <� � <

� �
� � ��� � � 	�� � � � (2.9)

These equations describe the motion of a conservative system, that is, a system where all
the forces acting on it are derived from a potential function. With such forces, potential
energy is transformed solely into kinetic energy, leading to a constant increase of speed.
In order to reach a new lower equilibrium, in terms of potential energy, at a rest state
( � $ � �

), kinetic energy must be dissipated by damping. A natural and simple way of
describing such behavior is by including within the equations of motion, obtained for a
conservative system (equations (2.9)), the effect of additive frictional forces proportional
to snaxel velocities, that is, forces not derived from a potential function or, equivalently,
non-conservative. Frictional forces of this type may be derived from Rayleigh’s dissipation
function [68]:

� � � $ 	 � �� ����� � � $ � < 1 � � (2.10)

where
�

is the constant damping density or viscosity factor. Then, the frictional forces
acting on the snake are derived as:

� + ��� $ 	 � �
�
� � $

� � � � $ 	 � � � � � $ �
� + ��� $ 	 � �

�
� � $

� � � � $ 	�� � � � � $0� (2.11)

Incorporating these forces into the Euler-Lagrange equations of motion, gives:

�
� � � � 	 �

�
� � �

�
� � $ � � 	 � �

�
� � � �

� � � � � 	 � &
� <� � <

� �
� � ��� � � 	 � � � � � $ ��

� � � � 	 �
�
� � �

�
� � $ � � 	 � �

�
� � � �

� � � � � 	 � &
� <� � <

� �
� � ��� � � 	 � � � � � $0� (2.12)

Using equations (2.2), (2.3) and (2.6), we can replace the Lagrangian
�

by � � � as
follows:
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� � � � � � �� � � 	 � � � $ � < � 8G: ��� 	 � � � � < � 8 < ��� 	 � � ��� � < � ���()$ � �+)!#��,.- � 13� � (2.13)

Then, replacing
�

in equations (2.12) by this last equation (2.13), and after a few ma-
nipulations, these equations become:

� � $5$ & � � $ � �
� � � 8G: ��� 	 � � � � � <� � <

� 8 < ��� 	 � ��� � � � �� � ���()$ � � � 	*& �+�!5��,.- � � � 	 	 �
� � $5$ & � � $ � �

� � � 8G: ��� 	 � � � � � <� � <
� 8 < ��� 	 � ��� � � � �� � ���()$�� � � 	*& �+�!5��,.-�� � � 	 � �(2.14)

where
� $5$ = ? ( B? $ B , � $5$4= ? � B? $ B , ���()$ � = ?? ( � ���()$ 	 , ���()$ � = ?? � � ���()$ 	 , 6+�!5��, - � = ?? ( � �+�!5��,.- 	

and �+)!#��,.- � = ?? � � �+�!5��,.- 	 . Note that associated with such differential equations are appro-
priate initial and boundary conditions, at

� � �
and at the extremities of the interval

�
,

respectively. We will address this issue in the next section when discretizing the equations
of motion.

Let us summarize the way these equations model the dynamics of the snake. On the
left-hand-sides (LHS’s), the first two terms represent inertial ( �'� $5$ ) and damping (

� � $ ) in-
fluences; the former is proportional to acceleration and the second is proportional to speed,
as one would expect. The next two terms represent the elasticity forces between snaxels
in terms of tension (

8C: � � ) and rigidity (
8 < � ��� ). We will see that the former is proportional

to the spacing between snaxels, while the later is proportional to curvature. On the right-
hand-sides (RHS’s), the first term represents the influence of the external constraints as a
function of the first spatial derivatives of the energy 4��()$ (i.e., giving rise to external forces).
The second term represents the influence of the potential surface as a function of its negative
slope in the

�
and

�
directions. The latter will force the snake to follow the potential surface

topography in the direction of highest negative slope in a fashion similar to a steepest de-
scent technique. Therefore, the LHS’s represent the intrinsic forces acting on or within the
snake, while the RHS’s represent the extrinsic forces which are independent of the snake’s
nature.

The description of the dynamics of the snake model in the continuous domain is now
complete. Only the solution of the differential equations of motion remains. However, for
the purposes of practical implementation, the model must first be discretized. This is the
subject of the next section.

2.3 Discretization of the Model

Because today’s computers are mostly based on digital devices, any problem which is to
be solved using the computational power of these computers must be specified in a discrete
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fashion. For the snake model, the space and time domains, the external forces, the snake
itself and the equations of motion must be discretized so that the model is compatible with
the digital nature of the computer.

Let us first consider the discretization of a region  of the space, � � , in which the poten-
tial surface,  , is defined. This region,  , can be discretized by defining three discrete3 sets,�

and � , for the spatial coordinates, and � for the field values or valid potential surface
heights. This permits the confinement of the triplet values,

����� � � � 	"	  , to a restricted set
of values,

� ��� � � � 	D	  , where  represents the restricted discrete domain. The sets,
�

and
� , consist of integer values varying from 0 to some given maximum indexing values, � �
and � � , respectively: � � 	 � � � � � � � ����� � � � � � and � � 	 � � � � � � � ����� � � � � � .
These two sets define indices on the potential surface. A third set is then defined for the
surface values. It consists of real numbers varying from a given minimum, ��� !#� , to a given
maximum, �	� �0( , such that � � 	 � � � � � �
�2!#� � ����� � �	� �V( � � . Examples of such discrete
domains  that will be used in this thesis are the image domain, � , containing digital inten-
sity images (

� � ��� � 	
) and their filtered versions, and the distance transform domain, �� ,

containing digital distance transforms of 2-D regions or objects (
� � � ��� � 	 ).

Like the region  , the external forces must also be spatially discretized. This is done by
using the same discrete spatial coordinates (

� � � � 	 � � 	 �
and

� 	 � ) when evaluating
the spring and volcano forces.

Unlike the previous cases, the snake must be discretized in not one, but two domains:
space and time. The spatial discretization is done by regularly tessellating the interval

�
into

� � nodes (i.e., � � snaxels), leading to a discrete set
�

( � �>	 � � � � � � � ����� � � � � � � � ).
We use the symbol � � to represent the distance or spatial step between successive snaxels.
The time discretization is achieved by considering a discrete time interval, � , defined to
start at time 0. It consists of values

�
regularly separated by a constant time-step, � � .

For example, � � may represent the inter-frame time interval when analyzing sequences of
images. Theoretically we can activate a snake for an infinite period of time; therefore � is
the open set: � � 	 � � � � � � � � � � � � � � ����� � � . Having discretized the two parameters

�
and

�
which describe the snake (equation (2.1)), its discrete version can now be stated as

follows:

� � � � � 	 � � � � � � � 	 � � � � � � 	 	 � (2.15)

This spatially relates the discrete snake to the same grid (
� � �

) used to discretize the domain and the external forces.
The next step involves the discretization of the equations of motion of the snake (equa-

tions (2.14)). As previously, a discretization in both space and time is required. For such
differential equations we use the finite difference method as the discretization technique to
approximate the first and second order derivatives in equations (2.14), in both space and

3Throughout this thesis, barred symbols will refer to discretized variable (e.g., ������������� ��� ��� ).
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time.
First, let us consider the time derivatives (the first two terms on the LHS’s of equations

(2.14)). Since we do not have a priori knowledge of the future positions of the snake, we
will position ourselves in time at

� � � � � � , that is, at a known position, looking for the
next new position, at time

� � �
, that will present itself as a solution to equations (2.14).

This has the advantage of allowing us to use central differences in time, centered at
� � � � ,

when evaluating time derivatives, as follows:

�'� $5$ ��� � � � � � 	 � �
� � � 	 <

� � � � � � 	 � � � � � � � � � � 	*& � � � � � � � � � 	0/ �� � $ ��� � � � � � 	 � �
� � �

� � � � � � 	 � � � � � � � � � � 	0/ � (2.16)

where the two initial positions at
� � � � � and

� � � � � � must be given. Following [144,
78] we consider constant time-steps and replace � � by � to simplify equations (2.16). We
must keep in mind that to achieve good numerical stability, relatively small deformations
of the snake are needed. This is the same as having a relatively small time-step � � , keeping
the numerical errors (proportional to

� � � 	 < in equations (2.16)) relatively small. Therefore,
replacing � � by � and combining the two equations (2.16) leads to the following:

�'� $5$ & � � $ � � � � � � 	�� � &
�
��� & � � � � � � � 	 � � � � / & � � � � � � � 	�� � �

�
��� � (2.17)

where the two initial positions � � � � � � 	 and � � � � � � 	 must be given. From this equation, we
can conclude that the discretization of time derivatives has the effect of averaging the com-
bined influences of inertia and damping over the present and two previous snake positions.
This takes effect over all snaxels.

We now consider the derivatives in the spatial coordinates,
�
, of the snake, for the last

two terms on LHS’s of equations (2.14), at time
� � �

, that is, at the new snake position.
Assuming that we have access to the local neighborhood around each snaxel, we can use
forward, backward or central differences, or even combinations of these. For reasons of
symmetry and direct local influence, we combine forward and backward differences when
approximating ?? �

� 8G: ��� 	 � � � , and use central differences for ? B? � B
� 8 < ��� 	 � ��� � . If we make

another choice, such as using only central differences, we may not necessarily have direct
relations or links between snaxels as a function of

8D:
, or we may not have symmetric

relations. We also assume that the snake forms a loop or closed curve in order to have
simple cyclic boundary conditions. The insertion of position discontinuities, considered in
Appendix B, will permit us to model open active curves. We therefore obtain the following
discrete equation:

�
�
� � � 8G: ��� 	 � � ��� � � 	��6& � <� � <

� 8 < ��� 	 � ��� ��� � � 	�� �
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�� � � 	 < � 8;: � � 	
� � � � � � 	 � � � � � � � � � 	 / � &

�� � � 	 < � 8G: � �C& � � 	 � � � � � � 	 � � � �D& � � � � 	 / � &
�� � � 	 � � 8 < � � � � � 	

� � � � � � � � � � 	 � � � � � � � � � � 	*& � � � � � 	 / � ��
� � � 	 � � 8 < � � 	

� � � � � � � � � 	 � � � � � � � 	*& � � �D& � � � � 	 / � &
�� � � 	 � � 8 < � �D& � � 	 � � � � � � 	 � � � � �C& � � � � 	*& � � �D& � � � � � 	 / � �

(2.18)

where the cyclic boundary conditions require that � � � � � � � � 	 � � � � � � � � � � � 	 , � � � � � � � 	 �� � � � � � � � � 	 , � � � � � � 	 � � � � � � 	 , � � � � & � � � � 	 � � � � � � � 	 , 8 < � � � � 	 � 8 < � � � � � � 	 ,8 < � � � 	 ��8 < � � 	 and
8;: � � � 	 ��8G: � � 	

. As in the case of the time derivatives, we con-
sider the spatial step-size, � � , as constant and replace it by � to simplify equation (2.18)
[144, 78]. However, to achieve a good approximation of the derivatives, we must keep
in mind that the distance between snaxels, � � , should remain small and relatively con-
stant. This will keep the numerical errors, proportional to

� � � 	 < for the approximation of?? �
� 8G: ��� 	 � � � and

� � � 	 � for the approximation of ? B? � B
� 8 < ��� 	 � ��� � , relatively small. There-

fore, replacing � � by � , and rewriting equations (2.18) in terms of � leads to the following:

�
�
� � � 8G: ��� 	 � � ��� � � 	'& � <� � <

� 8 < ��� 	 � ��� ��� � � 	 � � �
� � � � � � � 	 8 < � � � � 	 &

� � � � � � � 	 � � � 8 < � � � � 	 � � 8 < � � 	 � 8G: � � 	0/ &� � � � � 	 � 8 < � � � � 	*&�� 8 < � � 	2& 8 < � �C& � 	*& 8;: � � 	*& 8G: � �D& � 	0/ &� � �D& � � � 	 � � � 8 < � � 	 � � 8 < � �C& � 	 � 8G: � �D& � 	0/ &� � �D& � 	 � � 	 8 < � �C& � 	 �
(2.19)

where � � � � � � 	 � � � � � � � � � 	 , � � � � � � 	 � � � � � � � � � 	 , � � � � � � 	 � � � � � � 	 , � � � � &� � � 	 � � � � � � 	 , 8 < � � � 	 � 8 < � � � � � 	 , 8 < � � � 	 � 8 < � � 	 and
8;: � � � 	 � 8G: � � 	 . With such

boundary conditions, equation (2.19) holds for all
�

and can be rewritten as a system of
linear equations for all

�
in a more convenient matrix form:

�
�
� � � 8G: ��� 	 � � ��� � � 	 � & � <� � <

� 8 < ��� 	 � ��� ��� � � 	 � ��� � � � � � 	 �
(2.20)

where � , the stiffness matrix, representing all internal elasticity relations of the snake, is
defined for

� � � � ����� � � � � � , as follows:
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� �
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	 :��� ��	 : ��� �
	 : ��� �
	

�
�
� �
	 < � � �
	 :

���������������
�
� (2.21)

This matrix is symmetric and pentadiagonal which will prove to be useful when solving the
discrete equations of motion of the snake. The following identities are used to relate � to
equation (2.19):

� � � 8 < � �C& � 	 �� � � � � 8 < � � 	 � � 8 < � �C& � 	 � 8G: � �D& � 	 �� � � 8 < � � � � 	*&�� 8 < � � 	*& 8 < � �C& � 	*& 8G: � � 	*& 8G: � �D& � 	 � (2.22)

Finally, the vector � contains all snaxel positions at time
�
:

� � � � � 	 � � � � � � � 	 � � � � � 	 ����� � � � � � � � � 	�	 � � (2.23)

where � stands for the transpose. From such a system of equations we can observe the ef-
fect of discretization in terms of first and second order differences, on the types of relations
linking the snaxels. Each snaxel (

�
) is directly linked to at most its four direct neighbors

(
� � � � � � � � �*& � and

�*& �
; see Appendix B). The weights given to each link, in terms of8G:

and
8 < , are symmetrically distributed around each snaxel. Such properties of direct local

influence and symmetry are desirable to obtain an isotropic behavior of the snake and to be
able to apply fast methods for solving such a system of equations. Also, due to the local na-
ture of the links between snaxels, discontinuities may easily be introduced along the snake
by breaking these links. With the kinds of links we use, that is,

8D:
and

8 < , two useful types
of discontinuities can be introduced: tangent and position breaks. A tangent discontinuity is
enforced by breaking the rigidity links (

8 < � � ) at a given snaxel. A position discontinuity
is enforced by breaking both the rigidity and the tension links (

8 < � 8G: � � ) between two
given snaxels. A tangent discontinuity permits the snake to take the form of a corner, while
a position discontinuity permits the creation of a snake which forms an open curve. The
introduction of such discontinuities can be achieved by simply modifying certain entries in
the matrix � corresponding to the broken links. A detailed analysis of how to retrieve the
matrix entries that need to be modified is presented in Appendix B.
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We are still left with the discretization of the RHS’s of equations (2.14). Since we
have already considered the discretization of the external forces and the potential surface,
it remains to approximate the directional derivatives in

�
and

�
. Again, we do not have a

priori knowledge of the future positions of the snake, so we can at best approximate these
derivatives by the last known snake position, that is, at time

� � � . We will consider how to
efficiently implement these approximations in subsequent sections. Therefore, we use the
following notation for the discrete version of the RHS’s of equations (2.14):

���()$�� � � ��� � � 	�	*& 6+�!5��, -�� � � ��� � � 	 	 � ���()$ � � � � � � � � � 	 	*& �+�!5��,.- � � � � � � � � � 	 	 ����()$�� � � ��� � � 	�	'& 6+�!5��, -�� � � ��� � � 	 	 � ���()$ � � � � � � � � � 	�	*& �+�!5��,.- � � � � � � � � � 	�	 � (2.24)

We can now write the discrete version of the equations of motion for all snaxels. This
results in a set of two systems of � � linear equations. Using equations (2.17), (2.20) and
(2.24) we can write these two systems of equations as follows:

� � � � � � 	 � � ( � � � � � � � � � � 	 �� � � � � � 	 � �
�
� � � � � � � � � � 	 � (2.25)

where on the LHS’s we use the following identities:

� � ��� � � & ���	� � & � �
� � � � � 	 � � � � � � � 	 � � � � � 	 ����� � � � � � � � � 	 	 � �� � � � � 	 � � ��� � � � 	 � � � � � 	 ����� ��� � � � � � � 	�	 � �

with � denoting the identity matrix. Note that the matrix
�

has the same off-diagonal
elements as � ; the only differences occur on the principal diagonal where the term

��

< & � /

is added to the diagonal elements of � . Therefore,
�

like � possesses the properties of
being symmetric and pentadiagonal. Furthermore,

�
can be shown to be positive definite.4

On the RHS’s of equations (2.25) the following identities are used:

� ( � � � � � � � � � � 	 �

� �� � ���()$ � � � � � � � � � 	 	*& �+)!#��,.- � � � � � � � � � 	 	�	 &
� � � / � � � � � � � 	*& � � � � � � � � � � � � � 	 �

4The easiest way to prove that � is positive definite is by showing that ���� ���� and ����� �����
hold for any ��� � and ���� � , respectively.
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�
�
� � � � � � � � � � 	 �

� �� � ���()$ � � � � � � � � � 	 	*& �+)!#��,.- � � � � � � � � � 	�	�� &
� � � / ��� � � � � � 	*& � � � � � � ��� � � � � � 	 �

with
� ��� � ����� � � � � � . Note that the RHS’s depend on two prior snake positions, at

� � �
and

� � � . Then the solution of the system of equations (2.25) can be obtained by retrieving
the new snake position at time

�
:

� � � 	 : � ( � � � � 	 : �
� �

How to solve equations (2.25) is considered in the next section.

2.4 Solving the Discrete Equations of Motion

Equations (2.25) can be solved in linear time (
� � � � 	 ) by using efficient factorization tech-

niques to obtain
� 	 : � ( and

� 	 : �
� indirectly. These techniques take full advantage of the

properties of matrix
�

being pentadiagonal, symmetric and positive definite. For example,
the algorithm of Benson and Evans [18, 144] proves to be useful for our problem. The
basic idea of their algorithm consists of using certain matrix

�
properties to factor it into� � � � � � , where

�
is a diagonal matrix,

�
is a lower triangular matrix and � � � �

is an upper triangular matrix. The system of linear equations
� � � � ( (similarly for�

)5 becomes
� � � � � � � ( which can be directly reduced to

� � � � � � 	 : � ( ��� .
The next step consists of solving for � � � �

in the system
� � � ���

. This is done in
two stages by first doing a forward substitution for � � � � � � 	 : �

. Then a backward
substitution for � � � 	 :

� can be performed. The final step consists of solving for the
system

� � � 	 :
� . Such a factorization scheme proves to be most efficient for iterative

processes where the matrix
�

does not vary at each iteration [18]. This will be the case for
the snake model in most situations, where the mass density � and the damping density

�
are considered to be constant, and where the elasticity constraints or links

8�: � � 	
and

8 < � � 	
will be set to be constant most of the time (section 2.5). In the case where the matrix

�
changes with each iteration, for example, by varying the elasticity properties of the snake
for every � � , the Choleski factorization6 (

� � � � ) will be more efficient [18].
5In the following sections, we refer to the equations of motion of the snake often by solely using variables

in � . The equations in � are simply obtained by replacing � by � and � by � .
6The complexity of the Choleski factorization is also linear in time ( � �	� 
 � ). See, for example, Jacobs

[77] for a complete discussion of this technique.
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We have now covered most aspects concerning the implementation of the snake model.
But there remains one important aspect to be dealt with in order to obtain a desirable be-
havior for the snake (i.e., stable, accurate, fast): how to fix or set values for the different
intrinsic and extrinsic parameters

�
, � ,
8C:

,
8 < , ���()$ � and 6+�!5��, - � ? We discuss this important

subject in the following section.

2.5 Snake Parameters: The Original Model

In this section we consider how to fix the different snake parameters in the discrete equa-
tions of motion (2.25) following the original ideas of Kass et al. and Terzopoulos [78, 145].
In subsequent sections, problems emerging from these original descriptions of the snake
model will be considered and solutions to them will be proposed. For now, let us examine
the original framework in detail.

By observing the discrete equations of motion (equations (2.25)), one notes that � and�
are primarily important to implement a memory effect by averaging the actual snake

position �
� � 	

with the two prior positions �
� � � � 	 and �

� � � � 	 . Both � and
�

are positive
or null real numbers: � �

� � � � � � � 	 � . By varying their combined effects, more or less
weight will be put on the existing or prior positions, or on the differences between these
positions. By setting both of them to zero, the memory effect is lost: the snake moves solely
on the basis of its elasticity constraints and the extrinsic forces. It is worth noting that both� and

�
are set to be constant in the original snake model in order to simplify the equations

of motion of the snake and the factorization stage. This constraint could be removed to
define a more general active contour model. For example,

�
could be a function of

�
to

slow down snaxels one by one depending on their individual speed. The main drawback
of such a technique would be that a less efficient factorization method would have to be
used. Also, since this would imply the introduction of other derivatives in the equations of
motion (equations (2.14)), it is not clear that it would help the stability of the model since
we approximate derivatives by differences, a further source of instability. Therefore, it is in
general better, from a numerical point of view, to keep � and

�
constant.

Let us consider the other two parameters which provide some control of the intrinsic
behavior of the snake: the tension and rigidity weights,

8D:
and

8 < . To understand the effect
of varying these weights, consider the internal potential energy 4!7��$ � � ��� 	 	 � 8G: ��� 	 � � � � < &8 < ��� 	 � � ��� � < (equation (2.3)). By minimizing 6!7��$ over all snaxels, that is, minimizing

� !#�%$ ��
� "!#��$ 1 � , we can deduce how

8C:
and

8 < affect the behavior of the snake. Let us consider
each effect separately:

����� � �I� 8G: ��� 	 � � � � < 13� � ��� B �
�I� 8 < ��� 	 � � ��� � < 1 � �

where
����� & ��� B � � !#�%$ . If

8G: ��� 	�� �
, then

�����	� �
and to reduce it, � � � � < (

� � < � & � <� )
must be reduced. In the discrete domain, this means that � � < must be reduced or that
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the average distance between snaxels must be decreased; thus the snake shrinks. On the
contrary if

8G: ��� 	 � � , then
��� � � � and to reduce it, � � � � < has to increase. Therefore, in the

discrete domain � � < must increase or, equivalently, the average distance between snaxels
has to increase; here the snake dilates. Let us now consider

� � B . If
8 < ��� 	 � � then

� � B � �and to reduce it, � � ��� � < (
� � < ��� & � <��� � �

) must be reduced. This implies that both � � ��� �
and � � ��� � have to be reduced or equivalently that the curvature of the curve � is reduced.7 �
If
8 < ��� 	 � �

, then
��� B � �

and to reduce it, � � ��� � < must increase. In this case we can
hardly predict the behavior of the snake since even if the sum

� < ��� & � <��� increases, it does
not describe the behavior of the curvature of � in a trivial way.

The previous analysis provides us with some understanding of how
8�: � � 	

and
8 < � � 	

may affect the snake behavior. Still we need some sort of rules to fix the values of these
weights. Since

8;: � � 	
is linked to the notion of distance between snaxels, Terzopoulos [145]

has proposed to associate with the snake a point-wise metric function � � � 	
used to prescribe

the “natural arc length,” that is, the “desirable” step-size � � between each snaxel. Then,
the tension weights

8C: � � 	
can be fixed with respect to � � � 	

as follows:

8G: � � 	 � � � � � 	 � � � � 	 �
(2.26)

where � � � � 	 � � � � < & � � < is the actual distance between snaxels. Therefore, when
snaxels are too far apart (i.e., � � � � 	 � � � � 	

)
8C: � � 	

is positive and the snake should shrink.
For snaxels too close to each other,

8C: � � 	
is negative and the snake expands. Also proposed

by Terzopoulos [145] is a point-wise metric function � � � 	 used to prescribe the “natural
curvature” at each snaxel. Then, similarly to the tension, the rigidity weight

8 < � � 	 can be
fixed with respect to � � � 	 as follows:

8 < � � 	 � Q � � 	 � � � � 	 � (2.27)

where Q � � 	 is the actual discrete curvature at snaxel
�
. There are advantages as well as

disadvantages that arise from such techniques used to set
8D: � � 	

and
8 < � � 	 . These will be

considered in sections 2.6.1 and 2.6.3.
A final subject that must be examined with respect to the parameters

8�: � � 	
and

8 < � � 	 is
the introduction of discontinuities. In previous paragraphs, we mentioned that two types of
discontinuities were defined: tangent and position discontinuities (section 2.3). The former
corresponds to fixing

8 < � � 	 to 0 at snaxel
�
, while the second corresponds to fixing both8 < � � 	 and

8G: � � 	
to 0. Two important questions remain: where to position discontinuities

and how to choose these locations? Since a position discontinuity is primarily used for ob-
taining an open active curve, the particular snaxel at which one introduces such a break can
be chosen arbitrarily. On the other hand, tangent discontinuities were incorporated within
the snake model to be able to track or fit corners or cusps when these were recognized in

7The curvature of � (in the parametric form) is given by: � ���	��
������
����������� . As � 
 
 and � 
 
 tend toward
zero, the curvature � will tend to zero.
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an image at a higher level of processing [78]. Therefore, tangent discontinuities, although
useful for obtaining a closer fit to the data, that is, matching valleys or folds of the poten-
tial surface forming corners or cusps, require a prior interpretation stage which is able to
recognize the need for introducing such breaks. Such an interpretation stage can be im-
plemented by looking for a minimization of the energy function  ��������� when introducing
a tangent break. For example, after a snake reaches a stable state (e.g., � $ � � ), one may
examine its curvature by looking for a region where the snake bends considerably. Tangent
breaks can be introduced at these locations. When the snake reaches its new stable state, if
any changes have occurred in position and energy, we can assume the validity of creating
a corner or cusp at the chosen position. Such a scheme of reducing the energy of an active
contour by introducing tangent or even position breaks is similar to the idea of Blake and
Zisserman [19] who define a penalty function which permits breaks in the active curve if it
leads to a reduction of the energy of the curve.

Similar to the introduction of discontinuities, external forces have to be situated and
activated based on some other processing level to identify those points or regions where
external forces are needed. Attractive forces, such as springs, may be used to attach the
snake to edges found in a filtered image or to corners of identified objects. Similarly,
repulsive forces, such as volcanos, may be used to push away a snake from some identified
noisy region or isolated edges.

After knowing where to use external forces comes the question of how to efficiently
measure or create them. The spring effect is best implemented by directly considering
the spring force rather than the energy term it gives rise to. This is so because only two
known points, the concerned snaxel and the fixation point, are involved in the computation
of the force linking them which can easily be evaluated based on the distance separating
them. The case of a volcano constraint may be considered differently. Because a volcano
constraint involves a region or neighborhood of points, it is not practical to directly evaluate
the possible repulsive forces between the volcano and each snaxel in its neighborhood.
Instead, the cone of energy  @�U , W � � � X�Y�Z [N may be added to the potential field energy�+�!5��,.- . The evaluation of the slopes on the modified potential surface will then activate the
repulsive effect of a volcano. Such a method for mixing volcano energy with potential field
energy avoids keeping track of a volcano and reduces the two evaluation steps,  ��()$ � and�+�!5��,.- � , to a single one. We can mix these two kinds of energy terms because they are both
represented as surfaces, a cone for  @�U , W , a potential surface for 6+�!5��,.- ; this is not the case
for the spring energy which is better defined in a point-wise fashion.

Finally, let us consider the essential subject of evaluating field forces constrained by a
potential surface. These forces emerge in the discrete equations of motion (2.25) from the
directional derivatives of the potential energy terms, � �+�!5��,.- � and � 6+�!5��, - � . They are best
understood as the slopes, in the

�
and � directions, evaluated at each snaxel

�
for the last

known snake position, that is at time
� � � . Therefore, the effect of evaluating these field

forces is to make the snaxels move by following the steepest slope of the surface evaluated
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in the neighborhood of each snaxel. Depending on the direction of the gravity force � ,
that is its sign, the snaxel will fall towards valleys, the physical case of a gravity force di-
rected downward, or will climb mountains. Since the goal of the snake approach in solving
minimization problems is to find these extrema of the potential surface, a critical step in
the method will be to obtain “adequate” surfaces  � ��� � 	

. Adequate here means that these
surfaces must possess suitable properties in order for the snake approach to be applicable.
An essential property is that valleys, or peaks, and folds of the surface correspond to sig-
nificant features of the function represented by that surface. In general, the surface  � ��� � 	
will first have to be filtered in order to emphasize those valleys or folds which may map to
the desired significant features.

In the previous applications that can be found in the literature, only the image domain
� was considered. Kass et al. [78] have proposed to use a combination of different filtered
versions of an image

�
to construct the potential surface. For example, smoothed versions

as well as gradients of the image can be used to attract the snake to lines and edges. A
scale-space scheme might be used in a first step at a coarse scale to get closer to the global
energy minimum represented by the significant searched contour. This removes most of the
noise effects. In further steps, the optimal valley or contour would be sought at finer and
finer scales. On the other hand, Zucker et al. [164] propose to build the potential surface
indirectly from the image in a second stage involving reconstruction of the image contours.
An initial image analysis stage is used to recover the discrete trace of a curve or contour
on the basis of a relaxation labeling scheme. Points which have a “good” support with
respect to their eventual curve point neighbors in terms of orientation, curvature, contrast
and proximity are retained as potential curve points. The potential surface is then built by
digging little oriented pockets at each of these points in an initially flat surface. The snake
model is then used to interpolate the curve points by following the valleys obtained from
the successive pockets.

Once a relatively adequate potential surface is obtained, the last step consists of eval-
uating the directional slopes iteratively at each snaxel position. In general, only coarse
approximations of the first derivatives in

�
and

�
are used.

We have covered all of the aspects of the original snake model from an informal de-
scription of the snake, to the description of the dynamics of the snake in the continuous
and the discrete domains, to finally some observations on how to fix the snake parameters.
In the following section, we summarize the advantages and problems associated with this
original snake model.
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2.6 The Original Snake Model: Advantages, Limitations
and Shortcomings

The snake is best understood as an active curve possessing an energy function “whose min-
ima [hopefully] comprise the set of alternative solutions available to higher level processes”
[78]. Such a model possesses advantages as well as limitations when applied to problems
pertinent to spaces of functions such as the image domain � . These are summarized in this
section. Furthermore, shortcomings related to the original description of the model are also
emphasized. Solutions to them will be proposed in section 2.7.

2.6.1 Advantages

When applied to the image domain � , the snake model possesses numerous advantages over
more traditional methods of recovering image contours. Within the snake model frame-
work, images are considered as potential surfaces that may require some filtering technique
to emphasize some of their features. Thus, the extraction of these features is based on a min-
imization procedure which retains all the relevant information that may be present in the
image. This is radically different from most techniques used to extract contours or edges
in intensity images which usually assume “ideal” models for these features, such as step
edges or roof edges [87], and which rely on global measures of significance to fix threshold
values to identify valid edges or contour points. Such methods are generally too specific in
their way of imposing ideal feature models, and too global in their way of choosing thresh-
old values. The snake model offers the advantage of extracting the same features without
committing itself with respect to the exact nature of these features and to their required
significance.

Another advantage of the snake model over the traditional edge and contour extraction
methods is its intrinsic connectivity. Being a connected contour, information along the
length of the snake is integrated in an implicit manner. This is useful when analyzing
noisy images or natural scenes. In such cases one often encounters contours with missing
parts, such as edge gaps, generated by regions along the boundary of an object having low
contrast or significantly corrupted by noise. Applied to such problems, an edge-linking or
graph search technique [87] will generally fail, being unable to bridge the gaps, while a
snake will often encompass such problems thanks to its intrinsic connectivity.

A snake may also be used to extract subjective contours [78]. This capability is ob-
tained, again, as a result of the implicit snake connectivity and also because of the energy
minimization scheme used to recover the best possible solution given the available data and
snake constraints.8 The snake model is one of the few technique that addresses the problem

8Note that for such features as subjective contours, other energy constraints are imposed on the snake. For
example, constraints relating the snake to contour terminations may be used [78].
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of the extraction of such features.
Due to its explicit description of external forces and the possibility of modifying its

intrinsic constraints by varying its elasticity properties or by introducing discontinuities,
the snake model provides the ability to easily interface it to higher levels of processing. Of
course this also imposes limitations on the application of snakes (

�
2.6.2). But, the interven-

tion of other higher computational levels becomes necessary for many difficult applications,
especially in computer vision. Such higher computational levels can be used to set intrinsic
elasticity constraints and to position external forces. These higher level interactions can
also be seen as ways of introducing some interactive capabilities into an automatic image
understanding system.

Due to its dynamic behavior, the snake is a contour model that is well suited to tracking
continuous deformations or movements of nonrigid natural shapes. The snake will follow
the same local minimum or image contour from frame to frame in a video sequence, as-
suming that the deformations are not “large.” The same idea has been applied in an attempt
to solve the correspondence problem in stereo vision, where the video sequence uses the
two frames given by each eye and where an additional energy term is employed to account
for the disparities that occur between views [78]. This ability to track deformations also
finds application to the scale-space analysis problem [156] where the different versions of
an image are obtained at different scales. A sequence of frames may then be ordered from
a coarse to fine scale.

The snake model is one of the few that has emerged in the computer vision literature
that provides a general framework for solving different, but related, visual problems. Essen-
tially, any problem for which the set of possible solutions can be represented as a potential
function can have a snake approach applied to it, the main constraint being that this poten-
tial function must be smooth “enough” so that a snake is able to crawl and seek significant
valleys. The snake approach can be applied to various problems such as extracting con-
tours, tracking contours, stereo matching, motion correspondence, shape skeletonization,
scale-space tracking, range image segmentation, path planning for robots. Furthermore,
it can be generalized to higher dimensional problems. In this thesis we consider only 1-D
snakes, that is active contours, but the model has been generalized by Terzopoulos to higher
dimensions [142, 146]. For example active surface models can be defined to reconstruct or
extract surface regions rather than contours [148].

2.6.2 Limitations

There are of course limitations to the usefulness of such a model based on a regularization
principle [142, 146]. The latter assumes smoothness constraints when fitting the data that
might be unrelated to their nature. The snake model requires potential surfaces that are
sufficiently smooth, mainly for two reasons: so that the snake does not remain blind to the
desired solution, and so that the computations involved at each iteration remain numerically
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stable. We will see later, in Chapter 3, that even when using smoothness constraints, the
snake may remain “blind” to some extent (e.g., the snake is trapped in a local minimum).
Clearly, this limits the application of such a model to non-textured images. In general, even
raw data such as the intensity image

� � ��� � 	
of a scene containing only smooth surfaces or

objects cannot be directly used because of its “roughness” due to quantization and sensor
noise.

Another strong limitation of the model is the fact that it requires powerful initialization
processes which are able to position a snake close enough to the desired solution. This
especially pertains to the static image segmentation case where the problem of extracting
an approximation of the trace of a contour is difficult since it is underconstrained. In the
dynamic case though, especially for tracking deformable shapes in long sequences, this
limitation is not as important if some interaction with higher level processes is permitted
for the initialization (Chapter 3).

The fact that the snake model relies on higher level processes or a priori knowledge
to set most of the snake parameters, to introduce discontinuities, and to position external
forces also imposes limits on the usefulness of the snake model when applied to complex
problems where such knowledge is not available. This is usually the situation in the image
domain, particularly for the static case, where no a priori knowledge is assumed available
except, possibly, through an extensive analysis. In other words, the segmentation problem
often requires a prior solution in order to fix appropriate values for the snake parameters
or to introduce discontinuities! The snake model seems better suited for more constrained
problems where knowledge is available about the features being sought or for dynamic sit-
uations where previously analyzed images may be used to provide the required knowledge,
and this is the case for the cell tracking problem.

2.6.3 Shortcomings

Besides the limitations of the snake model that restrict its applicability, the original descrip-
tion of the model possesses a number of difficulties at the implementation level which, if
carefully considered, can be solved, leading to a more efficient algorithmic description.

The most important shortcoming that arises from the original description of the snake
model is its relatively unstable numerical behavior. Major instabilities emerge from the fact
that the terms of the discrete equations of motion (equations (2.25)) are unrelated to each
other with regard to the amplitude they might reach. This is best understood by considering
equations (2.25) in detail. Consider the first system of equations in

�
:
� � � � ( (similar

results are derived by symmetry for the system in
�
). Take a particular equation for snaxel� � �

of this system:

� ! 	 < � � � � � � � 	*& � ! 	 : � � � � � � � 	*& ���! � � � � � 	*& � ! � � � & � � � 	*& � ! � � � & � � � 	 �
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� �� � ���()$ � � � � � � � � � 	�	*& 6+�!5��, - � � � � � � � � � 	 	�	*& � � � / � � � � � � � 	*& � � � � � � � � � � � � � 	 �

where � ! � � � ! & 
 < & � . Such an equation may be rewritten by isolating
� � � � � 	

, the snaxel
coordinate that comes as one solution of the system of equations (2.25), in terms of three
interaction groups that apply different types of forces to the given snaxel. This is done as
follows:

� � � � � 	 � �� �! � � L U $ � � � � � � � � � 	�	*&�� � ��� U � � � � � � � � � � � � 	 	&�� � $5! +T+ � � � � � � � � � � � � & � � � & � � � 	 	 � �
(2.28)

where the following identities are used:

� L U $ � � � � � � � � � 	 	 � � �� � ���()$ � � � � � � � � � 	 	*& �+)!#��,.- � � � � � � � � � 	�	 	 �
� � � � U � � � � � � � � � � � � 	 	 �

� � � / � � � � � � � 	*& � � � � � � � � � � � � � 	 �
� ��$5!5+ + � � � � � � � � � � � � & � � � & � � � 	 	 � � � � ! 	 < � � � � � � � 	*& � ! 	 : � � � � � � � 	& � ! � � � & � � � 	*& � ! � � � & � � � 	 	 �

where
� L U $ � indicates the effects of the extrinsic forces that derive from a potential,

� � ��� U
indicates the memory effects due to inertia and damping and

� � $5! +T+ indicates the elasticity
constraints that directly link snaxel

� � �
to its four direct neighbors. A number of observa-

tions can be made from the analysis of equation (2.28). First, we note that these forces are
of two distinct types, depending on whether or not they are dependent on the coordinates� ��� � 	

.
� � � � U and

� ��$5! +T+ are explicitly related to
�

(or
�
), being functions of it, while

� L U $ �
is not, with the exception of one of its components, the spring force (

�
2.2). Therefore,

� � ��� U and
� � $5! +T+ can easily be limited in their extent by imposing on them saturation val-

ues ensuring that a new coordinate position
� � � � � � 	 � ��� � � � 	�	

will in general remain within
the permitted discrete intervals

�
and � (Appendix C). Under the influence of

� � ��� U and
� ��$5!5+ + problems may occur only near the border of the discrete grid defined by

�
and �

where snaxels might be pushed out of the grid by these forces. On the other hand, extrinsic
forces obtained from the directional slopes of a potential surface, that is, field forces and
repulsive volcano forces, can be the cause of major instabilities because their amplitudes
may assume unlimited high values without any respect for the permitted values of

�
and�

(i.e., values within the discrete intervals
�

and � ). The maximum possible amplitudes
of
� L U $ � (or

� L U $ � ) are obtained for vertical orientations of the potential surface where the
slope takes an infinite value; for example, vertical cliffs on the potential surface will occur
in correspondence to step edges in an image

��� ��� � 	
. Such high force amplitudes may drive
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a snaxel, a group of snaxels, or the entire snake, out of bounds, that is, out of the spatial
domain defined by the discrete grid.

Another different source of instability, which results in an oscillatory behavior of the
snake emerges from the iterative way in which some snake parameters may be fixed. Con-
sider the tension and rigidity weights

8D: � � 	
and

8 < � � 	 . If one uses equations (2.26) and
(2.27) as proposed by Kass et al. [78],

8C: � � 	
and

8 < � � 	 will in general be modified at each
iteration and for all snaxels. This has the effect of making the snaxels oscillate around the
values prescribed by the natural arc length function � � � 	

and the natural curvature function
� � � 	 .9 Furthermore, equations (2.26) and (2.27) impose no limitations on the amplitudes8G: � � 	

and
8 < � � 	 may reach, which can be the cause of unrealistic displacements of the

snaxels.
The approximations of the derivatives that have to be used to discretize the optimiza-

tion process and to solve it on a digitized grid are in general of an unstable nature and
inaccurate. The same problems apply to the approximations of the derivatives used for fix-
ing parameters; for example, when approximating the local curvature Q in equation (2.27).
Furthermore, the assumption we made, following Terzopoulos [144], that the step-size � �
between snaxels is constant and small and can be fixed to � to simplify the discrete equations
of motion, may be an incorrect approximation if no mechanism is implemented to enforce
snaxels to stay close to each other with an almost constant inter-distance or step-size � � .

Besides numerical instabilities and oscillatory behavior, another important problem ex-
ists with regard to the optimization process used to activate the snake. Following the orig-
inal description of the snake, one usually uses as many iterations as necessary until the
snake stops moving, that is until no snaxels move. This is equivalent to having the snake
reach its lowest possible total potential energy, ���������� , given an initial configuration on the
potential surface. This criterion of having to reach a steady-state (i.e., � $ � � ) provides an
excessively strong stability condition for the optimization process that often results in the
snake “missing” the desired solution. By this is meant that the snake might traverse the
desired valley of the potential surface at some point during the iterative process, but might,
in further iterative steps, recede from that desired position. This may happen whenever the
bottom of the valley is not at the same height all along its length. In such cases, snaxels will
have a strong tendency to pile up [2] in the deepest pockets of the valley which may lead to
an inaccurate final solution. There are two major reasons that explain this behavior of the
snake. First, the snake is always seeking to reach the lowest possible point of the potential
surface because of the effect of minimizing �+�!5��,.- in equation (2.2). The other constraints"!#�%$ and ���()$ may be used to counteract partially this effect, but this only makes the snake
more unstable. Second, because we try to minimize �+�!5��,.- all over the length of the snake,
there is an arbitrary bias to favor shrinking snakes, that is, shorter snakes. In summary,

9This oscillatory effect due to variable stiffness parameters is different from the oscillation of the snaxels
going up and down in height on the potential surface when crossing the bottom of a valley. This other type of
oscillation is progressively reduced as a result of the damping introduced in the equations of motion.
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using the steady-state criterion, we cannot ensure the snake will converge to the desired
solution.

Even if a valley possesses the extraordinary quality of being at the same height all
along its length, the snake will in general attain steady-state long after having reached the
optimal spatial solution. This is due to the previously mentioned problems of numerical
instability and oscillations. Furthermore, shrinking snakes are still favored. This again
emphasizes the fact that the steady-state criterion is inadequate as a terminating condition
for the optimization process used to activate the snake.

In the following section, solutions are proposed for the problems arising from the orig-
inal description of the snake that were discussed in the above paragraphs.

2.7 Improving the Original Snake Model

Let us first consider the major source of instability created by possibly high amplitudes of
� L U $ � (similarly for

� L U $ � ) acting on each snaxel. The most obvious solution to this problem
is to normalize or restrict the permitted values that any components of

� L U $ � might take.
The directional slopes in

�
and

�
of the potential surface must be normalized in some way,

or have to be redistributed on a range of values compatible with the other force values and
with the intervals

�
and � .

The problem with redistributing the directional slopes of the potential surface  � ��� � 	
is a non-trivial one because a positive slope function varies nonlinearly from 0 to infinity
(Figure 2.4.(a)). Similar results are obtained for negative slopes by symmetry. This possibly
infinite value, corresponding to a vertical orientation of the potential surface, will of course
make the snake completely intractable. In fact, a quite broad range of almost vertical slopes
will have the same effect. There are many ways of solving this problem. The solution we
propose for the snake model consists of clipping the absolute value of the slope function
for some saturation value

� � �0( (Figure 2.4.(b)). This is an adequate transformation for the
snake model because in order to make the snake seek significant valleys, what is principally
needed is information about where it should crawl to. Therefore, the clipped version of the
slope function fits our need and it is a simple solution. This clipped slope function starts
by increasing slowly for small slope values, making the snake rather somnolent. Then,
it increases faster and faster for higher slope values, until it saturates for some maximum
value

� � �V( . This saturation value,
� � �V( , being the maximum amplitude for the group

of forces
� L U $ � , disregarding the spring forces which are set with respect to the spring

constant Q �MLTN�!#��P , its maximum value should be chosen to relate it to the maximum desirable
or permitted movement for a snaxel. A constraint on the minimum value for

� � �0( can also
be formulated by considering the minimum slope that should be accepted as significant
before clipping the slope function. This minimum should not be too small because one does
not want to put gentle slopes on the same level as steep slopes. We propose to use a slope
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(a) (b)

Figure 2.4: The slope-amplitude problem. In (a) is shown the absolute values of the slope
function. This function is asymptotic to infinity at an angle of

� ���
. In (b) is shown the

clipped version of this function for
� � �0( � � .

of
� � (i.e., angles of

� ��� �
) as the minimum for

� � �0( . This seems to be an appropriate
choice for most applications. For example, in the image domain � this means that roof
edges with angles of

� ��� �
are seen as the minimum acceptable type of significant edges.

We have used a value
� �

(i.e., angles of � � � � � � � ) as the maximum for
� � �V( . This

means that angles from � � �	� � � � to
� � � �

are considered as having similar significance
(Figure 2.4.(b)). The maximum possible

� � �0( value should not be too large because of
the exponential growth of the slope function where similar angles may have very different
slope values. By restricting

� � �V( and other snake parameters (Appendix C), the maximum
possible horizontal position displacement due to the influence of

� L U $ � can be fixed to a
desirable number of horizontal discrete steps (similarly for vertical position displacements).
Therefore this method of clipping the slope function of the potential surface offers a simple
solution to the redistribution of this function to prevent arbitrarily large forces to be applied
on the snake.

Let us now consider the problem of fixing the stiffness parameters
8�: � � 	

and
8 < � � 	 .

Applying equation (2.26) to set values of
8C: � � 	

permits us to have snaxels at relatively con-
stant and small distances apart from each other, thereby ensuring small numerical errors for
the approximation of derivatives in the equations of motion. But, as mentioned previously
in section 2.6.3, equation (2.26) imposes no limits on the values

8�: � � 	
may reach. This

might be the source of unrealistic or arbitrarily large snaxel displacements. A solution to
this problem is to apply the same “clipping” idea that was used for the slope function of the
potential surface, but this time to a tension function � used to determine

8�: � � 	
. This tension

function � is added to equation (2.26) as follows:

8G: � � 	 � � � � � � � 	 � � � � 	 	 � (2.29)

The function � will be clipped for discrepancies between the snaxel inter-distance � �
and the metric function � � � 	

larger than a given distance �	� , this at a maximum tension
value � � �V( . � may take different forms. For example, David [47, 48] proposes to use for �
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a clipped ramp function. In such a case � is defined as follows:

� �
��� ������	��
�� � � � � � 	 � � � � 	�	 � J � � � � � 	 � � � � 	 � � � � �

����� 	 � J � � � � 	 � � � � 	 � � � �
� ����� 	 � J � � � � 	 � � � � 	�� � � � �

Applying equation (2.27) to specify
8 < � � 	 in the discrete domain is not a trivial task;

the curvature Q � � 	 must be approximated by second order differences, a further source of
numerical instability. Also, since the weights

8D: � � 	
and

8 < � � 	 are now varying in space
and in time, the factorization step has to be recomputed at each time step. To keep the
computations as simple as possible, we recommend fixing

8 < � � 	 to some small positive
value to enforce some small degree of smoothness, that is, a weak tendency to straighten.10

This decision can be interpreted as a least commitment rule that implies some degree of
smoothing of the data combined with the advantage of avoiding the computation of Q . A
positive value of

8 < � � 	 also offers the advantage that the snake will have less tendency to
fold on itself.

The updating of
8;: � � 	

using equation (2.29) can be performed only occasionally rather
than at every time step � � to reduce as much as possible the number of times the fac-
torization of matrix � has to be performed and also to reduce the oscillatory behavior of
the snaxels. This updating rule finds its justification in the fact that for a stable snake ev-
ery snaxel will move only in its immediate neighborhood. In general, the distance between
snaxels will remain stable and the stability of the snake will be ensured by the normalization
of the snake forces (Appendix B). In fact, we can push forward this idea of updating

8": � � 	
occasionally by, instead, keeping it always constant and by, rather, updating occasionally
the snaxels sampling, that is, the number of snaxels per arc length unit. For example, every�

iterations, for some integer
�

, we can update the sampling of the snaxels by spatially
reinitializing the snake. Reinitialization is performed by keeping the snake at its actual po-
sition and by enforcing snaxels to be equally spaced.11 By keeping

8;:
constant, this last

updating rule permits us to simplify the computations while obtaining the desired effect of
having a snake with snaxels approximately equally spaced in time. We have therefore three
possible updating rules for

8;: � � 	
. We can update its values at every snaxel and for every

time step � � using equation (2.29). Or we can perform the updating only occasionally,
every

�
iterations for example, still for every snaxel. Or we can keep

8�: � � 	
constant and

rather spatially re-sample the snake occasionally. The first updating rule is the most accu-
rate but also the most expensive computationally, while the last one is the coarsest one but
the simplest one numerically.

The approximations to the derivatives that are used in the snake model are a significant
source of numerical errors. In general, the presence of such errors is unavoidable. The
best we can do here consists of reducing by as much as possible the coarseness of the

10In our experiments we have use a value of 0.01 for ��� � � � .
11See Appendix D for a variant of such a “snaxels resampling” updating rule.
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approximations. Firstly, the numerical errors associated with the approximations of the
spatial derivatives involving the stiffness constraints

� � ?? � � 8G: ��� 	 � � 	 & ? B? � B � 8 < ��� 	 � ��� 	�� can
be kept low by using one of the previously mentioned updating rules for fixing the tension
between snaxels. This ensures a relatively constant and small spacing between snaxels.
Also, negative values of

8 < should be avoided, since the bending of the snake using negative
discrete rigidity constraint is of an unpredictable nature. On the contrary, positive values
of
8 < are a factor apropos stability since they enforce smoothness constraints. This is in

agreement with our prior rule of fixing
8 < to some constant small positive value. Secondly,

the numerical errors associated with the approximations of the time derivatives, involving
the inertial and damping constraints, can be kept small by enforcing only relatively small
movements for each snaxel at each time-step. This is best performed by normalizing the
forces acting on the snake (Appendix B). Finally, the numerical errors associated with the
approximations of the slope of the potential surface can often be lowered by performing
some smoothing filtering of the surface while extracting the directional slopes. However,
there are some exceptions where the approximations of derivatives can be bypassed. This is
the case whenever a symbolic derivation exists. For example, spring forces can be exactly
derived from the energy of spring links between fixed points and snaxels. Another notable
exception is the case of potential surface obtained in the distance transform domain, �� .
Their, the slope can be exactly determined for most points (Appendix D).

As we have seen previously in section 2.6.3, the steady-state criterion proposed in the
original snake model as a terminating condition of the optimization process is an inadequate
one. We propose a different criterion which is called the steady-support criterion. The basis
of this criterion consists of examining the data for which we are seeking the features. For the
snake model, we have the potential surface  � ��� � 	

, and the features we are seeking are the
valleys and folds of  � ��� � 	

. Instead of seeking a minimum of the total energy of the snake�������� � , as a terminating condition of the optimization process, we propose to search only for
a minimum of the potential field energy 4+�!5��,.- . In other words, the stability criterion for the
snake becomes one in which we seek a minimum and stable height of the snake on  � ��� � 	
based solely on  � ��� � 	

topography and not on other snake constraints (i.e., �!#�%$ and ���()$ ).
A simple implementation of this stability criterion, that provides an adequate solution to
finding this minimum of 4+�!5��,.- , consists of summing the local heights of the snake all along
its length and of dividing this sum by the snake length. This summation is computed for
each snaxel and each snaxel interval interpolating pairs of snaxels. Experimentally, we have
used simple straight lines between snaxels for the interpolation, which is sufficient for most
applications. We therefore seek to really minimize only the averaged potential field energy
term, 6+�!5��,.- , in equation (2.1); that is, we wish to find a minimum of the following energy
function:

���������� ����� Z � � � 	 � �
�
6+�!5��, - � � 	 13��
� 13� � (2.30)
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We average 6+�!5��,.- over the length of the snake so that this length has no effect on the se-
lection of a preferred stable state. This averaging is our solution to the bias toward shrinking
snakes that was present in the original optimization scheme. Although we seek a minimum
of 6� ���V��� � � � Z � � � 	 the snake still remains constrained by the internal and external potential en-
ergy terms, �!#��$ and ���()$ . The minimum of 6��������� ����� Z � � � 	 is used to provide a terminating
criterion for the snake activity which is still being governed by equation (2.1). In general,
this simple criterion provides a way for the snake to avoid the problem of “missing” the de-
sired solution. This is because when the snake traverses a valley, its global height remains
constant for a few time-steps, a “steady support” we can use as a terminating condition for
the optimization process. Using such a topographical criterion also permits us to bypass the
instability problems caused by the snake oscillatory behavior.

A final problem that needs to be examined is the border-effect. The border of the dis-
crete grid defining the domain of survival of the snake should be considered with particular
attention in order to ensure that the snake will not traverse it. A simple solution consists
of ensuring that snaxels will not cross the borders of the discrete grid by adding wells or
cliffs to the border of the potential surface. This will have the effect of pushing the snake
away from these borders whenever it comes too close to them. Such a solution possesses
the advantage of reducing the time complexity of the iterative process which governs the
snake motion by avoiding the testing of snaxels coordinates to detect their proximity from
the border of the discrete grid.

Let us summarize the modifications to the original snake model that we have proposed
in order to improve its efficiency and accuracy:

� Normalization of the slopes of the potential surface with respect to the other forces
acting on the snake and to the limits imposed on snaxel movements.

� Fix
8 < � � 	 to some small positive value (least commitment rule). Update

8�: � � 	
fol-

lowing one of the three proposed rules:

1. Update
8;: � � 	

for every time-step, � � , and every snaxel, on the basis of a tension
function � .

2. Update
8;: � � 	

relatively infrequently using the snaxel inter-distance stability as-
sumption and on the basis of a tension function � .

3. Set
8;: � � 	

to be constant (
�98;:

) and re-sample the snake occasionally.

� Keep numerical errors due to the approximation of derivatives as low as possible
using simple rules.

� Use a steady-support criterion as a terminating condition of the optimization process
rather than a steady-state criterion.
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� Solve the border-effect problem by preprocessing the border of the potential surface
 � � � � 	

.

With such improvements, the snake model will prove to be a more powerful and adequate
framework for solving both the problems of tracking and describing the shape of amorphous
objects such as cells.12 In the following chapter, we address the first problem of tracking
the trace of cells contours in noisy intensity images using the snake model. In a following
chapter the shape description problem will be addressed by also using the snake model
(Chapter 5).

12Addendum (February 2003): For an analysis of the snake model via a characterization of its constraints
and parameters in a probabilistic framework, see the work of Boult et al. [33].



Chapter 3

Image Segmentation and Cell Tracking

3.1 Introduction

In this chapter, we address two fundamental issues related to the image analysis of de-
formable objects such as cells, namely image segmentation and tracking of deforming and
moving objects.1 We make use of the snake model as the main tool to solve these problems.
We also consider hierarchical filtering techniques useful within the context of the snake
model.

3.1.1 The Segmentation Problem

First, we consider the segmentation problem which consists of extracting the trace of a
closed contoured cell membrane in a noisy image (Figure 3.1). The image was obtained
from a video camera mounted on a microscope. It is first digitized and then transmitted to
the computer where a real-time analysis can be performed. Alternatively, the image may be
recorded on video tape or stored on the computer’s disk system for a more detailed analysis,
non real-time (Figure 3.2).

Many difficulties can arise in acquiring and segmenting images. They can be noisy and
suffer from uneven illumination (Figure 3.1). Due to variations in the shape and thickness
of the cell, the grey level intensities along the cell membrane may not be homogeneous.
The cell is really a 3-D entity, which partially explains why its boundary is not homoge-
neously defined. Variations in the cytoplasm constituents and noise in the imaging process
are other reasons which explain the nature of this problem. The intensity values within the
cell may be similar to the values of the background. The cytoplasm might also contain
organelles with strong edges that make the segmentation problem even more difficult to
solve. The scale, or range of scales, at which the trace of the cell membrane is best defined

1Addendum (February 2003): A journal article based on this chapter was published in IEEE-PAMI in
1993 [98].
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Figure 3.1: Example of a digitized cell image. The image is quantized into 256 grey levels
using a frame-grabber and is normalized.

and perceived in the scene is unknown a priori. Finally, we must cope with a general prob-
lem found in “applied perception-cognition fields” (e.g., A.I., computer vision, or pattern
recognition) where no well established criteria exist to judge the quality of a machine seg-
mentation result. There are essentially two reasons for such a lack of agreement on criteria
to judge the value of a segmentation result. First, experiments in psychophysics have not yet
yielded a general understanding of the perception processes. Second, the “applied-science”
community has not yet agreed on general criteria for the evaluation of machine-based image
segmentations. Neither has produced sets of images on which to test the extremely large
variety of proposed segmentation algorithms.

The other important issue we are concerned with in this chapter is the tracking of non-
rigid shapes such as cells in sequences of digitized images. We are interested in tracking a
cell from frame to frame as it moves on a flat surface and as it deforms while moving. The
same difficulties that exist in the static case for the segmentation problem exist here. The
major difference, though, is that we can use segmentation results and motion knowledge
derived from previous frames to facilitate the segmentation process in each new frame and
thereby also facilitate the tracking. An example of an image sequence of a deforming and
moving cell is shown in Figure 3.3.
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Figure 3.2: Laboratory set-up consisting of a computerized video recording system. First,
an analog image is obtained from a phase-contrast microscope using a t.v. camera. Then,
the image is digitized using the frame grabber. Motion sequences are recorded, on disk or
on tape, using the time-lapsed video technique. Adapted from [115, Figure 7, Chapter 4, p.
57].

Figure 3.3: Example of an image sequence of a deforming and moving cell.
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3.1.2 Assumptions

With such difficult problems as segmentation and tracking, it is necessary to make a number
of assumptions if real-time image analysis is to be achieved. Therefore, we require the
following two assumptions:

1. Only “small” deformations and movements of the cell occur from frame to frame.

2. User interaction, external constraints and a priori knowledge are permitted to initial-
ize the first frame of the tracking sequence.

The first assumption is necessary because only small deformations, that is, of a few pixels,
can be tracked using the snake. This is required as the snake must be on the slope of the
valley corresponding to the newly deformed contour to effectively track this deformation.
Assumption 1 is achievable for off-line analysis since we have control over the sampling
rate at which cell images are acquired. For real-time analysis, this “small deformation”
limitation will not be critical for many of the cell types we are studying since they move
relatively slowly. For example, lymphocytes and neutrophils move at most a few microns
per minute; they also often stop locomoting for various periods of time [115]. Furthermore,
assumption 1 relies on a more general assumption about living organisms such as cells by
which the motion and deformation of the cell’s body are assumed to occur continuously
in time. Therefore, we should always obtain small deformations by sampling a motion
sequence at a high enough rate. In our case, the hope is that the cell will always remain
flat on its surface, thereby justifying the simpler 2-D image analysis. If the cell moves in
height as well, exhibiting 3-D motion, assumption 1 will remain valid, but in a 3-D space.
This may create problems for our 2-D analysis scheme. In section 3.4.3 we will give an
illustration of this problem.

The second assumption is in general not a critical one for the tracking of nonrigid
shapes. It is the automation of the image analysis process over tens or hundreds of im-
age frames which must be achieved. The effort spent on the first frame to initialize the
process is of little concern if the correct tracking of the cells can be secured. However,
assumption 2 is also seen as necessary in the context of real-time image segmentation at a
video rate. Therefore, we have to ensure that the initialization is done fast enough so that
criterion 1 is still met.

3.1.3 Quality Criteria

Besides computation efficiency requirements we need to address the issue of judging the
quality of the results. Since no well-defined criteria exist for such a purpose we will rely on
experimenter judgment. To do so we propose the following two criteria:
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1. A machine-vision segmentation result will be judged “good” if the line-drawing ob-
tained from the boundary of the segmented object permits the experimenter to “qual-
itatively” describe the cell shape in the same way he would by looking directly at the
intensity image.

2. A machine-vision tracking result will be judged “good” if the deformations on the
boundaries of the segmented object, obtained from the analysis of a sequence of
images, correspond “qualitatively” to shape deformations, such as the formation of
pseudopods, when observed by the experimenter.

Such “qualitative” criteria are considered to be sufficient for solving the segmentation and
tracking problems by giving results which are useful, but not necessarily spatially accurate.
The “qualitative” basis for these criteria also finds its motivation in psychophysics exper-
iments. These suggest that vision is primarily concerned with “determining the general
spatial layout of objects in the world” rather than a “detailed quantitative description of the
visual scene” [128].

3.1.4 Solutions

To solve both the segmentation and the tracking problems, we propose to use the snake
model, presented in detail in Chapter 2. The main motivation for using this model emerges
from its active or dynamic nature. This permits us, first, to link both problems by solv-
ing them simultaneously and, second, to simplify them by reducing the space of possible
solutions. The snake model permits us to reduce the search within the space of possible
solutions by the use of heuristic constraints; that is, constraints imposed by elastic and
external forces and limitations imposed by the small deformations assumption.

The potential surfaces on which the snake crawls are obtained from the image domain,
� , for the two problems of segmentation and tracking. Digital intensity images or filtered
versions of them are used for this purpose. Since filtering is an essential step in obtaining a
useful potential surface, that is, one where valleys correspond to interesting features of an
image, we consider the subject of intensity image filtering in the next section (3.2). Once
we have shown how potential surfaces are obtained, experiments on the image segmen-
tation and tracking of cells using snakes will follow in subsequent sections (3.3 and 3.4,
respectively).

3.1.5 Contributions

In this chapter, one essential contribution is made:

� We show the usefulness and limitations of the snake model for solving both the image
segmentation and tracking problems in the case of nonrigid bodies such as cells. We
give typical cases in which the method fails and we explain why it does so.
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A number of less important contributions are also made. They are summarized below.

� We give clear explanations of what image filtering is, of its links to scale-space rep-
resentations (section 3.2.2), and of how to efficiently implement it by the use of a
particular class of pyramidal image representation called the Hierarchical Discrete
Correlation or HDC (section 3.2.3).

� We propose a refinement procedure for the implementation of the HDC which im-
proves its descriptive power by combining it with the cascaded correlation technique
(section 3.2.3.4).

� Finally, we define the notion of a family of potential surfaces which are well suited
within the context of the snake model (section 3.2.3.5).

3.2 Image Filtering

3.2.1 Introduction

Digital image filtering is a fundamental task which is used extensively in computer vision
applications [38, 87]. Filtering can be understood as the processing of an image in order
to discriminate, modify or compare its attributes. In contrast to a point operator which
affects brightness or contrast, filtering serves to affect the spatial information in the digital
image. For example, digital filtering is used to enhance boundaries and for the removal of
noise. Filtering can be implemented by having a filter, or discriminating device, applied to
every sampled signal point or element [126]. In the image domain,

��� ��� � 	
is a 2-D discrete

signal and the filter is known as a mask or kernel. An example of digital filtering is discrete
correlation. The correlation operation involves comparing the filter to pixels within the
digital image to measure their degree of similarity [126].

Within such a filtering scheme, essentially two forms of computation may be performed:
global and local. Global filtering is principally used to correlate an image with models of
structures or objects that it may be desirable to recover in that image; this is the case in
image matching [130]. In local filtering, small masks are correlated with the larger image
in order to extract or modify some of the local properties of that image [38]. For our needs,
that of producing useful potential surfaces, we will consider the latter form.

Essentially, we shall use two types of local image filters: lowpass and bandpass. The
former will be necessary to remove noise and to smooth the original image data, while
the latter will be necessary to emphasize image features such as edges, contours or region
limits. As we shall see in subsequent sections, these two types of local filtering can be effi-
ciently combined into a hierarchical method. However, before proceeding to a description
of the filtering algorithm, the notion of scale will need to be examined carefully. As we will
see in the following subsection, scale and filter-size are directly related notions.
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3.2.2 Image filtering and the Notion of Scale

In computer vision applications, scale can be defined as the perceived size at which an ob-
ject or structure is best isolated and identified in a scene. For example, let us consider one
frame of a cell motion sequence (Figure 3.3.(a)). The maximum scale (

� � �V( ) is bounded
by the size of the image, whereas the minimum scale (

� �2!#� ) is limited by the pixel size.
Between these extrema there exists a range of scales in which different objects or structures
are best described at their specific natural scale. Natural scale refers to the scale or per-
ceived size at which a structure in a scene emerges. A cell is described at an intermediate
scale (

� W ��,., � � � �0( ) which is related to its size. An intra-cellular organelle would be de-
scribed at a smaller scale (

� U NOPV�0����, ,.� � � W ��, , ). The cellular membrane segments are described
at an even smaller scale (

� � ����� N �V��� � � U NOPV�V����,., � ). Artifacts in the scene such as other organ-
isms, gel constituents,2 glass impurities, and shadows are described at yet smaller scales
(
� $ ��()$�� NO� � � � ����� N �0��� ). Also noise events arising from the imaging process (sensor) and the

quantization process (digitization) can be described at small scales (
� � U ! ��� � � $ ��()$�� NO� ). The

visual perception of these different structures or events can thus be understood as one of
discrimination where we wish to “separate events at different scales” [155].

As mentioned previously, local image filtering can be used to discriminate between
various image structures. It is by varying the width or size of the filter mask that the dis-
crimination can be achieved for different image structure sizes. Therefore, we can establish
a direct relation between the mask size of a filtering process and the scale at which we may
desire to seek image structures or features. Such a mechanism of seeking image structures
at various scales by performing image filtering for varying mask sizes has been described
in the computer vision literature [102, 40, 87]. Events at different scales are discriminated
depending on the frequency response of the filter. Basically, two types of filtering methods
are used for scale discrimination. Lowpass filters of varying mask size are used to blur or
average details at varying scales, while bandpass filters of given sizes can be used to extract
features at corresponding scales. A popular example of the former filter type is the Gaus-
sian blurring scheme in which Gaussian filters of varying size are used to blur the image by
“averaging” image details at scales smaller than or similar to the filter size [87]. Popular
examples of the latter filter type are obtained by the use of the Difference of Gaussians fil-
ters and the Laplacian filters which permit us to extract or emphasize structures at varying
scales [35, 87].

Although filters of varying size can be used to perform image analysis or description at
varying scales, the problem of setting the filter mask size remains. How can one know at
which scale to process an image in order to identify events or image structures whose sizes
are unknown a priori? The most valuable solution to this problem proposed in the liter-
ature consists of filtering the image at many scales simultaneously to retain “all available

2The gel is a lattice of collagen fibers immersed in a growth media which keeps the cells viable and allows
them to move and grow. Some constituents of the gel may be opaque creating wire-like shadows or a texture.
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structure” [81]. Furthermore, by continuously varying scales, thereby creating a continu-
ous “space” containing all these filtered versions of the original image, a scale-space image
representation is defined. This image representation is simplified by implicitly “relating
one scale to another” [155], due to the intrinsic continuity along the scale axis of the scale-
space.

It is by introducing such a scale-space representation of an image that we will generate a
sequence or hierarchy of potential surfaces ordered from a coarse scale for large filter mask
size to a fine scale for small filter mask size. Optimal image feature extraction, such as the
extraction of the trace of a cell contour, will then be obtained by a continuation method
[156, 147] of tracking the given feature from a coarse scale to its fine natural scale. In the
following section, a computationally efficient scale-space representation will be described
in order to generate such a hierarchy of potential surfaces. With this hierarchy or family of
potential surfaces, a continuation method using the snake will be used to recover the trace
of the cell contours and to track cells from frame to frame.

3.2.3 Efficient Local Image Filtering

For the purpose of producing potential surfaces which have valleys corresponding to signif-
icant events in the image domain, we must process or filter the original image to emphasize
these events or features. Furthermore, this filtering should be performed in a multiscale
fashion since the natural scales of the events we seek are unknown a priori. Finally we
need to perform two types of filtering: lowpass and bandpass or differentiation filtering.

There exists a filtering framework, known as the pyramid, which exhibits all the char-
acteristics we are seeking.3 Furthermore, it provides computationally efficient methods
of performing multiscale image correlation or filtering. For example, correlation using
pyramid-like filtering methods can be performed in one to two orders of magnitude faster
than with the Fast Fourier Transform method [38]. In the following paragraphs, we briefly
describe how to produce families of potential surfaces ordered by scale using a generalized
pyramid filtering method called the Hierarchical Discrete Correlation method originally
proposed by Burt [38]. We will also propose to make this method more flexible by combin-
ing it with the cascaded correlation technique [45, 152].

3.2.3.1 Hierarchical Discrete Correlation

Hierarchical Discrete Correlation (HDC) is a filtering method performed on a digitized
image,

��� � � � 	
, to produce a family of different filtered versions of that image. Following

3The pyramid also provides an image representation scheme which shares some links with the human
visual system and the so-called “multichannel model” [154] in which a fixed number of frequency-tuned
“channels” are used to carry representations of an original image at varying scales before additional high
level analysis is performed [40, 87].
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Burt’s notation [39], a sequence of HDC images � � E � � : � � < � ����� � , can be produced as
follows:

� E � ��� � 	 � ��� ��� � 	 � � , � ��� � 	 � � , � 
 , ��� , 	�� � E � ��� � 	 � (3.1)

where � indicates the level in the hierarchy or sequence,
� , is the weighting function or mask

of dimensions
� 
 , ��� , 	 proportional to � , and

�
is the correlation operation. A typical exam-

ple of weighting functions are the discrete Gaussian kernels of varying size (Figure 3.4). As
the mask

� , gets larger the corresponding HDC image
� , becomes more and more blurred;

this HDC family produces a sequence of lowpass filtered images. Since direct correlations
with increasing mask sizes are computationally expensive [38], another way of generating
a HDC sequence is required. The HDC method itself offers a solution to this problem since
“the correlation of a function [or signal] with certain large kernels can be computed as a
weighted sum of correlations with smaller kernels” [38]. Therefore, a hierarchy can be
produced by recursively filtering HDC images with a small mask, � � 
 ��� 	

, of fixed dimen-
sions, (


 ���
). We call this recursive property of the filtering process the chain rule.4 Again,

following Burt [39], equation (3.1) can be rewritten as follows:

� E � ��� � 	 � ��� � � � 	 � � , � � � � 	 � <�
�	� 	 <

<��
� 	 <
�
� � 
 ��� 	�� � , 	 : � � & 
 � , 	 : � � &� � , 	 : � �

(3.2)
where a 5 x 5 mask is used as the recursive filter. Other mask sizes can be used, but a 5 x 5
mask has proven to be adequate with respect to efficiency and quality of the results for many
image filtering applications [39]. In similarity to any discrete filtering process, special care
must be taken near image boundaries where the mask may require sample points outside
the image domain. One satisfying solution to this problem is to assume reflections along
the image boundaries by applying the so-called mirror effect [39].

Equation (3.2) implies that from level to level in the hierarchy, the sampling distance
1 ,

between elements (at level � � � ) that contribute to the new HDC image (at level � ) is dou-
bled with each iteration. Sampling rates other than

� , can be used to produce different types
of HDC structure [38]. In the HDC method, the weighting mask � � 
 ��� 	

is constrained
to possess certain characteristics that ensure normalization, unimodality, symmetry, a cen-
tered position of this mask and convergence of the recursive process [38]. To make the
computations simpler, an additional constraint may be enforced by having the weighting
mask � � 
 ��� 	

separable [38]:

� � � ��� 	 � � ( � 
 	�� � �
��� 	 �

(3.3)
4This recursive property is also shared by certain morphological filters that will be used to process the cell

contour in Chapter 4. It is within the mathematical morphology context that this property is called the “chain
rule” property (Appendix A), which explains its use here.
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Figure 3.4: Equivalent 1-D weighting functions (here
� ( Z , along the

�
axis) converging to

a 1-D Gaussian kernel (adapted from [38, Figure 2]).

where � ( and � � are 1-D masks of length five used to filter the HDC images in the
�

and
� directions, respectively. This reduces the computational complexity of each correlation
evaluated at any sample point from

� � 
 � � 	
to
� � 
 & � 	

. In terms a 256 x 256 size image
this represents a decrease of one order of magnitude in complexity. Figure 3.5 illustrates
how the HDC is built in the 1-D case (in the

�
or � direction) with a sampling rate of

� , .
With these characteristics and constraints, the weights of the � ( mask (similarly for

� � by symmetry) are as follows [38]:

� ( � � 	 � � � � ��� \ � � � � � � � � � � � �
� ( � � � 	 � � ( � � 	 � � ��� � � � � (3.4)

� ( � � � 	 � � ( � � 	 � � � � � � � � � � � � �

where
�

is a real value parameter to be chosen. Setting this value generates different conver-
gence effects for the HDC method. For example, Burt [38] has shown that a value of

� � � � �
makes the HDC weighting functions converge to a Gaussian-like kernel. This convergence
is best visualized by looking at the effects of recursively convolving the mask � ( (similarly
for � � ) with itself to produce the sequence of weighting functions5 � � ( � � � ( B �	� (�� � ����� �(Figure 3.4).

A final subject of interest for the construction of potential surfaces using a method such
as the HDC is its computational complexity. It has been shown by Burt that the HDC

5Since � � � ����� is separable (equation (3.3)), �
	 � � 	 ����	 � is also separable. This can be expressed as
follows: �	 � � 	 ����	 � � � ��� � � 	 ����� 
 � ����	 � .
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Figure 3.5: A sketched representation of the HDC method (1-D case). The letters
�
,
�

and� represent the weights of a mask ( � ( or � � ) of length five. The arrows represent the
neighborhood relations from level to level of this recursive filtering method (i.e., how one
level is built from the preceding one). Here nodes represent sample points of the HDC
image. Adapted from [38, Figure 1].
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method is at least one order of magnitude faster than conventional correlation methods or
even the Fast Fourier Transform method [38] when correlation results are needed at a single
specific scale. If measurements are needed at different scales, then the HDC becomes even
more advantageous over other traditional techniques [39]. In the following subsection we
describe a particular class of HDC structures based on the use of Gaussian-like kernels,
thereby producing lowpass filtered versions of an image. In section 3.2.3.3, another HDC
representation will be described to produce bandpass filtered versions of an image.

3.2.3.2 Gaussian HDC

Using the original HDC method as defined in the preceding section, we can construct a
structure of HDC images which constitutes a sequence of lowpass filtered versions of the
original image. The particular structure of HDC images built by choosing the weights of
the mask � � 
 ��� 	

to approximate Gaussian kernels (equation (3.4)) is named the Gaussian
HDC.6

Each level � of the Gaussian HDC can be seen to correspond to a filtered version of the
original image

��� ��� � 	
at a different scale

� , . A particular level � can be seen to be equivalent
to a correlation of

��� ��� � 	
with the weighting function

� , . Moreover,
� , approximates a

discrete 2-D Gaussian kernel
� , as follows:

� , � 
 , ��� , 	 � � , � � � � 	 � �� ,�� �����	��
 � � � � < & � < 	� � <,  � (3.5)

where � , stands for the standard deviation of the approximated Gaussian kernel at level � .
By climbing in the HDC structure, coarser and coarser versions of

� � ��� � 	
( � � , � ��� ��� � 	

)
are obtained, where image structures at scales smaller than a scale

� �2!#� Z , where
� �2!#� Z is

a function of the sizes
� 
 , ��� , 	 of the weighting function,

� , , are completely blurred or
averaged with respect to neighboring image structures. An example of a Gaussian HDC
created from one frame of a cell motion sequence is shown in Figure 3.6. Because the
fixed sampling rate of two was used to generate HDC images, each one of them has a band
limit which is one octave lower than the one of its predecessor [39]. This can be shown
by deriving the values taken by the standard deviation � , of the approximated Gaussian
kernel

� , at each level of the Gaussian HDC. Burt has derived the following equation for
the standard deviation [38]: � , ��� � � ��� � , � (3.6)

Since � , gives us the degree of blurring or averaging obtained by Gaussian filtering,
it can be used to approximate the scale of the smallest meaningful structures in an HDC

6Note that the constraint of separability we have enforced on the HDC filters does not interfere with the
approximation of a 2-D Gaussian filter since separability is a property shared by the latter [152].
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Figure 3.6: Example of a Gaussian HDC. The original image (level 0) corresponds to the
first frame in the cell motion sequence given in Figure 3.3.(a).

image. This scale
� � !#��Z can be viewed as a linear function J of � , , that is,

� � !#��Z � J � � , 	 .
Therefore, using equation (3.6), we obtain the following relation between the minimum
scales at each HDC level:

� � ��� Z � � � � � ��� Z � � � \>\��
�
� � Z � � � ��� Z

� � ��� Z � � � � J � \ � � � � (3.7)

where \���� �	� Z represents the inter-level minimum scale ratio of the HDC and where, at level
�
,
� �2!#��
 � � � !#� , that is, the pixel size.
The Gaussian HDC can be seen as a technique for producing a “discrete” version of the

so-called “scale-space,” where each level has its scale related to the scales of its neighboring
levels by equation (3.7), but with quantized scales.7 For our need to produce families of
potential surfaces, a discrete scale-space representation will prove to be sufficient.

3.2.3.3 Bandpass HDC’s

We have obtained a multiscale image representation with the Gaussian HDC in terms of
lowpass transforms of the original image

��� ��� � 	
. What would be more useful for our needs

is to have a multiscale representation in terms of bandpass transforms of
��� ��� � 	

in order
to emphasize certain image structures such as edges and contours at different scales. One
simple possibility is to take each level of the Gaussian HDC and apply a differentiation filter
to it, for example the Sobel operator8 [87], to produce approximations of the gradient of the

7Note that “continuously varying scale” versions of HDC-like methods have been studied in the literature;
see for example [81, 76].

8Note that the Sobel operator also possesses the separability property which can be used to improve the
efficiency of its filtering implementation [153].
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Figure 3.7: Example of a Gradient of Gaussian HDC (GGHDC) for a constant inter-level
minimum scale ratio ( \�� � �	� Z � �

). The original image was obtained from the first frame
in the cell motion sequence shown in Figure 3.3.(a). The corresponding Gaussian HDC
(Figure 3.6) is filtered at each level with simple 3 x 3 differentiation masks (here the Sobel
masks) at each of four possible discrete orientations (

� � � ��� � � � � �
and � � � � ) [87]. The max-

imum response, or the sum of the four orientation responses, may then be taken as the new
sample value (here we take the maximum).

Gaussian filtered images ( � � � ��� � � � 	 � � , � ). We call this multiscale image representation
the “Gradient of a Gaussian HDC” or GGHDC (Figure 3.7). Masks other than the Sobel
may be used. For example, Burt has proposed using simple first difference masks on the
Gaussian HDC to approximate band limited directional derivatives [38].

Another bandpass transform derived from the HDC model has been proposed by Burt
and Adelson [41]. They use a well known property of Gaussian kernels that permits the ap-
proximation of the second derivative of a Gaussian by the Difference of Gaussians (DoG’s)
[102]. By comparing two successive levels in the HDC, a Laplacian Pyramid or Lapla-
cian HDC can easily be built [41, 39]. Such a structure also generates a multiscale image
representation, but this time it produces approximations to the Laplacian filtered images
( � � < � ��� ��� � 		� � , 	 ). The Laplacian HDC could be used in conjunction with the snake
model to recover valleys which map to zero-crossings of

��� ��� � 	
[78], rather than extrema

of
��� ��� � 	

as is the case with the GGHDC.
Both the GGHDC and the Laplacian HDC, if taken as the generators of families of

potential surfaces, will require a subsequent slope evaluation in the
�

and � directions in
order to make the snake active.



55

3.2.3.4 Cascaded Correlations and the HDC

One limitation of the HDC method described in the previous paragraphs is the fact that the
inter-level minimum scale ratio \ ��� � � Z of the HDC is fixed at two as shown in equation (3.6).
This limits the “resolution” or fineness of the HDC structure, by having scales

� �2!#� Z that
increase rapidly with � , thereby giving a discrete scale-space which may be “too coarse.”
If we require a finer scale-space representation, one obvious option is to reduce and fix the
sampling rate between successive HDC levels. By fixing the sampling rate to be constant
the HDC method becomes equivalent to the cascaded correlation method,9 where a new
filtered image or signal is produced by recursively filtering it with the same Gaussian kernel.
In the discrete domain the easiest choice is to reduce and fix the sampling rate from

� , to 1.
However, Burt has proposed variable sampling rates other than integers for the HDC model.
He describes how fractional sampling rates (between 1 and

� , ) can be defined to construct
a Fractional HDC [38]. We do not consider such types of HDC structures because they are
more difficult to implement and process, and because the image representation hierarchies
we have discussed so far are sufficient for our needs.

We propose to combine both methods, the original HDC and the cascaded correlation,
to produce a “hybrid” HDC, where the inter-level minimum scale ratio, \ ��� � � Z , can vary
if required. This can be useful if potential surfaces or filtered images are required at or
around a certain smoothing scale, � � . Then, an expanding sampling rate of

� , could be used
to rapidly approach � � (e.g., up to level � � ), and a fixed sampling rate of one could be used
to produce HDC levels with smoothing scales around the desired � � (Figure 3.8). In such a
case, equations (3.6) and (3.7) are valid only up to level � � .

3.2.3.5 Families of Potential Surfaces

In this final section related to image filtering we give a definition of the notion of a “family
of potential surfaces” that we will use within the context of the snake model in subsequent
sections.

We have seen in this section how the HDC model could be used to produce computation-
ally efficient discrete scale-space image representations in terms of lowpass and bandpass
image transforms. We will use such hierarchies to produce potential surfaces at varying
quantized scales on which a continuation method will then become applicable to recover
the trace of image contours.

For each image or 2-D signal to be processed using the snake model and where a mul-
tiscale analysis is required, the Gaussian HDC or the GGHDC will produce a potential
surface family

�
(
��� �����	��


or
��� ������	��


), where each HDC level corresponds to a poten-
tial surface member

� , of the family. Each member
� , possesses a child (at level � & � ) and

9Note that, in general, “cascaded correlation” is referred to as cascaded convolution in the literature. For
symmetric kernels, such as the Gaussian, both filtering operations, correlation and convolution, are equivalent.
Image hierarchies based on the idea of cascaded correlation have been studied in the literature [45, 152].
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Figure 3.8: Construction of a “hybrid” HDC. An expanding sampling rate of
� , is used up

to a level � � (
� �

, for example) to obtain HDC levels to rapidly reach a given smoothing
scale � � (

� �
� , in this example). Then a fixed sampling rate of 1 is used to produce HDC

levels possessing smoothing scales around this � � .
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a parent (at level � � � ), with the exception of the patriarch ( � ��� ) which has no parent, and
the youngest child ( � � � � �0( ) which has no child. Each child of the family will be filtered
at a larger scale than its parent. A continuation method will then first be used to extract
the trace of an image contour for a young member of

�
(  � ��� � 	 � � , � ; i.e., at a coarse

scale
� � !#� �Z ). Once an optimal solution has been reached for

� , � using the snake model, this
solution will be used as an initialization step for the direct parent

� , � 	 : . Again an optimal
solution will be found and used as an initialization step for the next parent in the family
(
� , � 	 < ). By “continuously” tracking the best solution from generation to generation, a final

solution will be generally reached with the eldest child (level 1) of the family. Terminating
the continuation method before attaining the patriarch (level 0) can be understood as a need
for discriminating edge or contour structures (at

� �2!#� Z � � � ����� N �0��� ) from noise and artifacts
(
� �2!#��Z � � $ ��()$�� NO� � � � U ! ��� ). Noise and artifacts usually have their natural scale at the pixel

level (
� � U ! ��� � � $ ��()$��TN � � � E

), while segments of the trace of the cellular membrane are
generally defined at a larger scale (i.e.,

� � ����� N �0��� � � � U ! ��� ��� � $ ��()$��TN � ). Also, an image will
in general require some degree of smoothing or blurring so that the snake remains stable
on valleys corresponding to image contours. Therefore, we will generally end the contin-
uation method at level 1 of the HDC structure, or at higher levels, unless we have a priori
knowledge about the degree of smoothness of the original image.

3.3 Image Segmentation

In the following paragraphs we will show how the snake model combined with the HDC
method can be used to recover the trace of a cell membrane in a noisy digitized image,
thereby solving the segmentation problem. We note that some a priori knowledge will be
assumed or that some user interaction will be permitted to spatially initialize the snake. The
hybrid HDC method of filtering, combined with a continuation method from coarse to fine
scales, will be used to discriminate noise and artifact from the trace of the cell membrane.
The snake model will be helpful in bypassing to some extent the difficulties caused by
inhomogeneous contrast along the trace of the cell membrane. It will also permit to extract
a connected curve which approximates the trace of a cell membrane.

3.3.1 Initialization of Image Segmentation

Typically, the scene we are looking at contains more than one cell. As a first initialization
step, we assume that a window is centered on each of the existing cells in the scene, the
windows being positioned with the help of some high level interaction. Secondly, a closed
snake is coarsely positioned by high level user interaction around the perceived cell contour
in each of these windows. For example, this initial snake position can be drawn on the scene
as a polygon by interactively specifying a set of points around the cell (Figure3.9). Note that
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Figure 3.9: Initialization of the segmentation process where an initial polygonal snake posi-
tioned around the cell is shown superimposed on the image. This image corresponds to the
first frame in the cell motion sequence shown in Figure 3.3.(a). It was selected interactively
in a larger scene containing many cells by defining a square window approximatively cen-
tered on the cell. The polygonal snake was initialized by the user who selected a number of
knot points around the cell.

the snake is initially positioned close to the solution we seek to recover. This is necessary
because the snake is relatively blind in its search for a best solution. Otherwise it could
easily be trapped in local minima of the potential surface which do not correspond to the
trace of the cell membrane.

3.3.2 Building the Potential Surface Family

Once the initialization procedure has been completed, we apply the HDC method to build a
family of potential surfaces

�
. For example, Figure 3.6 and Figure 3.7 show the Gaussian

HDC family (
� � �����	��


) and the corresponding GGHDC family (
� � �������	��


), respectively,
for the initial frame of the cell motion sequence illustrated by Figure 3.3. Figure 3.10
illustrates how one member of each family,

� � �����	��

and

��� ������	��

, can be visualized as a

3-D surface on which the snake will crawl seeking valleys.

3.3.3 Finding an “Optimal” Solution Using a Continuation Method

In order to recover the best possible approximation to the trace of the cell membrane, we
start at a coarse HDC level � � . This permits us to have the snake converge to the desired
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(a) (b)

(c) (d)

Figure 3.10: HDC images visualized as 3-D surfaces. In (a) is shown the HDC family
member

��� ����	��

� as an image of intensity. This HDC level was obtained from the original

frame in the cell motion sequence shown in Figure 3.3. In (b) is shown the same family
member

��� �����	��

� as in (a), but this time represented as a 3-D surface where height cor-

responds to the grey level intensity. White is considered the zero level height, while black
is the highest level. In (c) is shown the HDC family member

� � ������	��

� as an image of

intensity. This HDC level was obtained from
� � ����	��


� using the Sobel edge operator. In
(d) is shown its representation as a 3-D surface (same convention as (b)).
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(a) (b) (c)

Figure 3.11: Finding the best solution at a coarse HDC level (
�����

). In (a) is shown the
initial position of the snake superimposed over ��� �	�	
������� . This initial position was fixed
interactively. In (b) is shown the optimal position for this snake when starting from the
position in (a). This position is optimal with respect to the snake energy term �������������! #"%$ &(' )+*
which is then minimized. The evolution of �,��������� �! #"%$ & ' )�* as a function of iteration is shown
in (c). Note that in (c) �-�.�/�0�����1 2"3$ &4' )+* was normalized so that its minimum is the zero energy
level.

feature, the valley of � . At such a coarse level, the valley is wide enough because of the
blurring so that the snake will be able to follow the slope of the valley and crawl toward its
bottom. We assume that the initialization step, in which the snake is positioned around the
cell, is done in a coarse fashion; this is a kind of least commitment assumption. In all of
our experiments with cell scenes, only three levels of a Gaussian HDC were necessary (i.e.,�65 �17 �8�.9:�8�

), with sampling rates of ;=< for the first two levels (i.e., >@?BA � >/?�C � ; ) and a
sampling rate of one for the last level. For other types of images, such as these with different
noise levels, artifacts or contrast properties and different initialization mechanisms, other
amounts of smoothing may be required.

Figure 3.11 shows the result of applying the improved snake model presented in Chap-
ter 2 to the potential surface � � �	�	
������� . With the GGHDC family, the directional slopes
in the D and E directions are evaluated by simple first differences of the potential surface
values at each snaxel position. Also shown in this figure is how the potential field energy
of the snake, �:��������� �! #"3$ & ' )+* is minimized by the iterations. As we can observe, as the snake
crawls down the potential surface starting from its initial position shown in Figure 3.11.(a),
�F�������G� �! 2"3$ & ' )�* is gradually reduced. The final position shown in Figure 3.11.(b) corresponds
to the optimal one when starting from the position shown in (a). Here optimality refers to
�F�������G� �! 2"3$ & ' )�* which is then at a minimum.

The same process can be repeated on the potential surface � � �	�	
����� C , but this time
using the optimal solution obtained at the previous HDC level, that is, for �H� �	�	
������� , as
the initial snake position. Results at this intermediate level (

�I� ; ) for the recovery of the
cell contour are shown in Figure 3.12. It is worth noticing that this time only five iterations
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(a) (b) (c)

Figure 3.12: Finding the best solution at an intermediate HDC level (
� � ; ). In (a) is shown

the initial position of the snake superimposed over � � �	�	
 ���� C . This initial position was
obtained as the optimal snake position at the preceding level in the HDC family (i.e., for
the child � � �	�	
 ������ ; see Figure 3.11.(b)). In (b) is shown the optimal position for this
snake when starting from the position in (a). The evolution of ���.�/�0��� �! 2"3$ & ' )+* as a function
of iteration is shown in (c) ( �-�.�/�0��� �! 2"3$ & ' )+* normalized).

were sufficient to reach the minimum of �,�.�/�0��� �! 2"3$ & ' )+* (Figure 3.12.(c)) while twenty-six
iterations were required for the preceding child level � � �	�	
����� � (Figure 3.11.(c)). This is
due to the fact that in the case of � � �	�	
����� � the initial snake position was relatively far
from the bottom of the valley (Figure 3.11.(a)), in comparison to the case of � � �	�	
����� C
(Figure 3.12.(a)). Then, when starting from the position shown in Figure 3.12.(a), the
snake crawls down on a relatively short distance to reach its final optimal position shown in
Figure 3.12.(b). Because we were initially close to the optimal solution, the deformations of
the snake shown in Figure 3.12, from (a) to (b), are relatively small (compare to Figure 3.11,
(a) and (b)).

Finally, for � � �	�	
 ���� A , the same process is repeated using the optimal result obtained
on � � �	�	
 ���� C as the initial snake position (Figure 3.13). Again, relatively few iterations
are required (nine here; see Figure 3.13.(c)) compared to the initial case of �H� �	�	
������� .
Similar to the case of � � �	�	
����� C , the initial snake position for � � �	�	
 ���� A is relatively
close to the bottom of the valley (Figure 3.13.(a)). Then, starting from this position, the
snake crawls down on a relatively short distance to reach its final optimal position shown in
Figure 3.13.(b). Being initially close to the optimal solution, the deformations of the snake
shown in Figure 3.12, from (a) to (b), are relatively small as expected. Note that because
we are at a low level in the family hierarchy, the bottom of the valley on which the snake
crawls is relatively narrow. This explains why �,�.�/�0��� �! 2"3$ & ' )+* in Figure 3.13.(c) is not as well
behaved as it was the case for the two preceding children in the hierarchy (compare with
Figure 3.12.(c) and Figure 3.11.(c)).

Such a process of tracking the best solution from coarse to fine scales in a scale-space
representation of the signal, here an image, defines the so-called continuation method
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(a) (b) (c)

Figure 3.13: Finding the best solution at a fine HDC level ($l = 1$). In (a) is shown
the initial position of the snake superimposed over � � �	�	
 ���� A . This initial position was
obtained as the optimal snake position at the preceding level in the HDC family (i.e., for
the child � � �	�	
 ���� C ; see Figure 3.12.(b)). In (b) is shown the optimal position for this
snake when starting from the position in (a). The evolution of ���.�/�0���B�! 2"3$ & ' )+* as a function
of iteration is shown in (c) ( �-�.�/�0��� �! 2"3$ & ' )+* normalized).

[156, 147]. We have shown here, and in other experiments we have conducted, that a
discrete version of this continuation method is sufficient in most cases to recover the trace
of an object in a noisy scene under appropriate assumptions.10 Furthermore, we claim that,
under the “small deformation” and the “initialization” assumptions, such a technique pro-
vides us with “good” segmentation results that satisfy our quality criterion, that is, criterion
(a) in section 3.1.3. The snake model provides a line drawing representation of the cell
shape which permits the experimenter or observer to produce a qualitative shape descrip-
tion similar to the one he obtains by looking directly at the intensity image (Figure 3.14).
Although, in general, the snake model combined with a discrete continuation method gives
good results, counterexamples can be given where the method we have described so far may
fail. We discuss the limitations of the snake model for image segmentation in the following
subsection.

3.3.4 Image Segmentation Using Snakes: A Critique

We have shown in the previous sections how the snake model can be combined with a quan-
tized or discrete multiscale image representation to recover an “optimal” approximation of
the trace of the contour of a blob-like shape; where optimality is defined in terms of the
“steady-support” criterion.

An advantage as well as a limitation of the snake model emerges from the global way in
10It is interesting to note that such results could be in agreement with the multichannel model of human

vision which may also be seen as a discrete or quantized version of a scale-space image representation, where
only 4 or 5 channels are used to send scaled versions of an image to other brain processes [87].
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(a) (b) (c)

Figure 3.14: Judging the quality of the segmentation. In (a) is shown the line drawing
obtained from the optimal snake position (i.e., for

� � �������	��
 �
; see Figure 3.13.(b)). In (b) is

shown the original intensity image (i.e., unblurred). In (c), the snake in (a) is superimposed
on the image in (b). From (c), we claim that the segmentation obtained using the snake
model is “close” enough to the perceived shape of the cell, when a human observer looks
at the image in (b), to judge the segmentation good.

which an optimal solution is evaluated. This approach to the segmentation problem makes
the active contour or snake seek a global minimum of its energy functional (equation (2.2),
section 2.2). It offers the advantage of integrating information about the derived potential
surface feature along the entire length of the closed snake. This is implemented by seeking
a global minimum of this snake energy functional. As pointed out in Chapter 2, this is
an attempt at having the snake “bridge” the gaps in regions of low contrast, along the cell
contour. In other words, it should permit the snake to link two ends of deep valleys using
the best “pass” between them. Note that this bridging capability is better implemented if
one adopts the “steady-support” criterion rather than the original “steady-state” criterion.

The “globality” of the energy minimization process also points out a weakness related to
the efficiency of the snake model for segmentation. In the original snake model we saw how
the “steady-state” criterion could result in the snake missing a desired solution. Alterna-
tively, it could force the snake to require an excessive number of iterations before reaching
a stable state. It could make the snake shrink artificially by causing snaxels to pile up in
deep pockets of a valley of the potential surfaced. To remedy these difficulties we proposed
the “steady-support” criterion which proved to be better suited to that purpose. Still, even
this more “intelligent” energy minimization criterion possesses certain limitations.

In our attempts to improve the original snake model, the “steady-support” criterion was
suggested as the global energy function to be minimized. This was proposed in order to stay
as close in spirit as possible to the original definition of the snake model. It was computed
by summing the support of the snake (i.e., its height) over its entire length (equation (2.30)).
Because this minimization is performed in a global fashion, due to the summation of the
support of all points of the snake contour, we cannot ensure in a strict sense that the “best”
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possible solution will be retained during such an iterative minimization process. This is
because we have no efficient way of discriminating a “good” individual snaxel displacement
from a “bad” one. By “good” we are referring to a snaxel movement that reduces the
energy 6� ���V��� � � � Z � � � 	 . Similarly, “bad” refers to a snaxel movement that increases the energy�������� � ��� � Z � � � 	 . Therefore, the effect of snaxels which make ���������� ����� Z � � � 	 increase could be
counteracted by the motion of other snaxels along the snake contour which would make�������� � ��� � Z � � � 	 decrease by a larger amount. Thus, the summation of both effects would
result in a better energy value although, locally, only the latter of the two effects is desirable.

Figure 3.15 illustrates how such a malfunction of the snake optimization process might
occur. Here contour regions of low contrast exist at the tip of cell pseudopods. The cor-
responding segment of valley in the potential surface is at a relatively high height with
respect to its neighborhood, since we are at a pass between two relatively deep valleys.
Elsewhere along the snake contour, snaxels may be positioned on the slope of relatively
deep valleys, such as when a snake is initialized using the solution obtained from another
potential surface. Thus, a first group of snaxels positioned at the tip of the pseudopod may
have a tendency to move down one or both deeper sides of the pass. In such a case the
corresponding continuous snake, obtained by linking snaxels by straight lines, would be
forced to cross a plateau rather than the pass itself, thereby increasing  �����V��� � � � Z � � � 	 (Fig-
ure 3.15). The second group of snaxels moving down the slope of a deep valley might mask
this local increase of 6��������� ����� Z � � � 	 at the tip of the pseudopod. Therefore, the locally better
approximation of the trace of the cell contour at the pseudopod tip could be lost due to an
overall decrease of the global snake potential field energy.

The limitation of the applicability of the “steady-support” criterion as first defined in
Chapter 2 represents our best attempt within the scope of this thesis, that is, under the con-
straint of assumptions 1 and 2 of section 3.1.2, to solve the image segmentation problem.
With this stability measure we were able to achieve relatively good segmentation results
with an implementation which lent itself to real-time applications although, as we have
seen, we cannot certify that the snake will find in all cases the solution we seek. Thus a
complete understanding of this problem should provide a general method for refining the
“steady-support” criterion. What is missing is some “local” constraint on the global energy
function 6� ���V��� ��� � Z � � � 	 . The notion of support should be refined to become more descriptive
of what is meant by “good” local support for each snaxel and its intermediate joining seg-
ments. We have defined a simple but excessively “coarse” definition of support based solely
on the notion of height or potential energy. A more complex model should incorporate a
measure of the shape of the bottom of a valley or a pass. That is, we should evaluate the
support of a candidate contour point not only with respect to a global potential energy but
also with respect to the actual local topography or shape of the surface on which the point
lies. However, maintaining optimality in the strict sense remains a difficult problem.

A few different implementations of the snake model and other similar active contour
models have been proposed in the recent literature in an attempt to solve some of the short-
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(a) (b) (c)

Figure 3.15: Example illustrating where the minimization process could fail due to its
global definition. In (a) is shown the original image (note the two pseudopod tips at the
top of the cell which have relatively low contrast boundaries). In (b) is shown the solution
obtained from a previous frame. In (c) is shown the final solution. We note that the pseudo-
pod at the top-left of the cell is almost completely lost by the snake, while the pseudopod
on the top-right of the cell is partially recovered.
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comings of the snake model or to provide possibly better models. In his “alternative snake”,
Scott [134] defines a snake energy function �� ���V��� in the Fourier domain. Although he
claims his snake gives him a more powerful contour representation, where the shape is
summarized by the Fourier coefficients, his model also lacks the ability to recognize locally
significant features: “the snake cannot [always] smell” [134] all of the significant contour
points. Staib and Duncan [137] also propose a parameterization of the snake in the Fourier
domain. Leclerc and Fua [84, 66] use an active contour model similar to the original snake
model. They rely on the direction of the gradient to make the snake active, as is the case
with the Kass et al. model [78]. Amini et al. [3, 2] use the model of Kass et al., but with a
different implementation of the minimization procedure based on a dynamic programming
framework. Their model relies on the direction of the gradient of the potential surface to
activate the snake.

All of these other similar techniques share the same lack of ability to accurately sense
the local shape of the potential surface. Therefore, aside from the fact that they also are
constrained under assumptions 1 and 2 (

�
3.1.2), they are also limited in their applicability.

3.4 Tracking Deformable Shapes

After having demonstrated how the snake model can be used for image segmentation to
recover the trace of cell contours in noisy images, we now show in the following paragraphs
how the same model leads to an automatic tracking method for deformable objects such as
cells. We also present the limitation of this method for cell tracking.

The image motion sequence we will analyze consists of an ordered list of frames:J : � J < � J � � �R�M� � J � . For the purpose of the present demonstration, a sequence containing� � � � � frames was used as a test (Figure 3.16). This sequence was obtained from a
time-lapse recorded video tape. A relatively fast moving cell was selected for this illustra-
tion of the snake model applied to tracking. It was only necessary to use a subset of the full
sequence. One frame out of ten was used to perform the tracking with the snake. There-
fore, only frames J : � J : E � J < E � �M�M� � J : < E were used, in total 13 frames. Figure 3.16 shows only
five of these selected frames to illustrate the deformation and motion of the cell during this
sequence of

� � � � � frames. This same sequence was used in Figure 3.3 as an example of
a deforming cell.

3.4.1 The Initial Frame

Processing the initial frame ( J : ) to recover the trace of the cell contour is performed using
assumptions 1 and 2 and the discrete continuation method on a HDC family as described in
section 3.3. Once an optimal solution is found at a fine scale, that is, for a HDC level � � � ,
it is used as the input or initialization data for the tracking procedure; in other words, it is
used for processing the following frame in the selected sequence (here frame J : E ).
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(a) (b) (c)

(d) (e) (f)

Figure 3.16: The motion sequence used to demonstrate the ability of the snake model to
perform the tracking. From (a) to (e) is shown the cell in frames J : , J � E , J � E , J�� E and J : < E ,
respectively. In (f) the cell in frame J : < E is again shown, but with the “optimal” snake
position found for frame J : superimposed on it. This illustrates the actual deformation that
occurred during the

� � � � � frames sequence.
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3.4.2 The Following Frames

Let us consider a given frame J � ( � � � � �
). For simplicity we assume that there is

only one window to be processed. If multiple cells require that more than one window must
exist, the same procedure will simply be applied to each window. The initial snake position
is obtained from the optimal solution found in frame J � 	 : . Thus the first step consists
of obtaining a new family,

�
, of potential surfaces for the frame J � . As we explain in the

following paragraphs, the filtering in a dynamic sequence can be performed in a much more
efficient way than in the static case.

Because we are tracking relatively slow objects, and because of the assumption of
“small deformations” less smoothing will be required to permit the snake to seek the new
trace of the cell contour. For example, in the test sequence, we generated families of poten-
tial surfaces up to level � � �0( � � only, for frames J � following the initial one (i.e.,

� � � ).
Furthermore, the filtering used to generate the potential family

�
in each frame, J � ,

can be restricted to a much smaller area than the entire cell window. We can use the initial
snake position obtained from frame J � 	 : to delimit an area in the vicinity of this closed
curve in order to spatially restrict the filtering. Here again we can use the HDC method
to our advantage since the filtering computations within the HDC context are always local.
Thus it is not necessary to process the full image in order to complete an HDC computation
[38].

Figure 3.17 shows the results of the tracking using the snake model for five of the thir-
teen frames of the analyzed sequence. All deformations which occur are seen to be tracked
with good accuracy; this result satisfies our quality criterion 2 (

�
3.1.3). This illustrates the

power of the snake method for tracking objects.

3.4.3 Limitations of the Snake Model for Cell Tracking

In this section we analyze a typical problem that illustrates the limitations of the snake
model for cell tracking in 2-D.

Figure 3.18 shows a series of four frames selected at every ten frames following the
sequence previously presented in Figure 3.16 (i.e., frames J : � E , J : � E , J :  E and J : � E ). The
growing pseudopod at the bottom of the window (South side) appears to be forming in
a noncontinuous fashion since a slightly dark oval region first appears at the tip of the
pseudopod in frame J : � E . In the following frames, this region becomes even darker and
darker until it merges with the rest of the pseudopod in frame J : � E .

Such discontinuous pseudopod formation does not correspond to the accepted biological
growth process which of course can only be continuous. What we are emphasizing here is
an imaging artifact which is a result of the way in which we look at the cell. We are
actually observing the cells in only one focal plane, assuming that they are flat (2-D) objects.
However, this does not exactly correspond to reality since the cell is really a 3-D entity.
What is happening in the present case is that the pseudopod continuously grows above the
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(a) (b) (c)

(d) (e) (f)

Figure 3.17: Cell tracking. All frames have their optimal snake superimposed on them to
show the extracted contour. The results for frames J : , J � E , J � E , J�� E and J : < E are shown in
(a), (b), (c), (d) and (e), respectively. In (f) are shown the extracted contours in frames J :
(grey dotted contour) and J : < E (dark connected contour) to illustrate the total deformation
that was recovered from the observed sequence.
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(a) (b)

(c) (d)

Figure 3.18: Illustration of the limitations of the snake model for tracking. Frames J : � E ,J : � E , J :  E and J : � E are shown in (a), (b), (c) and (d), respectively.
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Figure 3.19: How a pseudopod, or protrusion of the cell’s body, might form above the glass
surface and consequently out of the focal plane.

focal plane until its tip comes back in contact with the glass upon which it is constrained to
move. This is illustrated in Figure 3.19.

Although assumption (a) of “small” deformations is not violated in reality, that is, the
cell really deforms continuously, but in 3-D, it is violated in the image sequence which only
represents one 2-D slice of the 3-D world. Therefore we expect the snake to fail to track
such deformations. This is indeed what we observe (Figure 3.20). In frame J : � E the snake
remains on a contour near the end of the pseudopod, that is, where the pseudopod quits the
glass surface or the focal plane. The snake behaves in the same way in subsequent frames
( J : � E , J :  E ). Thus it remains blind to the actual 3-D deformation process of the pseudopod
until the complete pseudopod tip returns to the focal plane in frame J : � E . In this last frame
the snake segment in the vicinity of the pseudopod tip is now situated on a plateau of

�
.

Thus no contour segment exists in the image in correspondence to these snaxel forming this
snake segment. Because these snaxels are now too far from the tip of the valley to sense
it, the snake has no way to detect that it is wrongly positioned. Furthermore, these snaxels
are immobilized by tension forces since this snake segment is now like an elastic stretched
over the plateau.

In a sense the snake is rather blind in its search for the best valley. Rather than sensing
the potential surface,

�
, by literally looking at its shape or topography to recognize the

bottom of its valleys when crawling on it, the snake relies on sensing only the slope of
�

in
a simple manner in the vicinity of each snaxel. Again, as pointed in section 3.3.4, we see
that we would need some kind of more powerful way to characterize the bottom of a valley
in order to recover this kind of feature in a potential surface.
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(a) (b)

(c) (d)

Figure 3.20: Illustration of the snake being unable to track the growing pseudopod in the
lower right part of the cell. Frames J : � E , J : � E , J :  E and J : � E are shown in (a), (b), (c) and
(d), respectively.
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3.5 Conclusions

In this chapter we have shown the abilities and limitations of the snake model for the image
segmentation and tracking of deformable objects such as cells. We have shown that under
appropriate assumptions, which limit the extent of the deformations and permit user initial-
ization, the snake model is powerful enough to provide solutions to both the segmentation
and tracking problems.

In order to obtain potential surfaces to be used by the snake in an efficient manner, we
have also described how the HDC method was well suited for image filtering and image
representation at multiple scales. Furthermore, this leads to a discrete scale-space repre-
sentation to which a continuation method can be applied in a natural way to recover image
features for which their natural scale was unknown a priori.

We have also demonstrated the limitations of such an approach based on the idea that
computer vision problems may be embedded in a variational scheme which in turn can be
solved by a discrete optimization process seeking to minimize some global energy function.
We discussed a counterexample to the snake model which showed its limitations for actually
recovering or keeping track of “good” segmentation solutions. We have also demonstrated
that the snake is relatively “blind” in its search for image features in the dynamic case,
when the feature formation can occur in a noncontinuous fashion. These failures of the
snake model have lead us to the conclusion that the recovery of the trace of a contour in
an image by seeking the bottom of valleys in a potential surface, needs a more powerful
sensing mechanism than the simple gradient descent search favored by the snake approach
and by the other similar active contour models.

There is yet another path that could be followed in the dynamic case to analyze a se-
quence of images. Since we have the results of the previously analyzed images available,
we could make better use of them. Instead of simply considering the trace of a contour in
the immediately preceding frame to help us in our search for future deformations of that
contour, we could make use of more complex information. For example, we could use the
curvature extrema of the contour and other shape features of the deforming object. Further-
more, this kind of information could be integrated over many frames to detect growing and
shrinking parts of the cell in order to predict possible future deformations. This informa-
tion could then be used to perturb or deform the snake when searching for a new solution.
In addition, the integration of information over many frames could lead to the possibil-
ity of eliminating extracted contours in frames where they do not correspond to or match
preceding and subsequent extracted contours.

In light of the above comments regarding descriptors of deformable objects other than
simply the trace of the contour, we next address two complementary issues in object de-
scription: contour analysis and region analysis. In the following chapter we consider the
extraction of contour features such as curvature extrema. In a subsequent chapter we will
examine the subject of region representation and analysis.



Chapter 4

Shape Features using Curvature
Morphology

4.1 Introduction

Shape representation and analysis is fundamental to computer vision. Within the scope of
this thesis, our interest in it is an outgrowth of a study of the dynamic changes in cell shape
[115], coupled with the need for more informative shape descriptors than simply the out-
line of a shape.1 Of the many approaches to shape that have been proposed, the notion of
curvature of planar curves has emerged as one of the most powerful for the representation
and interpretation of objects in an image [87, 14, 100]. Curvature is a measure of the rate of
change in orientation at each point along a curve. There is psychophysical, physiological,
as well as computational and mathematical support in favor of using curvature as a repre-
sentation for contours. Curvature extrema seem to be used by the human visual system to
segment contours into meaningful parts [15, 21, 75]. Endstopped neurons in the visual cor-
tex can be interpreted as performing local curvature measurements [54]. Local estimations
of curvature and tangent information are sufficient for the recovery of the trace of a curve in
an image [120]. From differential geometry, the fundamental theorem of the local theory of
curves states that any regular planar curve is uniquely defined by its curvature [53] — reg-
ularity implies continuity of a curve and its derivatives. Non-regular points of a curve are
singular ones where, for example, the curvature goes to infinity, that is, where the change
in orientation is undefined, or where there exist a break or step in curvature. They often
correspond to visually salient contour features such as corners or protrusions. Therefore,
given the finite set of singular points of a contour, some of which can be represented as
extrema and steps in curvature, as well as the curvature values for all intervening points, a
contour is uniquely defined. This representation by curvature is invariant to rigid motion,

1An early version of this chapter was first published as a technical report [90]. Two shorter versions were
also published recently as conference papers [91, 93].
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that is, with respect to translation or rotation.

4.1.1 Contour Characterization by Curvature Features

Curvature extrema can be used to characterize the outline of a shape, but not all of them will
be perceptually salient. Depending on their importance or significance along the contour,
curvature extrema will be perceptually selected or noticed. We embody the term “curvature
extremum significance” by appealing to two complementary notions: the relative amplitude
or curvature measure and the region of support [90]. Both measures are defined in the
neighborhood of each curvature extremum, along the contour. The “region of support”
defines how well an extremum is isolated from other curvature extrema [90, 140]. As we
will see in section 4.3, this notion of isolation or localization is closely linked to the scale
or size of this curvature feature.

Although significant curvature extrema can be used to summarize a shape, they are not
the only useful curvature features for this purpose. Other effective curvature features in-
clude: the first order discontinuities or “steps” in curvature, the arcs of constant curvature,2

and the zero-crossings of curvature.
These four types of curvature features can in turn be shown to correspond to specific

contour features which characterize the outline of a shape. Let us first consider curvature
extrema. In the discrete domain we define curvature extrema to consist of any significant
peaks of the discrete smoothed curvature function, Q � (see section 4.2 for more details). For
each of these peaks the rate of change of the discrete orientation function to the contour is
maximized at a single contour point, � � �0( . Three cases are possible. The first case is char-
acterized by any contour point where the orientation changes smoothly but with the highest
speed relative to a finite neighborhood on the contour. This corresponds to the definition
of a curvature extremum in the continuous domain (Figure 4.1.(a), on the left). The second
case is denoted by a contour point where there exists a break or step in orientation and
which is flanked by contour segments having curvature functions of the same sign. Three
subcases exist: (i) both segments are of positive sign (Figure 4.1.(a), central picture), (ii)
both segments are of negative sign (Figure 4.1.(c), central picture), (iii) both segments are
of “no-sign” (i.e., zero curvature or straight line segments). The third type of curvature
extremum is defined by a contour point where there again exists a break or step in orienta-
tion, but which is flanked by contour segments having curvature functions of the opposite
sign. Then, six subcases exist which correspond to the permutations of the pairs formed by
positive (

&
), negative ( � ) and zero (

�
) curvature segments (i.e., the pairs (

& � � ), ( � �T& ),
(
� �T&

), (
& � �

), (
� � � ) and ( � � � ); Figure 4.1.(a), on the right, shows the case of ( � �T& ) for a

positive curvature extremum, while Figure 4.1.(c), also on the right, shows the same case
2Note that with respect to the other curvature features which are localized at single points (i.e., 0-D ob-

jects), arcs of constant curvature are further differentiated by the fact that they are defined over a connected
set of points (i.e., 1-D objects).
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for a negative curvature extremum). Note that in the continuous domain the last two cases
would actually be described as curvature discontinuities. But, since in the discrete domain
we lack the same notion of continuity, we do not need to distinguish them. Extrema can
further be classified into two subclasses depending on the way in which the change in ori-
entation occurs. If in the neighborhood of an extremum location on the contour, the tangent
to the contour, or orientation function (section 4.2), rotates by enveloping the contour, that
is, from the exterior of the shape, a corner or protrusion is obtained (Figure 4.1.(a)). On
the contrary, if at the extremum location the tangent to the contour rotates inwardly towards
the shape, a concavity or depression is obtained (Figure 4.1.(c)).

The second type of curvature feature, the “step” in curvature, corresponds to a smooth
join [14], � � � UOU $ � , where the orientation to the contour varies smoothly, but not the curva-
ture. Smooth joins can be classified into two types. Firstly, if the jump in curvature occurs
between two flanking curvatures of the same sign we call this curvature feature a smooth
join of the first type. Two subcases exist; Figure 4.1.(b) shows the case of two positive
flanking curvature segments. Secondly, if the flanking curvatures are of different sign, we
call it a smooth join of the second type. Again, two subcases exist; Figure 4.1.(d) shows the
case of a negative flanking curvature segment followed by a positive one. The third curva-
ture feature, an arc of constant curvature, can again be classified into two types. A non-zero
curvature arc corresponds to an arc of a circle, while a zero curvature arc corresponds to a
straight line segment. Finally, the fourth curvature feature is the zero-crossing of curvature
which corresponds to an inflection point of the contour.3

4.1.2 Chapter Overview

In a typical computer vision system, discrete traces of contours of objects are first extracted
from an image. The curvature of these discretized contours is then approximated and used
to detect important features of the boundary of an object. Although curvature extraction
from an object contour would seem to be a rather simple task, few methods exist that are
simultaneously easy to implement, fast and reliable in the presence of noise. In this chapter
we will first propose a scheme for obtaining the discrete curvature function of opened or
closed planar contours based on the chain code representation of a boundary [63]. This
approach has been previously reported and we emphasize only our own attempts to optimize
its implementation.

We will also present a new method of extracting important features from the curvature
function. We are interested in localizing features such as peaks of curvature and arcs of

3Note that here we simplify the definition of an inflection point to occur at any point were the curvature
changes its sign. This is valid in the discrete domain. In the continuous domain, there is a second condition:
at an inflection the curvature has to be analytic (i.e., regular point) [37]. For example, a smooth join of the
second type is necessarily also an inflection point (even in the continuous domain), while, in the discrete
domain, a corner and an indentation can possibly be situated at an inflection point (Figure 4.1, (a) and (b)).
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(a) (b)

(c) (d)

Figure 4.1: Some curvature features and their contour counterparts in the discrete domain:
(a) protrusion, (b) smooth-join of the first type, (c) depression, (d) smooth-join of the sec-
ond type. Only segments of a contour are shown. Contour pixels are traversed in a fixed
counterclockwise direction. Therefore, the interior of the object delimited by the contour is
defined as being to the left of the traversal direction (shaded area).
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constant curvature. Furthermore, we would like to differentiate these features based on
their relative significance, that is, by their degree of isolation from nearby features and their
relative amplitude. Consequently, we seek methods for segmenting the curvature function
into its basic and significant events. To achieve this goal we propose using morphologi-
cal operations on functions [135]. These operations permit us to create a representation of
curvature, not only in terms of feature localization and identification, but also in terms of
significance and scale. We will demonstrate that morphological operators can be used to
locally remove insignificant details of a signal, in our case the curvature function. This can
be applied to an increasing sequence of sizes without blurring the shape of these details
and while preserving the global shape features. This property of morphological opera-
tions permits us to suggest a new scale-space representation for curvature referred to as the
Morphological Curvature Scale-Space. Advantages over the usual scale-space approaches
[155, 14, 108, 109] will be presented.

In the following sections, we present a procedure for retrieving the discrete orientation
and curvature functions of the discrete trace of a contour from a chain code representation.
In this context, quantization errors and “protrusion-depression definition” problems inher-
ent to the chain code representation are discussed. We also indicate how smoothing and
differentiation of the discrete orientation data should be performed to extract the curvature
function, while at the same time minimizing noise effects. We then discuss the morphologi-
cal operations that are applicable to curvature analysis. Certain morphological measures are
also introduced for the purpose of describing curvature peaks extracted using these morpho-
logical operations. The Morphological Curvature Scale-Space is then defined and its main
advantages are demonstrated.

4.1.3 Contributions

The following contributions on contour segmentation are made:
� We demonstrate a problem inherent in the chain code representation which was not

previously reported. We call it the “protrusion-depression definition” problem. We
also propose a procedure to detect its occurrence and a means of eliminating the
possibility of errors (section 4.2.2).

� We propose to apply morphological operators to the curvature function to extract its
main features. These particular operators are called “hat transforms” (section 4.3.1).

� On the basis of the morphological operations performed on the curvature function of
a contour, a new scale-space representation called “Morphological Curvature Scale-
Space” is introduced. This multiscale representation of the curvature function pos-
sesses a number of advantages over the more traditional scale-space representations;
it satisfies the three criteria of “causality,” “immediate localization” and “piecewise
smoothing” (section 4.3.3).
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A number of less important contributions are also made:

� We emphasize two quantization problems inherent in the chain code definition first
mentioned by McKee and Aggarwal [105], but not often subsequently considered in
the literature (section 4.2.2).

� We describe how to efficiently filter, by smoothing, the orientation signal obtained
from the chain code to compute the curvature function. We also emphasize that the
smoothing must be performed in a conservative way to retain as much as possible of
the relevant details of the curvature signal (section 4.2.3).

� We define four morphological measures to describe extracted peaks of the curvature
function (section 4.3.2).

4.2 From Discrete Contour to “Not Too Smooth” Curvature

Since any visual input to a computer is discrete as a result of quantization, contour extrac-
tion must address the issue of synthesizing a continuous representation from a discrete one
[101]. This involves going from the discrete trace of an image contour (e.g., edge pixels) to
a continuous or linked set of points through which the curve passes. Essentially, two kinds
of encoding and representation schemes for smooth curves have been proposed in the com-
putational vision literature: curve fitting algorithms4 and orientation chaining algorithms.5

In the first approach, a set of curves is fit to the contour by minimizing a certain error
measure. The points where curves meet are retained as knot points and are essentially
arbitrary. Most such techniques employ polygonal approximations, circular arcs, or splines.
Their main drawback is that the knot points are not always related to our perception of the
salient points of a contour, such as for example the curvature extrema. Furthermore, the a
priori assumption made about the nature of contour segments between knot points, that is,
that they are composed of straight lines, circular arcs, or splines, can often be seen to be
rather rigid.

In the second scheme, an opposite approach is adopted where orientation or curvature
along the contour is first approximated and then processed further to extract the knot points.
These points are usually obtained by examining the rate of change of orientation (curvature
function) along the contour. Curve segments can then be fitted between the knot points.
Since this representation seems to be supported at the physiological level and is also ad-

4The following constitutes a non-exhaustive reference list of “curve fitting algorithms” covering the last
fifteen years of research work on such methods: [124, 123, 151, 43, 70].

5The following constitutes a non-exhaustive reference list of “orientation chaining algorithms” covering
the last twenty-five years of research work on such methods: [63, 105, 64, 36, 14, 116, 107].
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vantageous at the computational level, we have chosen it to encode and represent discrete
contours.6

4.2.1 Curvature Function Extraction

Two different approaches have been reported for computing curvature of a discrete curve
from orientation: filtering and differentiation (

� �
) methods; and difference of slopes

(
��� � ) methods.

� �
methods evaluate smoothed local curvature by convolving a dis-

crete orientation representation of the contour with a template. The discrete orientation
representation is usually given by the well-known chain code representation of Freeman
[63]. The derivative of a Gaussian of variable size is often employed as the template in
order to extract an approximation of the curvature [14]. Alternatively, the orientation data
can be differentiated by computing the first difference of the angle formed by nearby points
and then smoothed with a Gaussian filter to reduce noise effects. This can yield a multiscale
representation if a set of different sized filters is used [52]. However, this alternate method
usually has a poorer signal-to-noise ratio. This can be attributed to a specific reason: fil-
tering discrete orientation data with a template that directly extracts the derivative greatly
amplifies noise.

In
��� � methods the curvature is estimated at each point by taking the angular dif-

ference between slopes of two line segments fitted to the data before and after each point
[133, 65, 116, 117]. This can be repeated for line segments of varying length.

For both
� �

and
��� � methods, the extent of data smoothing is governed by the size

variable; the template size for
� �

’s and the line size for
��� � ’s.

��� � methods yield good
results in the presence of boundary noise, but are computationally more expensive than

� �
methods. In this chapter, we will propose an alternative

� �
method which requires less

complex computations than most current methods. But first, in the following subsection,
we describe how the discrete orientation representation is obtained.

4.2.2 From the Trace of the Discrete Contour to a Discrete Orientation
Representation

Let us consider the discrete trace of a curve on a square sampling lattice with integer coordi-
nates

� � � � 	
and denote it by � � � 	 � � � � � 	 � � � � 	�	

, with parameter
�

(spatial index). Because� consists of a connected set of points, the spatial step-size � � between successive contour
points should correspond to the distance between centroids of two neighboring pixels. On
a square sampling lattice, � � should take the value � for vertical or horizontal neighbors or
the value � � for diagonal neighbors.

6Some recent methods proposed in the literature can be seen as a compromise between the two above-
mentioned schemes. For example, Medioni and Yasumoto process cubic � -splines fitted to a contour by
examining their curvature. Extrema of curvature are then extracted and the fitting process is refined [106].
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Figure 4.2: Example of chain code generation.

Given a discrete trace of a curve such as � , a common first step is to consider the chain
code [63] of the bounding contour. We observe that the chain code is in fact a discrete
representation of the orientation along the contour. It can be stated as a vector of integers� � � 	

, where each entry represents the discrete angle formed by adjacent pixels. Due to the
nature of the square sampling lattice, angles in the chain code are constrained to a discrete
range of eight values (0,...,7) representing multiples of

��� U . Contour pixels are traversed in
a fixed counterclockwise direction.7 Therefore, the figure or interior of the object is defined
as being to the left of the traversal direction (Figure 4.2).

Two quantization problems inherent in the chain code definition must be solved before
embarking on further processing [105]. First, the angle quantization in such a narrow range
(0,...,7) may introduce angle discontinuities of more than ��� ��� when, for example, a 0
follows a 7. The solution here is to avoid such discontinuities by using a modulo 8 operation
that puts a bound of ��� � � on angle discontinuities. For example, replace 0 by 8, if 0 follows
7. This modified chain code,

� � , is generated as follows:

�
� � � � 	 � � � � 	

;

� if � � � � � � � 	 � � � � 	 � � � then
� � � � 	 � � � � 	I&

� � , s.t. � � � � � � � 	 � � � � � 	I&
� � / � � � ;

� otherwise,
� � � � 	 � � � � 	

.

The second quantization error is introduced by the discretization of the index
�
, which is

usually simply incremented by one for each new pixel found while traversing the contour.
7The direction of traversal is arbitrarily fixed as clockwise or counterclockwise. Either choice gives similar

results. It is essential to remain consistent throughout the traversal of the contour points and the assignment
of the chain codes. Otherwise, the shape of the object could be erroneously interpreted (cf. the “protrusion-
depression” problem).
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(a) (b)

Figure 4.3: Protrusion-depression definition problems. A protrusion is shown in (a) where
an angle of

���������
occurs at the contour pixel 	�
 �� . The right choice for the chain code

value is 12. If the usual chain code definition were used, a value of 4 would be obtained,
leading to an inconsistent definition of the tip as being part of a depression, as shown in
(b). Using our proposed procedure, since pixel 	�
 ������ lies to the left of pixel 	�
 ������ ,
a protrusion is recognized. In (b), since pixel 	�
 ������ lies to the right of pixel 	�
 ������ , a
depression is recognized.

However, a diagonal step is � � times longer than a step along the grid axes. This can be
corrected by counting two units ( � � ) for entries of ����
 �� with directions along grid axes
and three units (  � ) for entries along diagonal directions; that is, we approximate a step-size
of � � by

��!#"
while keeping integer values. We denote this normalization of the distance

along the trace of the curve by $ .
In addition to these quantization errors, there is a third source of error which is re-

lated to the definition of the chain code. Very sharp protrusions ending in a line of pix-
els of width one (Figure 4.3) could be erroneously defined as a depression, depending on
the preceding values of �%� , as one gets closer to the tip of the protrusion. Therefore,
protrusion-depression definition problems occur at angles of

�&�'���)(
or equivalently, where* �+�,
 ��� � -����
 �� */.10

. The same problem can also occur for depressions, depending on
how the trace of the contour is obtained.8 In the general case, a protrusion or depression
with an angle of

���������
that occurs at a contour pixel 	�
 �� can be checked by examining

8A simple object contour following algorithm used to extract the chain code from a segmented edge map
would not usually tolerate, as part of the contour, depressions made of a string of pixels of width one. A more
“intelligent” contour following algorithm would extract contour pixels in two passes. It would turn around
the object (interior on the left) as well as “around” the background (exterior on the left) thereby generating
sharp protrusions as well as sharp depressions.
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a neighborhood of �
� � 	

to ensure that the interior of the object is still defined to be on the
left of the direction of contour traversal. A simple procedure consists of looking at contour
pixels preceding and following �

� � 	
. The procedure is as follows:

If � � � � � � � 	 � � � � 	 � � � , then:

� Compare the coordinates of the neighboring contour pixels �
� � � � 	

and �
� �6& � 	

adjacent to �
� � 	

(
� � � � � � � � �M�R� ) until two are found which are located at different

spatial positions.

� Check whether or not �
� �
& � 	

is to the left of �
� � � � 	

. If it is, then there is a
protrusion. That is,

� � � � 	 � � � � � � � 	;& � (i.e.,
& ��� � � ). Otherwise,

� � � � 	 �� � � � � � 	 � � (i.e., � ��� � � ), indicating a depression.

In summary, the original chain code
� � � 	

must be corrected for three types of errors: dis-
continuities of more than � ��� � � � , arc length normalization, and protrusion-depression def-
inition problems. These three types of errors can be detected in parallel by applying the
procedures described above, thereby generating a modified chain code

� � � � 	 . The follow-
ing section describes how to obtain smoother orientation data and then derive an estimate
of the curvature.

4.2.3 From Discrete Orientation to a Smoothed Curvature Representation

Let us use the symbol
� � � 	 to refer to the modified chain code after both quantization and

protrusion-depression errors have been corrected, that is,
� � � 	 � � � � � 	 , to emphasize its

equivalence with a discrete orientation representation of the trace of a boundary. We now
must process

� � � 	 to obtain the curvature measurements. By definition, for a parameteri-
zation of the curve by arc length

�
, the curvature Q ��� 	 is given as the first derivative of the

orientation function,
� ��� 	

, that is, Q ��� 	 � ��� ��� 	
. In the discrete case, we wish to retrieveQ � � 	 , which can be approximated by Q � � 	 � ��� � � 	 .

Noise amplification problems occur when differentiating a discrete signal such as
� � � 	

because it is coarsely quantized in
��� �

steps. For example, a straight line at an angle be-
tween

� �
and
��� �

is represented by a succession of
� �

and
��� �

orientations, a very noisy
signal indeed. This aliasing phenomenon cannot be alleviated unless the original sampling
grid is refined or the orientation sampling is done over a larger neighborhood. Still, the
effect of aliasing can be reduced by the application of lowpass or bandpass filtering to the
signal. It is common to filter

� � � 	 with a Gaussian template
�

� [36, 52], with standard
deviation � , defined as: �

��� ��� �
	 � � �� � ��� � � 
 � � � <� � <� � (4.1)
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Furthermore, the convolution theorem [126] can be used to differentiate the filtered
signal:

� � � � 	 � �
�

� � � � � � 	 � � �
� � (4.2)

This approach is often used to obtain Q � � 	 . The smoothing and differentiation of
� � � 	 with a

bandpass filter
� �

� is performed concurrently [36, 14]. However, in terms of computational
complexity, there is an advantage to using Gaussian templates in an initial smoothing step
instead of computing the derivatives of the Gaussian directly, as is done in other

� �
meth-

ods. Gaussian filtering can be efficiently implemented by combining Hierarchical Discrete
Correlation (HDC) techniques with cascaded correlation (Chapter 3,

�
3.2). Reusing the

convolution theorem and the cascaded correlation property of Gaussian templates, we can
obtain a smoothed curvature signal Q �

� � 	 as follows:

Q �

� � 	 � � � � � 	 � �
�

� � � � � � � 	 � �
�

� � �
� B �

�
� � � � 	 � �

�

� � � �
� B � (4.3)

where � : and � < are the standard deviations for the two Gaussian functions
�

�

�
and

�
� B ,respectively, and � < � � : < & � < < . Therefore, in the first step we filter

� � � 	 with a lowpass
filter using an HDC-like algorithm and denote this operation by:�

�

� � � 	 � � � � 	 � �
�

� � (4.4)

Then in a second step, we filter
�

�

� � � 	 with a bandpass filter to obtain its smoothed
derivative:

Q �

� � 	 � �
�

� � � 	 � � �
� B � (4.5)

The first step involving
�

�

�
is efficiently computed using the HDC procedure. The sec-

ond step is performed with a derivative of a Gaussian template,
� �

� B , over a smaller neigh-
borhood than for the original

� �
� in equation (4.2). Our complete procedure for extracting

curvature from discrete orientation data is illustrated in Figure 4.4.
Although Gaussian filtering is desirable to reduce noise effects and to evaluate the

derivative of
� � � 	 with a numerically stable procedure, this smoothing process must be

performed in a conservative way. By “conservative smoothing” we imply that we wish to
retain as far as possible the relevant details of

�
�

� � � 	 and Q �

� � 	 . However, Gaussian filter-
ing considers noise and peaks of Q �

� � 	 without distinguishing between them on the basis of
size [116]. We would like to describe the features of Q �

� � 	 by detecting them without hav-
ing to significantly modify Q �

� � 	 . Gaussian filtering cannot be used for this later purpose
since peaks corresponding to features would be attenuated and blurred. In summary, linear
filtering using Gaussian templates and their derivatives is ineffective because the scope of
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Figure 4.4: From the trace of the discrete contour to smoothed orientation and curvature
representations. The object shown in here and its discrete smoothed curvature Q �

� � 	 will
be used throughout this chapter to illustrate the complete curvature morphology approach.
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the filtering is too global, that is, it is indiscriminate with respect to significant curvature
features [20, 125, 116, 91].

We seek a description of curvature features in terms of their annihilation, as proposed
in the so-called scale-space approaches [155, 36, 81]. However, instead of using Gaussian
smoothing to generate a scale-space, which has an undesirable global effect, we propose
the use of morphological operators [135]. These permit the removal of details from a
signal such as Q �

� � 	 without modifying its global morphology. Since they exert only local
influence, morphological operators have the desirable property of generating uniform scale-
spaces that are unambiguous and therefore easily interpreted. Morphology for curvature is
the subject of the next section.

4.3 Curvature Analysis

Although the curvature at each point along a curve uniquely defines its behavior, it is the
morphology of curvature that permits the retrieval of useful visual information. Thus, we
would like a description of Q �

� � 	 in terms of any well identified features.
As mentioned earlier, peaks in curvature correspond to the critical points of a contour

and are useful for visual perception, as well as mathematical and computational represen-
tation. Constant regions are defined by straight lines ( Q �

� � 	 � �
) and arcs of constant

curvature ( Q �

� � 	 � � � �'� � � � � ). They can be used to compress information and reduce the
complexity of the interpretation process. Such constant regions, along with their associated
peaks of curvature, can also be used to compute region-based representations of an object.
Examples are the so-called skeletons or symmetric axes (Chapter 5) and local rotational
symmetries [61]. Zero crossings of Q �

� � 	 map to inflection points of a contour. Since they
are a natural way of segmenting the contour into convex and concave regions, we will sep-
arate Q �

� � 	 into two functions, Q � �
� � 	 for convex regions and Q �

	 � � 	 for concave regions
(Figure 4.5).

In addition to localizing the curvature features, we wish to be able to quantify their
significance. This includes their relative dominance or amplitude as well as their degree
of isolation along the contour. This concept of feature significance leads naturally to a
multiscale representation in which irrelevant details of Q �

� � 	 can be removed before its
interpretation.

All of these notions relating to feature shape, localization, size, isolation and scale are
associated and can be treated using the mathematical technique known as mathematical
morphology [135].
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Figure 4.5: Curvature function Q �

� � 	 as the sum of two functions, Q � �
� � 	 (positive curva-

ture values) and Q �

	 � � 	 (negative curvature values).

4.3.1 Curvature Morphology

Mathematical morphology applied to discretized functions such as Q �

� � 	 provides us with
useful tools for the extraction of primitives or dominant shapes found in such functions.9

We have coined the name curvature morphology not only to emphasize the fact that we
apply mathematical morphology operators to the curvature function, but also because this
method permits us to study or analyze the “form” or morphology of the curvature function
by segmenting it into its essential primitives or features. It is also interesting to note that
with curvature morphology we consider the curvature function as an image to which we
apply image processing techniques. This represents a rather different approach with regard
to other more traditional techniques of contour analysis.

Two dual operations, erosion and dilation, are the keystones of mathematical morphol-
ogy. As their names indicate, erosion is a shrinking operation while dilation is an expanding
one. These operations are performed locally by observing the structure of the neighbor-
hood at each point of the function. The neighborhood over which local computations are
performed is delimited by a structural element defined by a set of resolution cells consti-
tuting a specific shape such as a line or square. This is analogous to the concept of a 2-D
window that we can slide over an image to perform convolution-like computations. In our
application to curvature, only flat structural elements, that is, lines of increasing width, are
considered. Furthermore, we employ symmetric flat structural elements centered on curva-
ture function points. Therefore, we use only widths of odd values and the minimal width is

9See Appendix A for mathematical definitions and properties of morphological operations on functions.
For further mathematical details about this subject, the reader is referred to chapter twelve of Serra’s book
[135]. For applications to grey level images, see the paper by Sternberg on grayscale morphology [138].
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(a)

(b)

Figure 4.6: Examples of dilation and erosion operations applied to
��� � � �
� (positive curva-

ture function of the object shown in Figure 4.4). The structural element shown in (a) and (b)
defines the neighborhood over which local “min-max” computations are performed (here
21 arc length units wide). In (a), a dilation is performed by using a maximum operation.
The new dilated curvature function is represented with the symbol

��� ��������� � ��� . In (b), an
erosion is performed by using a minimum operation. The new eroded curvature function is
represented with the symbol

��� ��	�
�� � ��� .

fixed to three arc length units
�

(see Appendix A,
�
S A.1.7 for more details). Symmetric

flat structural elements are sufficient for the extraction of peaks and flat regions of
����� ���

.
Eroding a function by a segment of length � is equivalent to replacing the function val-

ues at every point by the minimum of all the points in a neighborhood of size � . Likewise,
dilating a function by a segment of length � is equivalent to a maximum transformation
over a neighborhood of size � . Examples of dilation and erosion applied to

��� � � �
� are
given in Figure 4.6 (similar results are obtained for

����� � �
�
).

By combining dilation and erosion, two new operations can be defined: opening and
closing. Opening is the dilation of an eroded function, while closing is the erosion of
a dilated function. In both cases, by combining the two dual operations of dilation and
erosion, the original function is only partially recovered since some details are eliminated
from it. In the case of opening, convexities or “bumps” of increasing size are removed with
the use of different sized structural elements. Closing, on the other hand, is used to fill-in
concavities or holes. These concepts are illustrated in Figure 4.7. An opening (closing)
will remove from the function all details, such as peaks, that are smaller than the structural
element size and which are oriented toward the top (bottom) of this function. The result is



89

(a)

(b)

Figure 4.7: Examples of closing and opening operations applied on a positive curvature
function for a structural element of fixed width (here 21 arc length units wide).

a new function which is smoother than the original one.
We observe that mathematical morphology provides us with a method for removing

from the signal Q �

� � 	 details of increasing size. This is indicated in Figure 4.8.(a) where
we compare the function Q � �

� � 	 to its “opened” version Q � � U LT��� � � 	 and thereby isolate the
peaks and bumps. Thus the residual Q � �

� � 	 � Q � � U LT��� � � 	 is defined as the top-hat trans-
form of Q � �

� � 	 . We can also define its dual, the bottom-hat transform in which Q � �
� � 	 is

compared to its “closed” version Q � � W , U ��� � � 	 according to the residual Q � �
� � 	 � Q � � W�, U ��� � � 	 .

These two residuals are similarly defined for the negative curvature function as Q �

	 � � 	 �Q �

	 U LT��� � � 	 and Q �

	 � � 	 � Q �

	 W , U ��� � � 	 respectively. The bottom-hat transform applied toQ �

	 � � 	 is illustrated in Figure 4.8.(b). Both these operators will be used as the basic mor-
phological operations for curvature. Hat-transforms are so called because they can be visu-
alized as a covering of peaks with a hat of fixed size.

4.3.2 Peak Description

Peaks with different sized bases can be extracted by varying the size of the flat structural
elements. By increasing the width of a structural element, more detail can be extracted
from the curvature signal, Q � �

� � 	 or Q �

	 � � 	 . Once a peak is isolated from the curvature
signal, its morphology or shape can be analyzed. We define four morphological measures
to describe an isolated peak (Figure 4.9):
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(a) Top-hat transform on
������� �	�

.

(b) Bottom-hat transform on
�
���� �	�

.

Figure 4.8: Examples of hat-transforms for a structural element of fixed width (21 arc length
units wide). In (a) the top-hat transform is applied to

� � � � ��� to extract its peaks. In the top-
right hand corner is shown the effect of removing the extracted peaks from

��� � � ��� . This
is equivalent to

��� ����� 	�� � �
� . In (b) the bottom-hat transform is applied to
� � � � ���

to extract
its valleys. In the bottom-right hand corner is shown the effect of removing the extracted
valleys from

��� � � ���
. This is equivalent to

��� ��� � ����	 � ��� .
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Figure 4.9: The features used to describe an isolated peak of curvature.

� The extent of the peak,
�
� , which is equal to the width of the flat structural element.

� The maximal peak amplitude or maximal relative curvature, Q � � �0( .
� The average relative curvature of the peak, Q � � @ P , given by the area under the curve

defined by
� Q ��� � � .

� The shape factor, \ , given by Q � � �0( � Q � � @ P ( \ � � ).
Each of the four morphological measures derived from the peak features Q � � �0( , � � and� Q � can be used to describe the nature of the peak. For example, peak significance can be

determined not only by large values of Q � � �V( with respect to
�
� but also by the shape factor\ . Values of \ greater than one may indicate a very narrow and well-defined peak. On the

other hand, a value close to one indicates a region of constant curvature (Figure 4.10.(a)).
By examining its extent

�
� , a constant curvature region could be retained as being significant

or be disregarded. The different possible kinds of shapes of peaks described by the shape
factor \ are illustrated in Figure 4.10. Stable curvature peaks are those whose shape factor
is within the range � � \ � �

(Figure 4.10, (b) and (c)). By “stable” we mean that if
�
�

is increased, Q � � �0( of the given peak will significantly increase. On the other hand, when� � \ � �
� , the peak tends to flatten for increasing

�
� (Figure 4.10.(d)). The case of \ � �

�

corresponds to noise in the curvature data (Figure 4.10.(e)).
Although these shape measures seem to be useful, the scale or size at which they should

be sought is variable and unknown a priori. Therefore, curvature morphology analysis is
best performed at different scales, where scale is defined as the variable size of the structural
element. This leads to a multiscale representation of curvature which is developed in the
next section.
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(a) � ��� (b) ��������� (c) � ��� (d) �	���	��
 � (e) � ��
 �

Figure 4.10: The five possible types of peak shapes described by the shape factor \ for
given Q � � �V( and

�
� . In (a) Q � � @ P � Q � � �0( . In (b), (c) and (d) are shown the three most

common types of curvature peaks. In (e)
� Q �

� Q � � �V( .
4.3.3 Morphological Curvature Scale-Space

We generate the multiscale representation of the curvature signal, Q � �
� � 	 or Q �

	 � � 	 , by
uniformly increasing the size of the structural element. A sequence of peaks is generated
using the hat-transforms. A scale history can then be associated with each peak, starting
with the scale at which it appears and terminating with the scale at which it ceases to
increase in height. As soon as a peak stops increasing, it no longer needs to be considered
as part of Q � �

� � 	 . We define the region of support of a peak to be the scale
�
� � �V( at which

it stops increasing.
�
� � �0( can be interpreted as the region of influence a peak has along the

contour.10

Once a peak has been removed from Q � �
� � 	 , no other peak is permitted to grow over the

extent of the former. This is simply because only one curvature feature should be associated
with a given contour segment. An example of the scale-space generated in this way is given
in Figure 4.11. Here, the position of an event, that is of a peak of Q � �

� � 	 , is given by
the position � � � � �

� � �V( 	 of the maximal relative curvature value Q �

� Q � � �0( � � � � �0( 	
associated with the peak.

Our scale-space representation for curvature, referred to as the Morphological Curva-
ture Scale-Space or � � � , possesses certain desirable advantages over previous approaches
such as the “Curvature Primal Sketch” [14]. For example, each branch in the scale-space
diagram remains isolated, whereas in the usual scale-space approaches reported in the lit-
erature instabilities occur because of branch merges [155, 14, 108]. The � � � bears some
similarity to the kind of scale-space generated under the weak-continuity constraints scheme
of Blake and Zisserman [20, 19], although in their representation, only discontinuities in

10See [140] for a variation of the concept of “region of support” for a curvature extremum.
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(a) Peaks of � ��� � � � (b) Peak features

(c) Morphological Curvature Scale-space

Figure 4.11: Example of the morphological curvature scale-space.
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curvature are tracked explicitly. Furthermore, the � � � satisfies the three criteria proposed
by Perona and Malik [125], that any candidate paradigm for generating multiscale repre-
sentations should satisfy.11 These criteria are:

� Causality: No spurious details should be generated when the scale (
�
� ) is increased.

� Immediate Localization: At each scale, feature boundaries should be sharp (un-
blurred) and correspond to meaningful boundaries at that scale.

� Piecewise Smoothing: At all scales it is preferable that intra-feature smoothing occur
rather than inter-feature smoothing.

The � � � is an elegant way of removing noise from Q � �
� � 	 while preserving its significant

features. Noisy elements of Q � �
� � 	 which exhibit a short history at small scales in the

� � � can be eliminated. Note that both the top-hat and the down-hat transforms can be
used here to remove small convex bumps and to fill-in small concave depressions of Q � �

� � 	 ,
respectively. An example of filtering Q � �

� � 	 in this fashion is shown in Figure 4.12, where
the threshold on

�
� for removing bumps and valleys was set at 12 in Figure 4.11.

A second threshold, this time on the minimal acceptable Q � � �0( value, is also used for
peak significance. This threshold was set at 0.20 in Figure 4.11. The same filtering process
is also applied to Q �

	 � � 	 . The combined results are shown in Figure 4.13. This ability of
the � � � to deal with noise justifies our previous conservative attitude toward Gaussian
smoothing (section 4.2.3).

The � � � can also be used to build a hierarchy of significant peaks. Peaks with long
histories starting at a small scale are classified as prominent. Peaks starting at higher scales,
on the other hand, can be classified as corresponding to constant curvature regions because
their initial larger extent

�
� maps to a constant curvature arc. Once these peaks are extracted,

they can be subtracted from the curvature signal. The resultant signal can then be further
processed to isolate other constant curvature arcs. An example of this segmentation process
applied to both positive and negative curvature signals is shown in Figure 4.14.

Once the main features of the curvature signal have been segmented, that is when both
positive and negative peaks and constant curvature arcs have been extracted, the contour
of the object itself can be segmented. Peaks of curvature map to knot points of the object
contour, while constant curvature arcs map to their respective contour arcs. This is shown
in Figure 4.15. All knot points are extracted and precisely localized. Note that no knot point
is identified between arcs 2 and 3 because there is no significant discontinuity in orientation
between these two arcs. Therefore, there is no peak in curvature where these two arcs join.
In such a case a smooth join of the first type can be identified. Constant curvature arcs are
also well identified (e.g., arc 3: a straight line). Gaps between identified arcs and knot points

11Note that scale-space representations based on the usual Gaussian blurring approach only satisfy the
causality criterion.
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Figure 4.12: Removing noise from
������� �	�

. At each one of the three passes, the 
��� is
used to extract small bumps and depressions.
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(a) Original signal (b) Filtered signal

Figure 4.13: Example of removing noise from Q � using the hat transforms and the � � � .

(a) Positive curvature segmentation (b) Negative curvature segmentation

Figure 4.14: Segmentation of the curvature signal.
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Figure 4.15: Contour segmentation based on the previously extracted curvature features.

which are caused by filtering can be filled-in by extrapolation, while unidentified arcs can
be approximated by fitting splines or circular arcs between the bounding knots. The average
curvature of these unidentified arcs, obtained by integrating the curvature signal between
the knots, can be used to impose a constraint on the fitting curve segment. For example,
between peaks 2 and 3 (Figure 4.15), if we integrate the curvature function we obtain a small
negative value ( Q � � @ P � � � � � � � � ). Therefore, we can approximate this contour segment by
a (slightly) concave arc.

4.4 Conclusions

In this chapter we have proposed efficient ways of representing curvature and its features
for object contours found in noisy images. We have discussed how the curvature function
should be retrieved from the discrete trace of a contour using a modified chain code rep-
resentation. Special care has been taken with quantization errors, “protrusion-depression
definition” problems, and implementation issues. We have also presented a new method for
extracting features from the curvature function employing morphological operations.

Unlike linear transformations of functions such as Gaussian filtering, morphological
operations are characterized by their local effect. They remove information of increasing



98

extent as the size of the structural element increases without blurring the remaining impor-
tant features. Therefore, signal processing through iterative morphological transformations
can be thought of as a process of selective information removal, where irrelevant details are
subtracted from the signal, enhancing the contrast of essential features. We have proposed
such an iterative scheme by defining a new scale-space representation referred to as the
Morphological Curvature Scale-Space ( � � � ). We believe that the � � � is a more pow-
erful tool for the interpretation of curvature than previous scale-space approaches. There
are four reasons: first, the � � � is uniform and unambiguous; second, the � � � satis-
fies the three criteria of causality, immediate localization and piecewise smoothing; third,
morphological measures can be combined in the � � � [90] to strengthen the analysis and
interpretation of curvature primitives; and fourth, the � � � is a strictly local representation.

Another important aspect of curvature morphology that compares favorably with other
analysis approaches is its low computational complexity. The computations are simple and
hierarchical (Appendix A,

�
A.1.8), and lend themselves to applications where fast compu-

tations are imperative. This is the case when sequences of images need to be analyzed in
real time [115].

However, a number of issues still need to be addressed so that the approach we have
proposed for contour segmentation can be viewed as being complete. In particular, we need
to study the problem of determining how much smoothing is necessary in the first step of
recovering a useful curvature function (section 4.2). We have suggested that smoothing
was necessary but it should be done in a conservative way. We have not quantified and
mathematically defined these concepts. Also we have not given a detailed analysis on how
to choose the two thresholds on curvature extremum significance when performing noise-
filtering. These issues need to be addressed in detail. The purpose of our description and
analysis of curvature morphology was to show its feasibility, its performance and some of
its advantages over other contour segmentation methods.

Finally, it was mentioned in section 4.3 that curvature features of an object outline could
be used to compute a region-based shape representation. We will consider this issue in the
next chapter. We will show how the shape features obtained using curvature morphology
can help us to apply the snake model to the shape description of deformable objects such
as cells.



Chapter 5

Shape Description Using Snakes

5.1 Introduction

This chapter presents a new method for shape description of planar objects in which both
region and boundary features are extracted. We propose a new algorithm for shape skele-
tonization to achieve this.1 Skeletons are object representations which are particularly ap-
propriate for the description of the amorphous or biological shapes commonly found in
nature for which other representational schemes based on ordinary geometry are inappro-
priate [25]. They can be used to encode visual cues such as symmetry, shape primitives,
width information and the process-history of deformable objects. We argue that bound-
ary information can be combined with a region-based representation such as the skeleton
to produce a richer, more powerful and efficient shape representation. For example, ex-
trema of curvature along the contour can be used to generate significant skeleton branches
[52, 95].

Our method for shape description is an implementation of a 2-D dynamic grassfire that
relies on a distance surface on which elastic contours minimize an energy function. A
Euclidean distance transform combined with an active contour model, such as the snake, is
used for this minimization process. Boundary information is integrated into the model by
the extraction of curvature extrema and arcs of constant curvature.

5.1.1 Biological Basis for Shape Analysis

Within the context of this thesis, we are principally concerned with the notion of biological
shape or the shape of natural forms assumed by living organisms. How can we categorize
this notion of shape? What do we mean by the shape of an object? Following the early ideas

1An early version of this chapter was first published as a technical report [94]. Two shorter versions were
also published recently as conference papers [95, 92]. Addendum (February 2003): A journal article based
on this chapter was published in IEEE-PAMI in 1992 [97].
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of Blum [25] we observe that biological shape is concerned with three kinds of problems.
First, is the “taxonomic” or descriptive problem concerned with a hierarchically structured
representation of a form in terms of its primitives. For example, a cell can be hierarchically
represented by a body and its subparts such as pseudopods. Second is the “psychological”
or sociological problem; how do organisms perceive and characterize the shape of other
organisms? Third, is the “developmental” problem which is concerned with how shape
is coded internally by organisms. The aim of biological shape description and analysis is
to provide models to solve these problems. There are at least two different classes of de-
scriptors that have been proposed in the literature, one based on the analysis of the external
structure of forms, the boundary, and one based on their internal structure, that is, the region
delimited by the boundary [121, 87].

One may consider 2-D shape as “the outward form of an object defined by [its] outline”
[71]. In essence, shape is interpreted as the form or features of the contour or boundary of
an object that makes it distinct from other objects. Still, there is an opposite or rather a com-
plementary view when looking at shape description, in which the region or the interior of an
object is considered in preference to the contour [87]. On the basis of a region description,
visual cues such as symmetry, region primitives or subparts, and width or compactness are
emphasized. An important advantage of region descriptors over contour descriptors is that
they provide a correct topological representation of the object. Indeed, contour descrip-
tors lack the ability to describe how close in the plane contour points are to each other. In
other words, contour “points which are geometrically close may be quite far apart along
the boundary” [121]. As to whether or not there are actually explicit region descriptors
used by the brain, the question remains open. The best conjecture at present is that shape
description at the physiological level is essentially feature-based [51].

5.1.2 Region or Boundary?

Are the two classes of descriptor, that is, boundary- and region-based, distinct or are they
related? Can we express shape description by a continuum of information ranging from
purely boundary descriptors to purely internal descriptors? Can we exploit both their de-
scriptive powers and relate them in natural ways or is this dichotomy inevitable? Answers
have been proposed in the past. For example Leyton [99, 100] has shown that in the case
of regular curves, there is a direct relation between boundary and region features. More
precisely, to each extremum of curvature, there is a corresponding symmetric axis which
emerges or terminates at it. Furthermore, Leyton has proposed that “shape [may be] under-
stood as the outcome of processes that formed it.” The “process-history is recovered” by
these features which are emphasized by both the internal and external descriptors, namely
the curvature extrema and symmetric axes endings.

Axes of symmetry of an object may be defined in a number of ways in both the continu-
ous and discrete domains. Essentially, a point in the interior of a shape is a symmetry point
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(part of a symmetric axis) if it is at an equal “distance” from two or more boundary points,
where the distance is any valid metric in the continuous or the discrete domain. An equiv-
alent definition is based on the law of propagating wavefronts where the boundary of the
shape is taken as the source of a grassfire [24, 25]. The skeletal points are then defined as
the locus of meeting wavefronts, here fire fronts, where the fire is quenched. The complete
set of skeletal points forms the skeleton of the shape. With such definitions, the skeleton
and the complete set of symmetric axes are equivalent [25].

5.1.3 A model for shape description

We are seeking a model of shape description that should answer three types of problems:
developmental, perceptive and descriptive. We know from psychophysics and neurophysi-
ological experiments that shape in the visual cortex seems to be mainly feature-based and
that the curvature along a curve or contour is a key descriptor. From topological considera-
tions, we know that contour-based descriptions alone are not sufficient to resolve biological
shape. Furthermore, from psychophysical experiments, we know that any valid model for
shape description should be invariant under certain transformations, such as those arising
from variations in illumination, color, rigid motion and scale [16].

In order to extract “pertinent” shape features we first need to transform the figure-
ground image, that is, transform the binary image (object – non-object) obtained from a
preceding segmentation step. Extracted shape features should emphasize both the form of
the object boundary and the structure of its interior. These features should also be invariant
under the above-mentioned image transformations.

In the subsequent sections of this chapter we will propose a method for biological shape
and its implementation that should address these needs. But first we will briefly survey the
different techniques used to obtain the skeleton representation. Then, we will propose a
novel implementation of the grassfire transform. We have adopted this formulation for
the extraction of shape symmetries because it explicitly emphasizes the relation between
boundary features and region features. We will see how the formation of the skeleton is
initiated at curvature extrema or centers of curvature where, in some sense, the “shape is
concentrated.” Here the fire fronts start merging, or in other words, the transforming shape,
under the grassfire process, starts interacting with itself. The issue of integration of bound-
ary information in our shape model will be addressed. Following this we will describe how
a graph representation of the skeleton is easily obtained using the grassfire transform. Such
a hierarchical representation permit us to naturally keep only these branches of the skele-
ton which are significant. We will summarize the advantages of this model for biological
shape; variations in the implementation of the algorithm are also proposed. Finally, we will
conclude this chapter by showing how the proposed model for biological shape can be used
for the tracking and description of deformable objects such as cells.
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5.1.4 Contributions

In this chapter, a number of contributions are made. They are summarized below.

� We present a new method for representing and describing shape on the basis of an
active contour model. This permits us to efficiently simulate the grassfire transform.
For the first time the fire fronts are considered as distinct entities with regard to the
field of grass or the interior of a shape.

� We emphasize the relationship that exists between the grassfire transform and the
notion of a “distance surface”, a relation first mentioned by Blum [25] and for the
most part ignored since. We take advantage of this relationship to efficiently simulate
the grassfire propagation by an active contour.

� The use of an active contour on a field of grass, represented as a distance surface,
permits us to employ an Euclidean metric while bypassing discretization problems
found in other skeletonization algorithms also based on the Euclidean metric.

� Our method for shape explicitly relates boundary information to region information,
a departure from most shape description techniques found in the literature.

� The use of both types of shape descriptors gives us a powerful tool for obtaining
robust multiscale descriptions. In particular, this permits us to specify significance
criteria and measures for each skeleton branch, thereby producing skeletons without
spurious branches, a major advantage over most other skeletonization techniques.

� We propose a new concept for branch significance based on the notion of local defor-
mation introduced by symmetry points on the distance surface. We call this the “ridge
support”. Furthermore, we show how the ridge support can be evaluated in terms of
the velocity of formation of a symmetric axis or in terms of the slope amplitude of
the tangent to the symmetric axis.

� We propose the new concept of a deformable skeleton useful for tracking deformable
shapes. We refer to this as the “dynamic skeleton”.

� Finally, we consider a number of implementation details to optimize the numerical
performance of our skeletonization algorithm. In particular, we give the details of
an optimized implementation of Danielsson’s algorithm [46] for computing discrete
Euclidean distance maps.
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5.2 Shape Description by Skeletonization

A skeleton is a representation of an object by idealized thin lines that retain the connectivity
of the original shape [72, 52]. Skeletal points, when connected, form a skeleton. They can
be defined in a number of ways in both the continuous and discrete domains. The first defi-
nition had its roots in the concept of nearest-point mapping (or distance mapping; see sec-
tion 5.3.1) for a closed region or set,

�
. In this case, the set of points in the background with

more than one nearest point in
�

, that is, the set of skeletal points of the exterior of a shape,
is considered important for characterizing the geometry of

�
[32]. This concept was further

explored by considering the locus of centers of osculating circles to O (from the exterior) at
more than one point to characterize the convexity or non-convexity of the set

�
[114, 113].

Much later came Blum who turned his attention to the interior of a region
�

[23, 25]. Inside�
, skeletal points can be defined as the locus of centers of maximal inscribed circles, that

is, circles in
�

not included in any other circle. Such circles are touching the boundary of
�

at more than one point. An equivalent definition is based on the law of propagating wave-
fronts where the boundary of the shape is taken as the source of a grassfire [23, 22, 24]. The
skeleton is then defined as the locus of meeting wavefronts. Brady and Asada [36] define
their skeleton as the locus of the chord midpoints of maximal inscribed circles. They call
this shape representation smoothed local symmetries (SLS).2 Leyton [100] defines skeletal
points as the locus of arc midpoints of maximal inscribed circles or minimal circumscribed
circles. He calls this representation process inferring symmetric axis (PISA). The process
or transform by which the complete set of skeletal points is recovered is referred to by dif-
ferent names such as: SAT (Symmetric Axis Transform), MAT (Medial Axis Transform),
grassfire transform, shape skeletonization and shape thinning.

5.2.1 Algorithms for Skeleton Computation

Over the years, since the first ideas of Blum emerged, various algorithms and implementa-
tions have been published. These can be classified into three different groups [94]: 1) direct
thinning of an object, 2) analytic computation of a skeleton based on an approximation of
the object contour, and 3) ridge following based on a distance mapping of the object. We
briefly mention the characteristics of each class of algorithm and its main drawbacks.

Most algorithms in the literature are based on the thinning concept [135] in which one
iteratively peels off the contour of an object; this is an approximation to the grassfire process
[72]. Sequential as well as parallel algorithms exist.3 These are iterative procedures whose
computational time depends on the maximum width of the object. Their accuracy is limited

2Note that Blum also studied such a definition of skeletal points based on the locus of chord midpoints
and called them symmetric chord coordinates [25].

3For example, for sequential algorithms see [72, 6, 5, 52, 158, 157]; for parallel ones see [122, 49, 73, 57,
42].
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since the flow of information when performing a peeling-off step is biased by the intrinsic
connectivity of the digitized grid (4- or 8-connected grid in general).

Another class of algorithm uses a direct (analytic) computation of the symmetric axes
based on the polygonal approximation of a shape.4 Here the problem of accuracy is more
critical for biological shape description since a polygonal approximation is often not suffi-
cient. Objects with noisy boundaries would require very fragmented polygons with short
sides which could have the effect of making the results less accurate. The computation of
symmetry points is generally more complex than for the other two classes of algorithms. In
addition, objects with holes are generally difficult to process by such methods.

A third class of algorithm uses ridge following techniques based on Distance Trans-
forms (

� � ’s) applied to the object shape. Different
� � ’s can be used: the city block

� �
[131, 13], the chessboard

� � [7], the hexagonal
� � (on an hexagonal grid) [107, 31],

chamfering and other quasi-Euclidean
� � ’s [110, 55] and the Euclidean

� � [46, 74, 79,
94]. Skeletons based on the city block or chessboard

� � can be computed very fast and
are assured to be connected within a fixed number of passes. This is due to the simplicity
of the connectivity of skeletal pixels [9, 10, 11]. The drawback is that these two

� � ’s are
not accurate, yielding a 40% to 50% error in distance values. Furthermore they are not
as consistent as their Euclidean or quasi-Euclidean counterparts, in that they generate ar-
tificial spurious skeleton branches.5 Methods based on hexagonal and quasi-Euclidean or
Euclidean Distance Transforms rely on ridge following on the surface of a distance map
to obtain the skeleton. They produce accurate6 and smoother results, but thickness and
connectivity of the skeleton branches must be carefully checked. For example, gaps often
occur due to the spatial quantization of the digital grid and must be filled in, perhaps by
using gradient ascent methods [55, 74, 79].

5.2.2 Advantages of Algorithms based on Distance Mapping

The most attractive type of algorithm to date seems to be those based on distance trans-
forms. The main advantages are:

� Only simple computations such as mask convolutions are required, this for a fixed
number of passes which are independent of the complexity of the object boundary.

� The skeletal pixels are labeled directly by the
� � . The distance value from the

background corresponds to the radius of a maximal osculating circle to the boundary.
4For example, see [111, 27, 136, 85, 36, 103]. Other, more complex, approximations such as arcs of circles

and splines may also be used.
5These problems are also found in the first-mentioned class of “peeling-off” methods due to the fact that

most of them rely on 4- or 8-connectivity as do the city block and chessboard
���

’s.
6Worst-case error of less than 0.3 pixel unit in the case of Danielsson’s � ��� algorithm [46].
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� On a computational cost performance basis, these methods yield more accurate and
smoother results than those of any other type of algorithm.

Consequently, we have decided to study this class of algorithm for shape skeletonization.
We have attempted to improve its performance in order to use it to track the shape of large
numbers of cells in real time [115]. This has lead to a new algorithm which is presented in
the following sections.

5.3 Shape Skeletonization by Wavefront Propagation

We now introduce a new algorithm for computing skeletons which combines the advan-
tages of algorithms based on the Euclidean distance metric with certain important addi-
tional features: connectivity which is implicitly ensured, integration of both contour and
region information, and a multiscale description which is immediately available.

5.3.1 The Grassfire Transform as a Potential Surface

Our method for computing a skeleton of a binary image is based on an efficient implemen-
tation in the discrete domain of the original grassfire algorithm. It incorporates a physical
analogy of grassfire propagation. This is achieved by igniting a “fire” on the object’s bound-
ary points which are the limits of the field of grass. The fire then propagates at constant
speed within the object. Points at which the fronts of the fire merge are retained as being
on a symmetric axis. These correspond to points that are at a maximal Euclidean distance
from two or more boundary points, or equivalently, at the center of the maximal inscribed
circle.

If we consider the grassfire as a function of time, a space-time graph known as a two-
dimensional dynamic grassfire [25] is obtained. This generates a 3-D surface, as shown
in Figure 5.1, where the time variable is along the vertical axis, � , and where the

�
and

� axes correspond to the fire front coordinates. Each (
� � � ) plane at a particular time

�
contains the fire front at that time. We obtain a distance surface by replacing time by a

distance coordinate.7 Such a surface has a maximal directional slope of one everywhere
except along ridges where it is undefined [69]. These ridges correspond to the locus of the
skeleton (Figure 5.1).

The resulting distance surface is equivalent to the distance map obtained by computing a
Euclidean Distance Transform (  � � ) on the initial figure-ground image [94]. A distance
transformation on a binary image (object

�
, non-object

� �
) produces a mapping from a

double-valued function J : in a space � : ( J : � J : � � 	 � � iff � 	 � and J : � � 	 � � iff � 	 � � )
7The reader is referred to [69] and to Appendix D ( � D.2) for a mathematical definition of a distance

surface. The 3-D surface representation of the grassfire transform obtained by replacing time for distance or
height was first proposed by Kotelly [82].
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Figure 5.1: 2-D dynamic grassfire, where the vertical coordinate represents time or distance
from the ground state. The maximal directional slope of the obtained surface, which is the
reciprocal of the grassfire velocity, is everywhere one except at the symmetric axis locus
(ridges), where it is undefined. Adapted from [25, Figure 11].
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to a multi-valued function J < in a space � < of identical dimension. The mapping is applied
to J : by minimizing a distance metric

1 � � � � � � � � 	 , where � and � � are two points in the space
� : . The distance values of J < are given by:

J < � � 	 � �����L����
	�� � 1 � � � � � � � � 	0/ � (5.1)

where � � � � � � � 	 	 �
. Therefore, the first step in our method consists of computing

the  � � of a discrete figure-ground image.8 A simple sequential algorithm exists for
computing  � � ’s [46]. In Appendix D (

�
D.1) we describe a very fast implementation of

this algorithm which has a computational complexity comparable to the simple chessboard� � .
The second step involves simulating the grassfire propagation. To achieve this, we

initiate an active contour, in our case a snake, on the figure boundary. A snake consists of
an elastic curve that tends to minimize its energy by sensing the potential surface on which
it is located. In our case the potential surface,  , is taken to be the negative of the discrete
distance surface:

GL U $ � � 	 �
� � J < � � 	 � � � � � � � � � � 	"	 � �

� � � � � � � ��� \ � � (5.2)

This means that potential values correspond to null or negative distance values. It is nec-
essary to invert the distance map in this way so that the snake will reduce its energy by
falling down the potential surface. Ground is taken to be at potential

�
, the figure contour

corresponds to potential values of � � , and inside the figure the potential values vary from� � to the negative of the maximal possible distance (Figure 5.2). We call the space contain-
ing 3-D potential surfaces,  , obtained from equation (5.2), the distance transform domain
�� .

Having initialized the snake on the locus defined by potential values of � � , it is then
activated by sensing the potential surface (ignition of the fire). This is accomplished by
observing the first directional slopes of the potential surface,  , in the

�
and � directions9

and using a gradient descent approach (Chapter 2,
�

2.5). At each time step
�

of the iterative
process, each snaxel position is reevaluated based on the gradient, the elastic internal con-
straints and certain other external constraints (Chapter 2). Points on the potential surface
where the snake folds into thin lines, that is, where the fire fronts merge, are retained as
the points of the skeleton. This occurs when the snake reaches an equilibrium, under the

8In our case, the figure-ground image is easily obtained from the chain code representation of the boundary
of an object (Chapter 4) after the image segmentation has been completed (Chapter 3). To do so we use a
region-filling algorithm which takes full advantage of the chain code representation. For a detailed description
of such an algorithm see [139] or [1].

9In the present case where � is a distance surface, the evaluation of the directional slopes can be directly
obtained from the � ��� computation (Appendix D, � D.3).
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Figure 5.2: Example of a potential surface for a rectangular shape obtained by taking the
negative of the Euclidean distance transform.

“steady-support” criterion, or stops moving. An example of the simulation of the grassfire
transform is given in Figure 5.3.

5.3.2 Simulation of the Grassfire Transform for Regions Containing
Holes

When applying an active contour model to planar regions that are not topologically equiva-
lent to a disc, such as 2-D objects containing holes, a slightly more complex implementation
of the grassfire transform is required.

Essentially we must define as many fire fronts as there are boundaries on the object.
For each internal contour of a region, that is, each contour delimiting a hole, we need to
generate a supplementary active contour.10 Therefore, given a binary object limited by one
external boundary and possibly

�
internal contours, where

�
is some fixed positive integer,

we simply need to initialize
�

supplementary snakes on the potential surface, one at each
internal contour position. Each of the

� & � snakes will simulate a particular fire front. We
then activate each snake in parallel and use the same gradient descent approach to simulate
the grassfire propagation as for the case of a region without holes. Two types of skeletal
points are then defined. First, as before, skeletal points are extracted where a given snake

10Note that some preprocessing of the binary object may be required to eliminate holes of an insignificant
small size. For example, mathematical morphology operations can be used to fill in holes of a predetermined
size [135].
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Figure 5.3: Example of grassfire propagation on a blob-like shape. The potential surface is
shown at the top right corner. The dark lines superimposed on it represent the snake at its
initial and final states. The fire is ignited at time

�����
where time corresponds to iteration.

The stable state occurs at
�����	�

iterations. This last picture shows the final result when the
number of snaxels is increased so that the snake is spatially connected, that is, without any
gaps.
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folds into a thin line. Second, skeletal points are also identified where two or more different
snakes merge or meet each other. The final stage of the grassfire propagation also occurs
when the snakes reach a stable state, that is, when the “steady-support” criterion is satisfied
or when they stop moving.

Since the snake’s activation and inhibition, by the use of the “steady-support” criterion,
are dependent only on the forces applied directly to the snake itself (elasticity and external
constraints) and on the topography of the potential surface, but not on the presence or
absence of other snakes in their vicinity, the actual simulation of the grassfire transform
can be computed in a sequential fashion. This approach permits simpler implementations
on traditional sequential computers. Furthermore, we can activate the

� & � snakes in any
order since they are brought alive independently. An example of a sequential simulation of
the grassfire transform for an annulus is given in Figure 5.4.

5.4 Integration of Boundary Information

The second building block of our method, the first being the grassfire process, is concerned
with the integration of contour information within the skeleton computation. To do so,
critical points of the boundary or equivalently, positive curvature extrema are extracted
from the original object boundary. We refer to these positive curvature extrema by using
the symbol

�
. Another type of critical point may exist within the interior of a shape, that

is, the center of a maximal inscribed circle osculating
�

at a minimum of one connected set
of points along the boundary (an arc of circle). We will consider this second type of critical
point in detail in section 5.4.1.

The snake is then attached11 to those critical points, the
�

’s, that will ultimately corre-
spond to the branch end points of the skeleton. It is necessary to attach the snake at

�
’s

to keep track of them as branch end points and also to keep track of the complete branches
they are part of. Otherwise, if a snake was not fixed, it would fall down along the ridge.
Critical points along the boundary define snake segments that correspond to individual fire
fronts. Figure 5.5 illustrates grassfire propagation using an active contour descending the
distance map of a rectangular shape and initially fixed at the positive curvature extrema.

The idea of fixing branch end points at positive curvature extrema is justified by the fact
that at these points fire propagation collapses right at the start of the grassfire process.12

The extraction and use of positive curvature extrema as part of the skeleton computation
was previously reported and used in “peeling-off” methods [4]. The major difference here

11By “attached” we imply that the snaxel is pinned to the potential surface at the spatial position of the
critical point using an external force. This is achieved using the so-called spring model (Chapter 2, � 2.5).
Furthermore, a tangent discontinuity (Chapter 2, � 2.5) may be placed at that snaxel to enable the snake to
easily fold along a ridge starting from the critical point.

12The same idea applies to objects with holes. Every boundary delimiting a hole is processed to extract its
significant positive curvature extrema at which a snake is attached.
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Figure 5.4: Example of grassfire propagation on an object containing an annular region. In
the first column, on the left, is shown the fire propagation for a snake activated from the
exterior boundary. In the second column is shown the fire propagation for a snake activated
from the interior boundary delimiting the hole. In this second column the result of the first
fire propagation is also shown as a connected snake (line of smaller width). In this particular
case where the exterior and the interior contour do not possess any protrusions, both snakes
converge to the same solution.
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Figure 5.5: Example of a grassfire propagation on a rectangular shape using an active con-
tour model. At ignition of the fire (

�����
) the snake is attached at the four positive curvature

extrema labeled
� :

,
� < , � � and

� � emphasized for display purposes. Time
�

corresponds to
iteration. The stable state occurs at

��� � �
iterations. The last picture shows the final result

when the number of snaxels is increased so that the snake is spatially connected.
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(a)
� ��� � (b)

� ����� (c) Potential Surface

Figure 5.6: Skeletons obtained from grassfire propagation combined with positive curvature
extrema extraction at two different scales. In (a) the four most significant

�
’s were retained.

In (b) only the two most significant
�

’s were retained. In the latter case, a stable state is
reach earlier because the fire fronts are simpler. Time

�
corresponds to iteration.

is we only need to extract positive curvature extrema on the initial boundary of the object.
Curvature extremum extraction permits us to adopt a multiscale approach for generating
skeletons, as previously proposed in [52], which has the salutary effect of eliminating noise
perturbations on the boundary. We have described in detail in Chapter 4 and in other pub-
lications [90, 91, 93] a new method, called curvature morphology, for extracting curvature
features within the framework of a multiscale representation. In the remainder of this sec-
tion, we emphasize its application to shape skeletonization.

Once the curvature features are extracted (Chapter 4,
�

4.3), a skeleton representation at
multiple scales can be obtained by employing different criteria for the significance of posi-
tive curvature extrema. Our own criteria for significance are based on both maximum rela-
tive curvature amplitude and region of support. The latter addresses the issue of whether a
curvature extremum is sufficiently isolated from other nearby curvature features (Chapter 4,

�
4.3.3). Figure 5.6 provides an example of the implementation of grassfire propagation

coupled with positive curvature extrema extraction at two different scales.

5.4.1 Fire Front Propagation from Circular Arcs

There exists one case where the curvature extremum criterion is insufficient for determin-
ing the branch end node. This is the case of boundary segments which consist of arcs of
circles13 that have their center of curvature situated within the interior of the object, being

13We note that these arcs of circles are readily extracted using the morphological curvature scale-space
representation (Chapter 4).
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also part of the skeleton (i.e., being a symmetry point), and furthermore being simultane-
ously an extremity of a ridge of the distance surface (i.e., being the end point of a skeleton
branch). A simple procedure will be needed to stop fire propagation at the closest ridge
point of the distance surface. Due to the uniformity of the maximal directional slope of the
potential surface, and of the gradient descent technique used to update snaxel positions, we
are assured that snaxels ignited on an arc of a circle will reach the closest ridge points. This
follows from the fact that snaxels crawl down the distance surface following the direction
of maximal slope. It is easily shown that this direction is along a normal or a radial line to
a boundary point. For all boundary points such lines necessarily lead to the nearest ridge
point due to the minimal distance constraint of equation (5.1). Blum called these lines of
steepest descent, leading necessarily to symmetry points, pannormals [25].14

During fire propagation, it is necessary to check snaxels initially ignited on an arc of
a circle to inhibit the fire propagation as soon as a ridge is reached. This is required to
ensure that the end of the skeleton branch which corresponds to the center of curvature of
an arc of circle on the boundary is retained in the case of a ridge starting with an increasing
directional slope, that is, a skeleton branch consisting of increasing absolute distance values
with regard to the branch end. In this case, if a snake were not fixed it would continue to fall
down along the ridge as shown in Figure 5.7. With the snake model, one way to check if a
snaxel has reached a ridge is to examine the directional slope which is used to activate the
snake. If this slope is lower than one (i.e., the snaxel is on a ridge) or if it changes abruptly
in direction (i.e., the snaxel went across a ridge), then we are in the vicinity of a ridge point
of the potential surface (Appendix D,

�
D.3).

However, an even simpler procedure can be used to efficiently detect a center of curva-
ture which is also a symmetry point and an end of a skeleton branch. Let us first examine
points which are simultaneously the center of curvature of a circular boundary arc and a
symmetry point. We will refer to these points by using the symbol

� � .15 We note that the
following two properties are shared by snaxels that should ultimately be merged at a

� �
point:

1. From curvature morphology analysis, we can initially identify the snaxels on an arc of
circle and thereby create a snake segment or fire front. We denote this snake segment
� � .

2. During the grassfire propagation, snaxels of � � should get closer as the number of
iterations progress.

14Matheron used a similar concept where the normals or radial lines to the boundary are limited in their
extent by the skeleton, that is, they emerge from the boundary and terminate at a symmetry point. Matheron
called such line segments edges [104].

15Note that a ��� point, although being by definition a symmetry point, does not necessarily form the end of
a skeleton branch (e.g., think of an object with a “rounded-L” subpart or knee). Blum called ��� points finite
contact symmetry points [25, 26] to emphasize the fact that they correspond to maximum inscribed circles
which osculate the boundary at connected sets of contour points.
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(a)
� � � (b) Potential Surface

(c)
� ��� � (d)

� ��� �

Figure 5.7: Example of fire propagation on a shape made of two circular arcs joined by
straight lines.

� � � and
� � B are the centers of the arcs. In the neighborhood of

� � � the
ridge is made of increasing absolute distance values as shown by the potential surface. If
the snake is attached at

� � � the true skeleton is obtained as shown in (b). Otherwise, the
snake shrinks as shown in (d).
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Point 2 arises from the fact that pannormals to the boundary arc � � all merge at one point,
the center of curvature of � � . Since along any pannormal the slope of the potential surface
is maximal, snaxels follow such directions and ultimately converge to one point if such
a point exists in the interior of the object. This point of convergence is

� � . Therefore,
we propose the following extraction procedure for

� � points which are also end points of
skeleton branches:

� If the snaxels of segment � � converge to one single point,
� � , of the object interior�

, then:

1.
� � is a ridge point (may be verified directly on  ).

2.
� � is the end of a skeleton branch if the snaxels that converged at its location are
all constituents of a single fire front, namely of � � . In other words,

� � becomes
a point at which the fire front � � collapses and gives birth to a symmetric axis.

3. We consider
� � as a critical point like the

�
’s (section 5.4). Therefore, the

snake should be attached at
� � , and, optionally, the number of snaxels forming

the fire front � � can be reduced to one single snaxel.

We now have all of the elements required to obtain a skeleton made of merged fire fronts
where the fire propagation is modeled and simulated by an active contour model.16 The
next stage in skeletonization consists of creating a graph representation of the skeleton, a
step rarely considered in the literature (but see [26, 121, 112, 94]). This is the subject of the
following section where we propose a method which takes full advantage of the ensured
connectivity of our active contour model.

5.5 Graph Representation

The connectivity of our skeleton obtained by fire front propagation is ensured due to the
internal constraints of the active contour model.17 Thus, we can easily create a graph rep-
resentation of the skeleton in terms of branches, end nodes, branching nodes as well as
relations between these elements (i.e., links).

The graph is generated at the termination of the propagation process which is modeled
by the snake segments (Figure 5.8). These are completely connected and have no gaps.
The actual curve approximation to the snake can be easily improved by increasing the
number of snaxels once a “stable” skeleton has been obtained. Otherwise interpolation

16More detailed implementation issues are considered in Appendix D.
17As mentioned in section 5.2.1, methods for skeletonization based on ridge following on an Euclidean

or quasi-Euclidean distance map do not, in general, directly produce a connected skeleton. This is because
distances are evaluated only at integer coordinates.
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(a)
�������

(b)
�����
	

Figure 5.8: Example of fire front labeling used to obtain a graph representation of the
skeleton of a rectangular shape. The points ��� , �� , ��� and ��� are “critical points” which
are used to attach the snake. Four snake segments �� , � , �� and �� , are defined by the
four critical points in (a). The direction of traversal is indicated as clockwise. In (b),
five “branches” � � , �  , � � , � � and ��� , are defined by five pairs of snake segments, that is
���� �� , ���� �� , ���� � , ��� �� and ���� �� , respectively. Finally, “branch nodes” are
defined where three or more snake segments meet. Here � � and �  are the junction of snake
segments ���� ���� �� and �� � ��� �� , respectively.

by straight lines can be used if one is not looking for high spatial accuracy. To obtain the
graph representation, we first label each individual fire front, that is, each individual snake
segment  defined between two consecutive critical points (Figure 5.8). Critical points may
be of two kinds, positive curvature extrema on the boundary, � , or the center of curvature
of circular boundary arcs, �"! , that map to ends of skeleton branches.

The traversal of the snake segments from an initial curvature extremum (labeled �#� in
Figure 5.8) is done by associating pairs of snaxels of different snake segments that cor-
respond to the same skeletal locus. For example, in Figure 5.8 snaxels of both the first
segment (label 1) and the last segment (label 4) should be found at each skeletal locus on
the first branch (e.g., � � ).18 This will be so until a point is reached at the branch where more
than two labels are found. This point corresponds to a branch node (e.g., � � ). The traversal
can then be pursued to identify other branches; for example, the branch consisting of pairs
of snaxels labeled 1 and 3 in Figure 5.8. The traversal terminates when the initial snaxel is

18In general, snaxels of different snake segments will overlap. However, because we are using a digital
grid to simulate the grassfire transform, ridges may be of thickness two (pixels) rather than one. Therefore,
snaxels of different snake segments may not always overlap but rather be (connected) neighbors. A simple
matching procedure then needs to be defined by taking into account the cases of overlapping and connected
neighbors and using the spatial connectivity of the snake segments.
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reached. Four simple rules can be used to generate the graph:19

� Each critical point (
�

or
� � ) corresponds to an end node.

� Each branch point consists of two snaxels from two different fire fronts or snake
segments ( � or � � ).

� Each branch node consists of three or more snaxels from three or more different fire
fronts.

� Links, that is the order relationship between branches are defined at branch nodes
during the traversal of the snake.

Branches are processed twice by traversing all of the snake. However, this can be altered
so that the pairs of snaxels forming branches are visited only once.

5.5.1 Graph Pruning and Branch Significance

Not all the branches of the skeleton are actually significant. So far the branches terminating
at an end node have been generated based on the curvature criteria discussed in section 5.4
or based on the extraction procedure of center of curvature

� � discussed in section 5.4.1. In
the case of the branches generated from positive curvature extrema,

�
, if the thresholds on

relative curvature amplitude and region of support were relaxed, we might obtain spurious
branches. However, it is possible to evaluate the skeletal branches on another basis, that is,
by considering the ridge support along the branch.

We examine ridge support computed at each skeletal pixel by looking at the local defor-
mation introduced by the ridge on the distance surface at that skeletal pixel position [94].
If the deformation is limited in its spatial extent after a certain point along the axis branch,
then it is not “significant”. The use of ridge support as a branch significance criterion is
justified by the fact that noise or small deformations on the object contour generate small
deformations of the distance surface along the corresponding axis branch. The relative
number of skeletal pixels that lie on that part of the ridge that is changing significantly can
be used in combination with the curvature significance measures to decide whether or not
a branch should be pruned from the graph (Figure 5.9).

The notion of ridge support based on the local deformation introduced by a ridge on
the distance surface is an intuitive or qualitative formulation; we need an easily computable
measure to apply such a notion for graph pruning. For this let us first go back to the work
of Blum who first proposed the use of the velocity of skeleton branch formation, that is,
the speed at which fire fronts merge, as a measure of the “smoothness of [fire] fronts” as
they collapse at symmetry points [24, 25]. We will refer to this velocity of formation of

19The same rules apply for objects with holes.
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(a) (b) (c) Potential surface

Figure 5.9: Example to show how “ridge support” can be used as a “branch significance
criterion”. In (a), all possible branches have been generated. Branch segments made of
skeletal pixels lying on a ridge that introduce very small deformations on the distance sur-
face are shown as dotted lines. These dotted lines represent symmetry points for which the
slope of the symmetric axis � � is greater than a fixed threshold ( � � � � � � � � , � � � � ;
see text). In (b), only the branches with high ridge support are kept.

a skeleton branch or symmetric axis by the symbol
� � . Smoothness, as Blum refers to it,

corresponds to our idea of local deformation of the distance surface. The distance surface
is in fact a kind of photographic memory of the complete grassfire propagation. Where
fire fronts progress “smoothly” the distance surface is locally smooth. This corresponds
to points of maximal slope of one. Where fire fronts collapse or merge with each other
the distance surface deforms and a ridge is created. The relative lack of smoothness of the
deformation introduced by merging fronts depends on the angle at which they meet. Blum
called such an angle the generating angle [24, 25]. The sharper the generating angle, the
greater the velocity of formation of the symmetric axis,

� � , and the local deformation of
the distance surface. The limiting case are for parallel fire fronts which merge at an infinite

� � and create a maximal deformation of the distance surface (Figure 5.10).
In the continuous domain,

� � can be defined as the time derivative of length along a
symmetric axis, � � :

� � �
� � �� � � (5.3)

In the discrete domain we can approximate
� � by finite differences:

� � � � �
� �

�
(5.4)

where � � is the Euclidean distance of the discrete path along the symmetric axis from one
symmetry point to another. But, since we are using a distance surface to “memorize” the
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Figure 5.10: The velocity of formation of a symmetric axis and ridge support. In (a) are
shown fire fronts generated by two isolated points,

���
and

� ���
, for an unlimited field of

grass. The fire fronts are illustrated as an alternating wave pattern. The vertical centered
line between

���
and

� ���
represents the symmetric axis ( ���
	�� ) of infinite length, of the

grassfire transform. The symmetric axis is first created at a midpoint, �� , on a straight
line segment joining the two excitatory dots, with an infinite speed ( ��� � ��� � ���

). As the
symmetric axis grows, its velocity decreases asymptotically to the space velocity ( ����� � ).
For example, ��� � � � � ��� �

. Note that as one travels along the symmetric axis, away from
the initial symmetry point, the “generating angle” (see text) increases asymptotically from
a completely closed angle of

���
, at ��� , to a completely open angle of ��� ��� . For example,

at � �
the generating angle equals � � � . Adapted from [24, Figure 1]. In (b) is shown the

potential surface representation of this grassfire transform. The only ridge on this surface
correspond to the vertical ���
	�� between

�!�
and

� � � . Note how the deformation produced
by merging fire fronts (in (a)) varies along the ���"	#� . In correspondence to the symmetry
point ��� the deformation is maximal; at this point the surface folds with an angle of � � � .
The further away you are from �$� along the ���"	#� , the smoother is the deformation.
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complete grassfire we can replace time by the distance height of the distance surface ob-
tained from the Euclidean Distance Transform,  � � :

� � � � �
�  � � � � � 	 � (5.5)

As we have seen, in the case of parallel merging fire fronts,
� � may reach infinite values.

Furthermore,
� � is always greater than one, that is, it is always greater than the space

propagation velocity of non-merging fire fronts [24, 111]. Therefore, rather than using
� � directly as a measure of ridge support we propose20 to use its inverse, that is,

� �
	 :

(
� � � �

	 : � � ).
In fact, it is easily shown that the inverse,

� �
	 :

, is nothing more than the amplitude of
the directional slope at a symmetry point in the direction of the tangent to the symmetric
axis.21 We refer to this slope amplitude by using the symbol � � :

� � � �
� �
� �  � � � � � 	

� � � (5.6)

� � varies from null values (for parallel merging fronts) to unitary values at which no
symmetry point can exist (i.e., � � � � ; see Appendix D,

�
D.2.1). Fixing a threshold,

� � � � � , on the highest acceptable values for � � ( � � � � � � � �
� � ) provides us with a

simple quantitative criterion for graph pruning on the basis of ridge support (Figure 5.9).
Finally, we note that the slope amplitude at a symmetry point, � � , provides a good

first approximation to the boundary-axis weight of Blum and Nagel [26]. The boundary-
axis weight is another kind of branch significance measure assessing the “importance of
the [symmetry points in] representing the boundary” [26]. Essentially, the boundary-axis
weight is defined as a “limiting ratio of boundary length to symmetric axis length.” Be-
cause this measure is defined in the continuous domain within the framework of differential
geometry, it is in general difficult to evaluate it accurately and use it for practical applica-
tions. In contrast, � � is easily evaluated in the discrete domain and provides for accurate
results as a consequence of our use of an Euclidean metric. It can also be shown that � � is
closely related to the boundary-axis weight and is even equivalent to it for straight portions
of a symmetric axis and for symmetry points with infinite

� � .

20Montanari has previously used
� � ��� as a criterion for branch significance [110].

21Note that the directional slope of a symmetry point is not defined (geometrically) on the same basis as the
directional slope of the distance surface (Appendix D). In fact, at symmetry point locations, the directional
slope with respect to the distance surface is undefined (i.e., the surface is locally non-regular). Rather the
directional slope of a symmetry point is defined with respect to a 3-D curve, the symmetric axis, instead of a
3-D surface.
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5.6 Advantages and Variations of the Proposed Skeletoniza-
tion Algorithm

In this section we first summarize the main advantages of our algorithm for skeletonization
of planar shapes and then present extensions which show the flexibility of our approach.

5.6.1 Advantages of Our Method

In addition to the benefits of using an Euclidean distance mapping, our algorithm for shape
skeletonization possesses new features and has advantages over previously reported algo-
rithms, as described below.

� The integration of boundary information permits us to reduce noise sensitivity and to
obtain an explicit multiscale description in terms of boundary convexity significance.

� Our skeletons are always connected due to the nature of the active contour model we
have used. We are actually fitting elastic strings to a potential surface, with these
strings being implicitly connected due to their internal constraints.

� Combining convexity significance with ridge support along a skeleton branch permits
us to further prune the skeleton graph, if necessary, thereby rendering skeletons with
no spurious branches.

� Due to the connectivity of our skeleton model, a graph representation can be easily
obtained. A hierarchical model of the object could be built by integrating the convex-
ity significance and ridge support of a branch with the graph representation.

� The active contour model permits “friendly” user interaction when required. For ex-
ample, in certain cases it might be useful to observe the effect of different curvature
criteria on the multiscale representation. Also, we may wish to compare different
kinds of skeletons that can be obtained: SAT-like, PISA-like [100], or augmented
skeletons possessing branches terminating at concavities (see section 5.6.2). New
branches can be added simply by using a spring model to attach the snake to partic-
ular points on the distance surface. Conversely, branches can be deleted by simply
removing the corresponding spring forces.

� The active contour model also provides us with a natural way of defining dynamic
skeletons. “Dynamic” refers to skeletons that evolve with time. This is especially
important when processing nonrigid objects such as cells [115, 52, 94]. With an ap-
propriate sampling rate, generally small deformations will occur from frame to frame
and we can use the previously computed skeleton (at time

� � � � ) to initialize the
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snake on the new distance surface at time
�
. A stable skeleton is then rapidly ob-

tained since the snake is already close to the optimal solution. If larger deformations
occur, that is, new curvature extrema appear or old ones disappear, we can use the
previously computed skeleton as an initial guess, but must then add or delete spring
forces to generate or drop branches, respectively (Figure 5.11).

� In comparison to the fastest known serial algorithms for skeletonization of 2-D shapes
based on distance mapping, our algorithm has comparable numerical complexity.
Our implementation of the Euclidean distance mapping is as fast as the chessboard
distance mapping (Appendix D). The next step, grassfire propagation using the active
contour model, necessitates less computation than most other methods. These require
a “visit” to each pixel in the distance map to detect ridges, followed by an additional
pass over the distance map to fill-in gaps between detected ridges. In general, a
“visit” to a pixel of the distance map implies an access to the eight neighbors of
this pixel. In our case, by using snake segments bounded by critical points,

�
’s and� � ’s, with a low spatial sampling rate, that is, using few snaxels, and due to the

implicit connectivity of our active contour model, a solution is found in fewer steps
(see also section 5.6.2 and Figure 5.12). On the other hand, our method requires
a supplementary step when compared with most methods, namely the extraction of
curvature extrema. This step can be accelerated by using techniques such as the
HDC to filter orientation data along the boundary (Chapter A) and also by using the
notion of ridge support to obtain a simple curvature significance criterion. Parallel
implementation of our algorithm could also be achieved since both the  � � and
active contour model permit a parallel computation. Furthermore, in addition to being
fast, our method is more accurate and provides a simple way of building a graph from
the skeleton.

One of the most interesting advantages of our method is the flexibility that the active contour
model provides in order to compute skeletons in different or more efficient ways. This idea
will become clearer in the next subsection.

5.6.2 Variations of the New Algorithm

Since all of the information about the skeletal locus is embedded or “memorized” in the
distance surface and since we know the location of the branch ends by boundary curva-
ture analysis, we can alter our active contour model to obtain even more efficient ways of
computing a skeleton.

� The first obvious thing one can do is to compute an approximation of the grassfire
propagation by having a low spatial sampling rate between knot points,

�
’s and

� � ’s.
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Example of the use of dynamic skeletons for the shape representation of a
living cell in two successive frames, J E and J : . Springs used to fix the snake at curvature
extrema along the boundary are shown by dots. In $(a)$ is shown the cell shape at frameJ E with its skeleton (stable state reached after 35 iterations). The new cell shape is shown
at frame J : in (b) to (f). In (b), the snake is initialized at the previously computed skeleton
position. The effect of the removal of all springs corresponding to the curvature extrema
found at frame J E is shown in (c). In (d), two new springs are used to attach the snake to
the two most significant curvature extrema. An intermediate stage between (d) and the final
result is shown in (e). Finally, in (f) we show the new stable state of the snake reached after
only 15 iterations.
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(a)
����� �

; 82 snaxels (b)
� � �
�

; 164 snaxels (c)
��� � �

; 328 snaxels

Figure 5.12: Example of a grassfire propagation in three stages, with an increasing number
of snaxels. In (a), a first coarse solution is obtained after 15 iterations. In (b), a more refined
solution is then rapidly obtained by increasing the number of snaxels. In (c) is shown the
final result for a continuous snake.

Once a stable solution is reached, one can increase the number of snaxels to obtain a
better solution. This approach can dramatically reduce the computational time since
the initial propagation step with few snaxels brings one close to a solution in a few
short iterations; where the time to perform one iteration is proportional to the number
of snaxels. Subsequently, only a few iterative steps using a large number of snaxels
are necessary (Figure 5.12).

� Another improvement to reduce time complexity is to check the formation of the sym-
metric axes as fire fronts or snake segments merge. If snaxels of different snake seg-
ments overlap or are connected neighbors they create a new symmetry point thereby
implying that no further processing is required for these snaxels. This further implies
that as fire fronts merge, the grassfire propagation will move faster in terms of com-
puter time since fewer snaxels will have to be updated. The best way to implement
such a grassfire simulation is by “shortening” the snake as snaxels from different
snake segments merge. The removal of snaxels can be performed in two ways: in-
troducing position discontinuities by breaking the snake in parts (Appendix B) or
reinitializing shorter snakes, one for each shortened snake segment or fire front.

� Different kinds of skeletons can be obtained by using boundary information. For
example, if one locates the center of curvature of arcs of circles along the boundary,
SAT-like skeletons are obtained. If instead, end nodes are placed at the middle of
these arcs of circles (i.e., on the boundary), PISA-like skeletons are generated.

� Our method seems to be naturally extendible to 3-D problems. In this case, the ac-
tive contour model becomes an active surface model [143]. The potential surface
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becomes a potential volume and is computed using the same  � � algorithm, but
this time for 3-D objects (for examples of

� � ’s in 3-D see [118, 28, 149]). Curvature
information can also be used, this time by looking at the extrema of principle curva-
ture of the bounding surface22 defining the shape of the object [162]. The physical
analogy becomes one of wave (surface) propagation in space instead of fire propaga-
tion on a planar surface. Loci where the waves merge define the skeleton in terms of
three types of geometrical entities: points, curves and surfaces.

� Our method can be used as a refinement procedure for other fast but less accurate
algorithms. For example, using Arcelli and di Baja’s algorithms based on the city
block

� � or the chessboard
� � [7, 13], one obtains a connected skeleton which

usually has many spurious branches or misses some significant ones due to the errors
introduced by the use of a non-Euclidean metric. This skeleton could be used as
an initial solution for a snake. The distance map would be recomputed using the � � algorithm and a stable skeleton could then be rapidly obtained. The last step
could consist of pruning the skeleton by examining ridge support to compute branch
significance measures as proposed in section 5.5.1. This method of using a skeleton
defined on a coarse

� � as an initial guess provides a possibility of bypassing the
stage involving curvature analysis to extract critical points,

�
’s and

� � ’s.

� Finally we note that an alternate sequential approach to skeleton generation based
on the same main features we have used to implement the grassfire propagation al-
gorithm is possible. This is based on a ridge following algorithm. The idea would
be to allow snakes to “grow” from curvature extrema towards local maxima of the
distance surface.23 Thus snaxels would descend along ridges of the distance surface
as they are generated. Branches would therefore be generated one by one and the
graph representation would be directly obtained. However, problems might occur
with the connectivity of the generated graph. Such “growing” snakes can also be
used after the grassfire transform has been performed to segment a region into sub-
parts. For example, branches can be generated in correspondence with concavities
by initially fixing snakes at negative curvature extrema and then making them grow
by descending the distance surface in the steepest gradient direction. This provides a
new way of segmenting a planar shape [94] (Figure 5.13). Note that since concavities
generate multiple pannormals which are orthogonal to the boundary [25], there exists
more than one direction (of maximal slope amplitude equal to one) for the snake to
crawl down the distance surface when starting at a concavity. In Figure 5.13 we use

22Extracting curvature information from a 3-D surface becomes the most difficult problem to solve in
comparison to the 3-D � ��� computation and the simulation of wave propagation. This might reduce the
applicability of our method for 3-D objects.

23This idea of using growing snakes has been previously reported and applied to the contour extraction
problem in noisy images [164, 47, 48].
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(a) (b)

(c) (d)

Figure 5.13: Example of the use of concavities for shape segmentation in the case of a shape
of a cell. The usual skeleton generated for the two most significant convexities is shown in
(a). (b) shows the potential surface used. Two branches are added in (c) by growing snake
segments from significant concavities. In (d) is shown the segmentation of the cell shape
into its two main parts, that is, the cell body (in black) and its pseudopod (in grey).

the direction of the radial orthogonal to the average orientation at the negative cur-
vature extremum. The “average orientation” may be obtained from the smoothed or
averaged chain code representation of the boundary (Chapter 4).

5.7 Conclusion

In this chapter we have presented a new method for shape description of amorphous planar
objects on the basis of an active contour model. Such a model has permitted us to combine
a class of contour-based shape descriptors (i.e., curvature features) with their counterparts,
a class of region-based shape descriptors (i.e., symmetry points). We have been careful in
optimizing numerous implementation aspects of our shape description method. We have
used an Euclidean metric for optimal accuracy and the active contour model has permitted
us to bypass some of the discretization limitations inherent in using a digital grid. We
have performed noise filtering on the basis of both contour feature measures and region
measures, that is, curvature extremum significance and ridge support, respectively, to obtain
“robust” shape descriptors. We have also proposed other improvements and variations of
the algorithmic implementation (section 5.6 and Appendix D).
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Our motivations for the design of new shape descriptors were an outgrowth of our need
to describe the form of a cell in both the static and the dynamic cases [115]. Furthermore,
in light of the difficulties inherent in the image segmentation problem (Chapter 3), shape
descriptors are thought to be helpful to ease the segmentation and tracking of cells in noisy
intensity images.

In the following subsection we conclude by emphasizing the needs of cell tracking in
terms of shape descriptors. We also outline how the new skeletonization algorithm we have
presented in this chapter should be helpful to address these needs.

5.7.1 Skeletonization for Tracking Deformable Shapes

When tracking a deformable object such as a cell, two essential aspects of its morpholog-
ical description are of concern to us: the shape segmentation of a cell into its subparts or
primitives, and the recovery of its “process-history” or, in other words, the recovery of the
evolution of its primitives and local deformations. The first aspect relates to the “descrip-
tive” and “perceptive” problems of biological shape, and the third one, to some extent, to
the “developmental problem” (

�
5.1.1). With the new tools described in this chapter we

are capable of addressing these problems and providing solutions to them, thereby achiev-
ing our initial goal (

�
5.1.3). In the following paragraphs we summarize how our shape

description method can be used in solving “biological shape problems.”
Let us first consider the hierarchical shape description problem of a cell. Essentially,

a cell is made of two types of primitives: its body or “central” shape subpart and its pseu-
dopod(s) or “protruding” shape subpart(s) [115]. Pseudopods occur over a wide range of
sizes (scales) and are “built” along significant or global convexities [52]. The SAT has been
used in the past as the most efficient shape descriptor of protrusions [161, 115], and this
for a continuum of scales [52]. The graph representation of the skeleton can then be used
to segment the shape into its primitives [26]. Also, the branch data along a symmetric axis
can be used to further segment a skeleton; for example, by locating necks or saddle points
[112], or by using the ridge support criterion (Figure 5.9). Furthermore, since we have ac-
cess to boundary features, the shape of an amorphous object can be segmented by relating
concavities to the corresponding symmetric axis (Figure 5.13).

Segmentation of a shape using both boundary concavities and convexities also applies to
the perception problem for which the outline of a shape is perceptually best summarized at
these extrema of curvature (Chapter 4,

�
4.1). As previously observed, it permits us to relate

significant concavities, where we initiate segmentation, to the shape symmetries, along the
symmetric axis, and, thereby, toward significant convexities. Also, our multiscale approach
for defining curvature extremum significance addresses the issue of which extrema should
be “perceptually selected” (Chapter 4,

�
4.3.3).

Finally, shape deformation in time and the evolution of pseudopods can also be favor-
ably described by a skeleton-based approach. The “history” of the skeleton is used for
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this purpose. For example, branches corresponding to convex deformations which persist
over a long period of time are kept or labeled as significant historical events which have
the potential to lead to the formation of pseudopods. On the other hand, branches which
do not survive can be removed from the process-history of a cell and are considered to be
noisy events. This suggests another meaning to noise filtering which should be compared
to the ridge support and curvature extremum significance criteria. Pseudopod activity can
also be described using the skeleton representation. As the symmetric axis varies in its
attributes, such as length and associated width function, or in comparison to other axes
(e.g., pseudopod dominance with respect to the cell motion [115]), the process-history of
the cell subpart can be recovered a posteriori and predictions may be made, such as, future
deformations, and motion direction. From the point of view of computation efficiency, our
particular implementation on the basis of an active contour model permits us to ease the
tracking of deformations and the evolution of protrusions (Figure 5.11).

Following the path pioneered by Harry Blum, we have attained our goal, within the
scope of this thesis, of designing and implementing a powerful shape description system
particularly well suited to tracking amorphous forms such as cells. We are now in a position
to perform experiments with cell tracking in order to refine our understanding of the “social
behavior” of cells and to achieve even more insight into biological shape problems.



Chapter 6

Conclusions

This thesis has attempted to address two types of problems associated with nonrigid objects
deforming in the plane:

� � 	
image segmentation and tracking, and

� � � 	
biological shape. We

decided to use a new concept in tackling these problems, namely the active contour model
or “snake.” The snake model has many interesting features; one of which — its dynamic
behavior — motivated us to explore its applicability to our needs.

First, in Chapter 2, we analyzed the snake model in detail, pointing out its limitations
and providing a number of improvements. The snake model has three major limitations:
it requires smoothness constraints from the data, powerful initialization mechanisms, and
high level processes to fix the numerous snake parameters. Of the few modifications we
proposed to improve the original snake model, two of them are seen as essential. First,
the different forces acting on the snake had to be normalized to ensure stability, and we
proposed different mechanisms to do so; for example, by imposing a saturation value on
the slope values of the potential surface. Second, since the original terminating criterion of
the optimization process is inadequate, we proposed the “steady-support” criterion, based
on a topography measure of the potential surface on which the snake crawls.

Then, in Chapter 3, we applied the snake model to the problems of image segmentation
and tracking. Although we were successful to some extent in applying it to both problems,
we gave counterexamples where failures of this method, in its present state, were unavoid-
able. Two types of failures were detected. First, in the static case, due to the global nature of
the optimization process and to the relatively simple “steady-support” criterion, we demon-
strated how the snake could miss or lose some of the details of the contour edges. Then, in
the dynamic tracking case, we showed how the snake was limited to following only small
deformations of the potential surface, or equivalently of the trace of the object contour, as
a consequence of the use of a gradient descent search technique.

We were faced with two possibilities: try to improve the segmentation technique or
explore other types of image analysis processes which may help the segmentation and the
tracking. We opted for the second choice, looking at shape descriptors, motivated by the
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results and conclusions of some of our predecessors [161, 115, 52]. Thus, in the second part
of this thesis we described the result of our research on shape; however, we were not able to
extend this work to actually use the shape data to improve segmentation and leave this for
future work. We studied the two complementary classes of shape descriptors: boundary-
and region-based. Starting with the outline of an object, we proposed in Chapter 4 a new
method for contour segmentation. By combining linear filtering techniques, such as Gaus-
sian smoothing, with nonlinear ones derived from mathematical morphology, we were able
to produce a contour segmentation technique invariant under rigid transformation, robust
toward noise, and providing an explicit multiscale representation. In particular, we showed
how our scale-space representation of curvature features of the contour was well behaved
in comparison to more traditional representations based solely on linear filtering.

Finally, in Chapter 5, we dealt with biological shape problems by proposing a method
combining both contour- and region-based descriptors. This was done in an attempt to
obtain a more powerful representation for shape on the premise that both types of descrip-
tors provided useful, and to some extent complementary, features. Our original solution
consisted of using the snake model to simulate the “grassfire transform” which implicitly
relates contour features such as curvature extrema to region features such as shape symme-
tries. The principal characteristics of our shape analysis method are the following: use of
the Euclidean metric, invariance under rigid transformations, a multiscale representation, an
explicit relationship between contour and region features permitting us to segment a shape
into its primitive subparts, a definition of significance measures for both types of shape de-
scriptors — such as the “region support” of curvature extrema and the “ridge support” of
skeleton branches.

6.1 Future Directions

6.1.1 Further Improvements to the Snake Model

The snake model requires further improvements. For one, convergence should be looked at
carefully. Under which precise conditions will the snake converge to a desirable solution?
Can we define more rigorously what a “desirable solution” is, other than just saying that it is
the bottom of the “best” valley? What maximum deformations of the potential surface,  ,
should the snake be able to follow or track? Our insights into this method for the extraction
of curves or contours — insights gained from our understanding of the nature of the failures
we were faced with — suggest that one should seek appropriate 3-D local shape descriptors
of  .

The snake model is used to recover the bottom of certain valleys of  , but this is done by
simply relying on a gradient descent search technique. Furthermore, the bottom of a valley
is characterized simply by minimal height or, equivalently, some gravitational potential
energy measure. It seems that one should look at how to best characterize a valley or ridge



132

of  . For example, measures obtained using mathematical morphology for a 3-D surface
such as  , in similarity to the measures obtained in Chapter 4 for the 2-D curve given by
the graph of Q �

� � 	 , may provide a useful solution.
Another avenue which may be worth exploring is in the area of differential geometry

for surfaces [53]. For example, the topography or shape of the bottom of a valley may
then be efficiently characterized by its local curvature measures (e.g., Gaussian, mean and
principals curvatures).

Besides modifying the way the snake senses the surface  on which it crawls, another
issue is to consider more sophisticated filtering schemes for obtaining proper potential sur-
faces. We have expended some effort in obtaining families of potential surfaces by the use
of the HDC technique. Yet, some of the filtering stages could be easily refined. For exam-
ple, instead of using the Sobel kernels in order to derive the GGHDC family, or, equiva-
lently, the gradient maps of a multiscaled image, other filtering kernels or techniques may
be more appropriate. However, we suspect that such an approach would likely only dimin-
ish the number of instances of failures, such as the ones discussed previously, but would
still not provide for a completely reliable segmentation technique.

6.1.2 Shape Analysis

On the subject of shape, many experiments now need to be conducted. Specifically, the
dynamics of shape deformation should be studied and we believe that the shape descriptors
we have proposed in this thesis would be useful in this regard. For example, in Chapter 5
we proposed to examine the evolution of skeletons to characterize the process-history of
a nonrigid shape deforming in a plane. An interesting avenue to explore might be one of
producing a shape-history-space indicative of, for example, the survival in time of shape
subparts, skeleton branches, or contour curvature features. Consider skeleton branches
surviving for a short period of time; these could be discarded from the process-history
analysis using a shape-history-space. Such a dynamic representation for shape primitives
shares strong similarities with a “scale-space.” In the scale-space paradigm one tracks
features along the scale axis to determine their significance. Instead, in the case of the
shape-history-space, features are tracked along the time axis. Of course, the two should be
combined into one composite representation.

Another issue that should be explored is the subject of how to efficiently recompute
distance maps for objects or regions undergoing small localized deformations. At present,
as soon as an object deforms, a complete distance map must be recomputed. It would be
much more advantageous to relabel, if possible, only those object pixels in the vicinity of a
shape deformation, rather than all object pixels.

Finally, as pointed out in Chapter 4, when processing an object’s contour to retrieve
some approximation of its discrete curvature function, the amount of smoothing required
needs to be specified in some strict way. We have not addressed this important issue in this
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thesis. What we think is needed though is some method that fixes limits on the required
amount of smoothing based on the nature of the data (e.g., image resolution and object
perimeter). A minimum level of smoothing, for partial noise removal, might be fixed based
on the nature of the discrete contour orientation generation method, such as the chain code.
A maximum level might be fixed by deciding how much averaging should be permitted in
order to avoid the merging of neighboring peaks of the curvature function.

6.1.3 Bottom-Up and Top-Down Approaches

As was our original intention, we have considered in this thesis only a bottom-up approach
to the computer vision problems we were faced with. That is, we have focused our attention
on only the essential first processing steps of image segmentation and shape description, in
that order. Although we have suggested that, for example, information about shape could
be used in a “feedback loop” to help the segmentation processes, we have not yet explored
this other avenue.

The need for relevant domain knowledge about our specific task, cell tracking, may also
become of interest, as the problems we are faced with, such as the specific failures of the
snake model, become more precise and well understood.



Appendix A

Morphological Operations for Functions

Let J be a discrete function representing a signal, such as Q �

� � 	 , the curvature along a
contour. The graph of this function is defined as a set of points ( � � J � � 	 ). Let

�
be a (2-D)

structural element indexed by a single parameter
�
. The superscript � in J W stands for the

complement of J such that J W & J � � � �*� � � � � ; �
B stands for the reflection of

�
, that is

�
B

� � � � � � 	 � � .

A.1 The Four Principal Operations

A.1.1 Erosion

An erosion is computed by taking the minimum of a set of differences. Its form is similar
to convolution, with the summation of convolution replaced by the minimum operation and
the product replaced by a subtraction operation. The erosion of J by

�
is defined as follows:

�+ � = J � � � � � �! � J � � � � 	 � �
B
� � 	0/ � (A.1)

A.1.2 Dilation

Dilation can be performed by taking the maximum of a set of sums. Its complexity is the
same as erosion and is related to correlation, where instead of doing summation of products,
a maximum of sums is computed. Using the same notation as for erosion, the dilation of J
by
�

is defined as:

� + � = J�� � � ��� �! � J � � � � 	*& � � � 	 / � (A.2)
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A.1.2.1 Significance of the Erosion and Dilation Operations

Erosion and dilation are dual operations but are not, in general, the inverse operation of
each other. This is expressed below:

J�� � � � � J : �� J �J � � � � � J < �� J �
Furthermore, in general

J : �� J < �
This is true whenever the function J is not too smooth or regular. A dilation (erosion) will
remove from the top (underneath) of J all those details that are smaller than the structural
element

�
which is of fixed size. The result is a new function J ����� which is smoother than

the original function J .
When the protuberances of J are not covered by the structural element

�
, then the

combination of an erosion and a dilation becomes a reversible operation (i.e., J :�� J < � J ).
Therefore, a combination of an erosion and a dilation can give some information about the
regularity of a function. Combinations of this type give rise to two new operations, which
are defined next.

A.1.3 Opening

Opening is defined as the dilation of an eroded function. It is given by the following rela-
tion:

J � = � J�� � 	 ! = � J � � 	
� � ����� 
 � ���
	 � J � � 	�� � 	 ��� / �� 	 �

B ! � � (A.3)

At the point
�
,
� J�� � 	 � ! � has the highest value of the infinima of J taken over all the

�
’s

containing
�

. This means that the opening of J is a new function defined by the highest
points reached by any part of the 2-D (reflected) structural element as it slides under the
whole extent of J [135].

A.1.4 Closing

Closing is defined by the following relation:

J � = � J � � 	 ! = � J�� � 	 � � � ���
	 � ��� 
 � J � � 	�� � 	 ��� / �� 	 � ! � � (A.4)

The closing of a function can be interpreted as a new function defined by the lowest points
reached by any part of the 2-D structural element as it slides over J [135].



136

A.1.5 Properties of the Four Operations

The principal properties of the operations discussed above are briefly discussed in this sec-
tion. These properties are important in order to understand the effects of erosion, dilation,
opening and closing on functions.

Increasing: Let J be a function smaller than another function
�

, that is J � � 	�� � � � 	 , for
all � . Then:

J � � � � � � �
(A.5)J�� � � �

� � �
(A.6)J � � � �

� � �
(A.7)J � � � �

� � � (A.8)

The size of a function implies the size of the eroded or dilated function for a given
structural element

�
. Erosion and dilation are said to be increasing operations. Since

erosion and dilation are increasing operations, opening and closing are also increas-
ing.

Expansivity:

J � � � J � (A.9)J�� � � J � (A.10)J�� � � J � (A.11)J � � � J � (A.12)

Erosion is antiexpansive, while dilation is expansive. The terms “erosion” and “dila-
tion” have their origins in this property of expansivity. Opening is antiexpansive, as
is its first constituent operation, erosion. Closing is expansive, as is dilation.

Duality:

J � � � � J W � �
B
	 W �

(A.13)J � � � � J W � �
B
	 W �

(A.14)J � � � � J W �
�
B
	 W �

(A.15)J � � � � J W � �
B
	 W � (A.16)

Dilation is the dual of erosion. Thus dilation (erosion) is the erosion (dilation) of the
complemented function. Opening and closing are also dual operations. The closing
of J corresponds to the opening of the complemented function J W .
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Chain Rule:

� J�� � : 	 � � < � J�� � � : � � < 	 �
(A.17)� J � � : 	 � � < � J � � � : � � < 	 � (A.18)

This implies that the erosion or dilation of a function J by a wide or complex struc-
tural element

� � = � : � � < 	 can be performed using the basic components of
�

,
namely

� :
and

� < . An image processor1 can then be built using only basic compo-
nents to perform any kind of dilation or erosion.

Idempotency:

� J � � 	
� � � J � � �

(A.19)� J � � 	
� � � J � � � (A.20)

Opening and closing operations are performed only once for a specific structural
element. Their is no equivalence to the chain rules of erosion and dilation. As dis-
cussed previously in section A.1.2.1, opening and closing are two ways to compute
a “smooth” approximation of a function J by removing details of a given size. Ap-
plying these operations again with the same structural element

�
does not further

modify the filtered function.

A.1.6 Significance of the Morphological Operations

Unlike linear transformations of functions, morphological operations are characterized by
their non-invertibility. They remove information of greater and greater extent as the size of
the structural element increases.

Signal processing through iterative morphological transformations can therefore be con-
ceived as a process of selective information removal where irrelevant details are irrecover-
ably destroyed, thereby enhancing the contrast of essential function features [138].

A.1.7 Application to Curvature: Flat Structural Element

For the morphological analysis of a signal such as curvature where we are interested in the
extraction of peaks and constant regions, flat structural elements (1-D) are used. Eroding

1Image processors based on mathematical morphology operations have been successfully applied to binary
images since the early 1970’s. For example, the “Texture Analyzer” [80] was the first system of its kind in
industry. Its major advantage was its ability to extract quantitative measures of an image in real time. Its
major flaw was its limitation to binary image analysis.
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Figure A.1: Examples of the four morphological operations and of the top-hat transform
(adapted from [135]).

a function by a segment of length
�

is equivalent to replacing the function values at every
point by the minimum of all the points in a neighborhood of size

�
. Likewise, dilating

a function by a segment of length
�

is equivalent to a maximum transformation over a
neighborhood of size

�
. Openings and closings by flat structural elements maintain the

vertical boundaries of the function they transform.
Hat-transforms, so named because they can be visualized as a covering of peaks with

a hat of fixed size, can be used to extract sharp peaks and ridges. The residual J � J �
(where J � is the opened version of J as defined in equation (A.3)) is known as the top-hat
transform and presents the possibility of extracting peaks. Its complement, the residualJ � J � (where J � is the closed version of J as defined in equation (A.4)), we call by
analogy the bottom-hat transform and provides a way to extract valleys. Examples of the
four morphological operations and of the residual J � J � with a flat structural element, are
given in Figure A.1.

Morphological analysis of the residuals J � J � and J � J � , and of the filtered signalsJ � and J � , can then be performed to extract and classify peaks, valleys and the resultant
flattened regions.

A.1.8 Issues of Computational Complexity

Morphological operations for a function such as Q �

� � 	 , using a flat structural element
�

are
simple and easy to implement as min–max operations. Erosion is equivalent to taking the
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minimum of Q �

� � 	 over the neighborhood defined by the width of
�

(
� �

), while dilation
is equivalent to taking the maximum of Q �

� � 	 over the same neighborhood (section A.1).
Both erosion and dilation can be implemented as iterative processes by using the chain

rule property (equations (A.17) and (A.18)). This property implies that an erosion or dila-
tion with a relatively wide structural element (e.g., 5 pixels wide) can be performed sequen-
tially with smaller structural elements (e.g., two structural elements 3 pixels wide), giving a
more efficient way to perform min–max operations. However, the chain rule property does
not apply directly to the opening and closing operations. These two are said to be idempo-
tent (equations (A.19) and (A.20)). That is, their application to a given function with the
same structural element does not further modify the filtered function. Thus we can only take
advantage of the chain rule property for the first operation of an opening or a closing, that
is, an erosion or a dilation, respectively. Using the latter for the first constituent operation
of the closing and opening operation, a hierarchical-like scheme2 can be implemented. For
example, consider the hierarchical implementation of an opening operation. Let the basis
of the hierarchy be the positive curvature function Q � �

� � 	 . Subsequent levels are built up of
eroded and opened versions of Q � �

� � 	 : Q � � ��N U - � � � � 	 and Q � � U LT��� � � � � 	 , where � corresponds
to the hierarchical level and Q � � U L ��� � � � � 	 is obtained by dilating Q � � ��N U - � � � � 	 . Therefore,
an eroded version of Q � �

� � 	 at a particular level in the hierarchy, that is, Q � � ��N U - � � � � 	 , can
be obtained efficiently (i.e., with a small structural element) by eroding an eroded version ofQ � �

� � 	 at a preceding level, that is, by the erosion of Q � � ��N U - � � � � � � 	 . Such a hierarchical
scheme provides an efficient way of building the � � � , where each level in the hierarchy
corresponds to an increasing

�
� .

Morphological measures are also simple to implement. Furthermore, due to the unifor-
mity of � � � features, morphological measures are more rapidly computed for existing
peaks, that is, for peaks that were detected in a preceding level in the hierarchy or at a
smaller scale

�
� , since their localization is already known. Finally, this property of unifor-

mity permits simple and easy interpretation, a major advantage in terms of computations
over traditional scale-space approaches.

In summary, three aspects of curvature morphology lead to low computational complex-
ity. Firstly, only simple computations for both morphological operations and measures are
necessary. Secondly a hierarchical implementation using the chain rule property is easily
obtained. Finally, the uniformity of the � � � and its simplicity of interpretation yields low
computational complexity for the curvature morphology representation.

2Such a hierarchical representation of morphological operations shares many similarities with the “Hier-
archical Discrete Correlation” representation (Chapter 3)).



Appendix B

Inserting Discontinuities Along the
Snake

In this appendix, we make use of the notion of computational molecules discussed by Ter-
zopoulos [141, 146] which give an explicit visualization of the links that exist between
snaxels and which are useful to understand the effect of inserting discontinuities along the
snake by removing some of these links.

B.1 Computational Molecules for the Snake

Let us reconsider the discretization of the stiffness constraints in the equations of motion of
the snake. Assuming a constant step-size � � � � , equation (2.18) is rewritten as follows:

�
�
� � � 8G: ��� 	 � � ��� � � 	��4& � <� � <

� 8 < ��� 	 � ��� ��� � � 	�� �
8G: � � 	 � � � � � � 	 � � � � � � � � 	0/ &8G: � �C& � 	 � � � � � � 	 � � � �D& � � � 	0/ &8 < � � � � 	

� � � � � � � � 	 � � � � � � � � � 	*& � � � � � 	 / �� 8 < � � 	
� � � � � � � � 	 � � � � � � 	*& � � �D& � � � 	0/ &8 < � �D& � 	
� � � � � � 	 � � � � �C& � � � 	*& � � �D& � � � 	 / � (B.1)

This equation can be understood as a nodal equation defining the elasticity links that exist
at each snaxel or node,

�
, of the snake. The terms on the RHS of equation (B.1) can

then be represented graphically as a set of computational molecules (Figures B.1 and B.2).
These molecules are made of atoms, indicated by ellipses, representing the coefficients
at each nodal position, � � � � � 	 , in equation (B.1). Between these atoms are links which
represent the adjacency relations between them. Each molecule is positioned with respect to
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(a) (b)

Figure B.1: String molecules for the snake model. In (a) are shown the two string molecules
SM1 and SM2 defining the tension links. In (b) is shown the composite string molecule
centered at a snaxel

�
obtained by the molecular summation of the molecules in (a).

a particular atom indicated by a dark contoured ellipse. This atom corresponds to the snaxel
at which each term of equation (B.1) is defined. Each snaxel possesses such a “molecular”
description of its local interaction with its neighbors. Figure B.1.(a) shows the two string
molecules, SM1 and SM2, representing tension links between snaxels (i.e., first two terms
on the RHS of equation (B.1). Figure B.2.(a) shows the three rod molecules, RM1, RM2
and RM3, representing the rigidity links between snaxels (i.e., last three terms on the RHS
of equation (B.1).

The formation of nodal equations at any snaxel
�

can be obtained by molecular summa-
tion, where the primitive molecules combine centered at this snaxel

�
. Coincident atoms

sum together their coefficients. In Figure B.1.(b) is shown the composite string molecule
obtained by molecular summation of the primitive string molecules SM1 and SM2. This
illustrates the fact that tension constraints on each snaxel are symmetrically distributed
around them and are only influenced by the two direct neighbors. In Figure B.2.(b) is
shown the composite rod molecule obtained by molecular summation of the primitive rod
molecules RM1, RM2 and RM3. This illustrates the fact that rigidity constraints at each
snaxel are also symmetrically distributed around them, but this time on a larger neighbor-
hood made up of the four direct neighbors. By molecular summation of both the composite
string molecule and the composite rod molecule, the nodal equation (B.1) is recovered
(Figure B.3). Such a composite molecule exists at every snaxel or node along the snake.

Computational molecules help us visualize the interactions between snaxels and how the
stiffness weights, or atom coefficients, are distributed at each snaxel. The computational
molecules are also useful for visualizing and implementing the introduction of discontinu-
ities along the snake. Discontinuities which are breaks in the links or constraints between
snaxels require molecular inhibition rather than molecular summation. Wherever a link is
broken or removed, the molecular summation of the corresponding primitive molecule is
inhibited. Such breaks correspond to setting the concerned tension,

8": � � 	
, and/or rigidity,8 < � � 	 , constraints to zero. In the two following sections, position and tangent discontinu-

ities are defined using molecular inhibition in order to obtain the modified nodal equations.
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(a)

(b)

Figure B.2: Rod molecules for the snake model. In (a) are shown the three rod molecules
RM1, RM2 and RM3 defining the rigidity links. In (b) is shown the composite rod molecule
defined at a snaxel

�
obtained by the molecular summation of the molecules in (a).

Figure B.3: The nodal equation obtained by molecular summation of both the composite
string molecule and the composite rod molecule.
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B.1.1 Introducing Position Discontinuities

A position discontinuity between two snaxels (
� � �

and
� � � & � ) consists of a complete

break of all the links that relate these snaxels, that is, the snake is cut. Therefore, both the
tension and rigidity constraints or molecules existing between these two snaxels must be
inhibited when constructing the nodal equations. Since each snaxel has a nodal equation
defined on its four direct neighbors, four snaxels, at nodes

� � � � � � � � � & � and
� & �

,
share some links between nodes

�
and

� & � . At node
� � � � � , one rod molecule, RM3, has

to be dropped (Figure B.4.(a)). At node
� � �

, two rod molecules, RM2 and RM3, and one
string molecule, SM2, must be inhibited (Figure B.4.(b)). Similarly, due to the symmetry
of the nodal equation, at node

� � � & � , two rod molecules, RM1 and RM2, and one string
molecule, SM1, must be inhibited (Figure B.4.(d)). Finally, at node

� � � & �
one rod

molecule, RM1, has to be inhibited (Figure B.4.(c)).
The corresponding nodal equation is modified accordingly for each of the four molec-

ular inhibitions. These modified nodal equations give us the entries of the stiffness matrix
� that have to be modified. At node

� � � the following three entries are modified:

� ! 	 : � 8 < � � � � 	*&�� 8 < � � � � 	*& 8G: � � � � 	*& 8G: � � 	 �� ! 	 : � � � 8 < � � � � 	 � 8G: � � 	 � (B.2)� ! 	 : � � �
At node

�
, four entries are modified, one of which was already mentioned previously (

� ! 	 : ),
leading to the following three new entries to be modified:

� ! � 8 < � � � � 	 �� ! � � �
(B.3)� ! � � �

Similarly, at node
� & � , four entries are modified. Two of these were already mentioned

previously (
� ! and

� ! 	 : ), leading to the following two new entries to be modified:

� ! �
: � 8 < � � & � 	*& 8G: � � & � 	 �� ! �
: � � � 8 < � � & � 	 � 8;: � � & � 	 � (B.4)

Finally, at node
� & �

, three entries are modified. Two of these were already mentioned
previously (

� ! �
:

and
� ! ), leading to the following new entry to be modified:

� ! � < � � 8 < � � & � 	*& 8 < � � & � 	*& 8;: � � & � 	*& 8G: � � & � 	 � (B.5)

In total, for any position discontinuity, nine entries of matrix � must be modified.



144

(a)

(b)

(c)

(d)

Figure B.4: Introducing position discontinuities by the molecular inhibition of rod and
string molecules. A position discontinuity is enforced between two snaxels

� � �
and� � � & � . In correspondence, four snaxels (

� � � � � � � � � & � and
� & �

) have their nodal
equation modified, that is, the link they possess between nodes

� � �
and

� � � & � is cut
(indicated by a cross). In (a), (b), (d) and (c) are shown the modified nodal equations for
snaxels

� � � � � � � � � & � and
� & �

, respectively.
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B.1.2 Introducing Tangent Discontinuities

A tangent discontinuity at a snaxel
� � �

consists of a break of all rigidity constraints (
8 < ��

) at that snaxel or node. Only the tension links at that node are kept intact. Therefore, all
the rod molecules that are centered at snaxel

�
must be inhibited in the molecular summation

used to derive all nodal equations. Since a rod molecule is defined on a neighborhood made
of three atoms (Figure B.2), three nodal equations, at nodes

� � � � � � �
and

� & � , have
to be modified. At node

� � � � � , one rod molecule, RM3, is dropped (same result
as illustrated by Figure B.4.(a)). Similarly, at node

� � �
, one rod molecule, RM2, is

dropped (Figure B.5.(a)). Finally, at node
� � � & � , one rod molecule, RM1, is dropped

(Figure B.5.(b)).
The corresponding nodal equation is modified accordingly for each of the three molec-

ular inhibitions. As in the case of position discontinuities, these modified nodal equations
give us the entries of the stiffness matrix � that must be changed. At node

� � � the same
three entries ( � ! 	 : � � ! 	 : and

� ! 	 : ) given in equation (B.2), for the case of a position dis-
continuity, are modified. This is because the same molecule, RM3, is inhibited from the
molecular summation. At node

�
, three entries are modified, one of which was already

mentioned previously (
� ! 	 : , equation (B.2)), leading to the following two new entries to be

modified:

� ! � 8 < � � � � 	'& 8 < � � & � 	*& 8G: � � 	*& 8G: � � & � 	 �� ! � � � 8 < � � & � 	 � 8G: � � & � 	 � (B.6)

Finally, at node
� & � , three entries are modified. Two of these entries were already men-

tioned previously (
� ! 	 : , equation (B.2), and

� ! , above), leading to the following new entry
to be modified:

� ! �
:�� � 8 < � � & � 	*& 8 < � � & � 	*& 8;: � � & � 	*& 8G: � � & � 	 � (B.7)

In total, for any tangent discontinuity, six entries of matrix � have to be modified.
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(a)

(b)

Figure B.5: Introducing tangent discontinuities by molecular inhibition of rod molecules.
A tangent discontinuity is enforced at a snaxel

� � �
. In correspondence, three snaxels

(
� � � � � � �

and
� & � ) have their nodal equation modified, that is, the rigidity link they

possess which is centered at
� � �

is inhibited from molecular summation. In (a) and (b)
are shown the modified nodal equations for snaxels

� � �
and

� & � , respectively. The
modified nodal equation for snaxel

� � � � � correspond to the case already illustrated by
Figure B.4.(a).



Appendix C

Imposing Limits on the Snake Forces
Amplitudes

In this appendix, we give a number of heuristics to impose limits on the amplitude of snake
forces. Such limits can be fixed with respect to variations in position. The goal of such a
“normalization” scheme is to keep these forces tractable so that the snake remains as stable
as possible.

C.1 Maximum Elastic and Inertial Constraints

Consider equation (2.28) where both the external and the field forces are set to zero, that
is, ���()$ � � 6+�!5��, - � � � � � L U $ � . This is done to examine the influence of the stiffness and
memory constraints,

� � $5! +T+ and
� � ��� U , in obtaining a new snaxel coordinate (here

� � � � � 	
).

Equation (2.28) becomes:

� � � � � 	 � �� �! � � � ��� U � � � � � � � � � � � � 	 	*& � ��$5! +T+ � � � � � � � � � � � � & � � � & � � � 	�	 � � (C.1)

Let us first consider the effect of stiffness. The amplitude of
� ��$5! +T+ is a linear function

of the weights
8;: � � 	

and
8 < � � 	 and of the spacing between the snaxels. Since we have

fixed
8 < � � 	 to be a small positive and constant value, the maximum amplitude of

� ��$5! +T+
will be essentially dependent on the maximum possible amplitude of

8�: � � 	
.
8;: � � 	

itself is
a function of the spacing between snaxels (equation (2.29)) and its maximum value is given
by � � �0( . Therefore, what we need to do is to impose a maximal possible value on ��� �V( .
Because

8G: � � 	
is used as a multiplying weight for the spacing between snaxels (equation

(2.18)), the maximum value for � � �0( can be set to an expected or desired maximal spacing.
We have use experimentally a value of five for � � �V( .
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The effect of memory is imposed by
� � ��� U . Its amplitude is a linear function of the

constants � and
�

, and of the motion, or spacing in time, of a given snaxel. Furthermore,� and
�

are used as multiplying weights for the spacing in time of a given snaxel (equation
(2.16)). Therefore, the maximum values for � and

�
can be set in the order of magnitude

of the expected maximal spacing in time of any snaxel. Also, we can fix them so that their
combination gives a desired effect of damping. We have use experimentally a value of one
for both � and

�
.

C.2 Normalization of the Field Constraints

In sections 2.6.3 and 2.7 it has been explained why and how the directional slopes in
�

and
�

of the potential surface, that is, �+�!5��, - � and �+)!#��,.- � , had to be redistributed on some
acceptable interval. In this section, it is shown how one can normalize the field constraints�+�!5��,.- � using the “clipped” slope function of section 2.7 so that the snake never undergoes
unrealistic motion (similar results are derived, by symmetry, for  +�!5��,.- � ).

In the following paragraphs we assume that the external constraints are inactive, that is,���()$ ��� . Therefore
� L U $ � may be rewritten as follows:

� L U $ � � � �� �+)!#��,.- � � � � � � � 	 � � � �� � � � ( � � � � � � � � 	 � � � � � � � � 	 /
� � � � ( � � � � � � � � 	 � ��� � � � � � 	0/ �

where we make use of equation (2.4) and where � �����< . Then, following the discussion of
section C.1, equation (2.28) may be rewritten as follows:

� � � � � 	 � � � � � � � 	*& �
� �� �!  � ( � � � � � � � 	 & � � +�!5��,.- � (C.2)

where
� � � � � � 	 is the new snaxel coordinate obtained from stiffness and memory constraints

and where � � +)!#��,.- � � 	��W � � � � ( . Therefore the influence of field constraints on a snaxel
can be understood as a displacement contribution � � +�!5��,.- (in pixel units) This displacement
contribution may be normalized with respect to a maximal permitted displacement

� :
(also

in pixel units). With respect to clipped versions of the slope function of the potential surface
 and of the tension function � , the maximal possible displacement contribution of field
constraints ( � � +�!5��, - � � � ) is given by:

� � � +�!5��,.-
�	��

� �

� �� �! � ���  � � � �0( � � � : �
(C.3)

where
� � �V( is the maximal permitted slope value of the clipped slope function of section 2.7

and where � ! � � !#� ��� 8 < � � � � �V( &


< & � . With given constants

8 < ,
�

, � ,
� � �0( , � � �V( and

� :
,
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the magnitude of the gravitational acceleration,
�

, can be fixed to ensure that any snaxel
displacement due to a field force will be limited in amplitude to a desirable value

� :
.

C.3 Normalization of the External Constraints

External constraints are of two complementary types: volcanos (repulsive forces) and springs
(attractive forces). Since, as proposed in section 2.5, volcano forces are best implemented
by incorporating them within the potential surface, they do not have to be considered here.
Spring forces, on the other hand, have to be normalized separately from the field forces.
With no loss of generality, we may assume that the field constraints and the volcano forces
are inactive, that is, 4+�!5��, - �  @VU ,.W � �

. Therefore
� L U $ � may be rewritten as follows

(similar results are derived, by symmetry, for
� L U $ � ):

� L U $ � � � �� 6�MLTN�!#��P � � � � � � � 	 � � �� J �MLTN�!#��P � ( � �� Q �RL)NO!#�%P � � : � � < 	 �
where we make use of the notation for spring constraints of section 2.2. Again, following
the discussion of section C.1, equation (2.28) may be rewritten as follows:

� � � � � 	 � � � � � � � 	*& � Q �RL)NO!#�%P� �!  � � : � � < 	 � � � � � � � 	*& � � �RL)NO!7��P � (C.4)

where
� � � � � � 	 is the new snaxel coordinate obtained from stiffness and memory constraints

and where � � �RL)NO!#�%P � � � � ��� � ���W � � � � � : � � < 	 . Again, the influence of the spring constraint
on a snaxel can be understood as a displacement contribution � � �RL)NO!#�%P (in pixel units).
This displacement contribution may be normalized with respect to a maximal permitted
displacement

� < (also in pixel units). In order to limit the possible amplitude of the dis-
tance “snaxel – spring fixation point”,

� : � � < , a clipped version of J �RL)NO!#�%P should be used.
Let us assume a saturation value � � :

� < � �0( for this purpose. Then, the maximal possible
displacement contribution of a spring constraint, � � �MLTN�!#��P � � � , is given by:

� � � �ML)NO!#��P
�	��

� �

� Q �RL)NO!#�%P� �! � ���  � � � :
� < �	��
 �

� � < � (C.5)

With given constants � ! � �2!#� , � � :
� < � �0( and

� < , the spring parameter Q �RL)NO!7��P can be fixed to
ensure that any snaxel displacement due to a spring force will be limited in amplitude to a
desirable value

� < .



Appendix D

Euclidean Distance Mapping in the
Discrete Domain

A distance mapping on a binary image (
� ����� ��� � 	 � �

iff
� � � � � 	>	 � �

;
��� ��� � 	 � � iff��� ��� � 	 	 �

)1 is produced by a distance transform,
� � . A

� � consists of a minimum
operation on a distance metric

1 � � � � � � � � 	 , where � 	 �
and � � 	 � � (equation (5.1)),

applied over a given space or domain (e.g., an image
�
). Different metrics,

1 � � �
, commonly

used in discrete image processing are:2

1 � � � � � � � � � � 	 � � � L � � L�� � & ��� � L � � L�� ��� �1 � � � �
� �O��� � � � � � 	 � ��� � �

� � L � � L�� � � ��� � L � � L � ��� � �
1 � � ���

� W ,.!5- � � � � � 	 �
� � � L � � L�� 	 < & � � L � � L�� � < �

where � � � � � L � � L 	4	 � and � � � � � � � L�� � � L�� 	4	 � � . The
� � based on the metric

1 � � � � �
is called the city block

� � . The
� � based on the metric

1 � � � �
� �O��� is called the chessboard� � . And the

� � based on the metric
1 � � ���

� W ,.!#- is called the Euclidean
� � or  � � .

Applying a
� � on

�
corresponds to “propagating” distances over

�
[131]. Points in

the background (� � 	 � � ) are seen as sources from which distance values are propagated
as waves over the complete image,

�
; for example, the propagation of circular waves in the

case of an Euclidean metric. The first time an object point (� 	 � ) is reached by a given
wave it is assigned a new label, that is, a minimum distance value from

� �
. Obviously such

a wave propagation scheme is easily implemented in parallel (see for example [159]). But,
it then becomes an iterative procedure, where iterations correspond to distances from the

1Notation. � : object or figure, ��� : non-object or background. � �
	 � � � � � ������� � � ����� and� ��	 ��� � � � � ����� � � ����� .
2For extensive surveys of metrics used in the discrete domain see the work of Borgefors [28, 29].
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punctual sources, dependent on the maximal width of the object
�

. However, for such a
simple propagation transform, a sequential implementation is computationally preferable
(i.e., independent of the object’s width) and provides equivalent results [131]. Several se-
quential algorithms exist for computing a distance map on a discrete grid. Essentially two
categories of algorithms are available depending on the type of

� � performed:  � � ’s
or Weighted

� � ’s such as the city block and chessboard
� � ’s (hereafter referred to as� � � ’s, following Borgefors notation [30]. Common to both kinds of distance mapping is

the fact that they are based on information flow or propagation using small local neighbor-
hoods (e.g., a 3 pixels x 3 pixels squared window).

� � � algorithms require two passes
over an image to obtain the distance map, while  � � algorithms require three or four
passes [127].

The optimal distance metric is the Euclidean one, that is,
1 � � � �

� W ,.!5- . The other met-
rics give coarse approximations of a circular propagation, that is, they approximate an
Euclidean propagation. For example, the city block metric gives a diamond-shape prop-
agation, while the chessboard metric gives a square-shape propagation [132].

� � ’s based
on non-Euclidean metrics (i.e.,

� � � ’s) have a long history in picture processing. In most
cases they were used because they were faster to apply than  � � ’s. This was true until
Danielsson’s algorithm was published in 1980 [46]. In fact, only the city block

� � can
be evaluated much faster than Danielsson’s  � � .3 This is because of its simpler spatial
complexity, though the price paid is poor accuracy (see section D.1.1).

In the following sections we will consider different aspects of the implementation and
application of Euclidean distance mapping to binary images. In section D.1 we give a de-
tailed analysis of an optimized implementation of Danielsson’s Euclidean Distance Trans-
form (  � � ) algorithm.4 In section D.2 we define the notion of a distance surface and
briefly mention some of its properties. Finally, in section D.3 we show how the snake
model can take advantage of the distance surface when seen as a potential surface.

D.1 Euclidean Distance Transform

In this section we present an optimized version, in terms of numerical complexity, of the
sequential algorithm for computing the  � � first introduced by Danielsson. We also com-
pare the computational complexity of this optimized algorithm to non-Euclidean

� � ’s.
Following Danielsson’s notation, we consider a mapping from a binary image

��� ��� � 	
(a

double-valued function)5 to a multivalued image
� � � � � 	

. In order to evaluate
�

, Daniels-
3This must be contrasted with the generally incorrect belief appearing in the literature (even recently) that

most � ��� ’s are less computationally expensive than �
���

’s (see for example [28, 29, 55, 56, 8, 12].
4Addendum (February 2003): A version of this section was published in 1992 as a CVGIP-IU journal

article [96].
5Initially, before applying the

���
, objects points of

�
(i.e., pixels � 	 � ) are assigned a large integer

value � (i.e.,
� ��� � � � ) greater than the square of the maximum possible width of any binary object that
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son proposes to compute a multivalued vector image
�

, at which each pixel of the image is
assigned a vector (a doublet) rather than a singleton (e.g., a distance value) as follows:

� � ��� � 	 � � � ( � � �
	 �

(D.1)

where
� ( and

�
� will contain the minimum integer distance values in the

�
and � direc-

tions, respectively, from the background
� �

.
�

is then simply obtained as the norm � � � by
computing the square root as follows:

� � � � � 	 � � � <( & � <� � � � � � (D.2)

The propagation of distances over a complete image can be obtained with a four-pass
algorithm (see [127] for a recent three-pass version). This is best visualized as a convolution
of

�
with four masks (Figure D.1). Such a convolution is performed in two complete picture

scans in opposite directions. Masks 1 and 2 are passed downwards over the image, while
masks 3 and 4 are passed upwards (Figure D.1). Furthermore, each row is scanned in
both horizontal directions to ensure an isotropic propagation of the distance values [127].
Depending on the required accuracy and numerical complexity, two versions of the  � �
algorithm were described by Danielsson (see also [160]). The simpler one, named the
� � �  � � , which stands for the “four-points Sequential Signed  � � ,” requires a visit to
only the four direct neighbors (i.e., horizontal and vertical neighbors) at each pixel � 	 �
(Figure D.1.(a)), while the � � �G � � , which stands for the “eight-points Sequential Signed � � ,” requires a visit to the 8 neighbors at each pixel � (Figure D.1.(b)). The � � �G � �
is numerically more complex than the

� � �  � � , but it is also more accurate.
While scanning the image with four masks every object pixel, � , is updated by com-

paring it to some of its neighboring pixels (in a neighborhood defined by the masks of
Figure D.1). Comparing a pixel � to its neighbors first implies seeking the neighbor, � � !7�
(already visited at least once), having the minimum distance amplitude (incremented/decre-
mented) and, second, assigning the pair

� � ( � � �2!#� 	 � � �
� � �2!#� 	�	 to

� � � 	 plus the increments
or decrements in the

�
and � directions given by the masks weights (indicating the relative

position of � � !#� with respect to � ). Therefore, the complete updating procedure generates
the vector image

�
. Seeking the minimum distance amplitude requires numerically expen-

sive computations for every visited pixel � 	 �
.6 Furthermore, floating point numbers,

rather than integers, are then required. For example, if we wish to compare � with a neigh-
bor � � ( in the positive

�
direction, then we must compare

� � � 	 with
� ����� � � � ( 	 , where� ��� � � � � ( 	 is

� � � � ( 	 incremented as follows:

� ����� � � � ( 	 � � � � ( � � � ( 	*& � 	 < & � <� � � � ( 	 �
could exist in

�
(e.g., � � � ���� � �
 ).

6That is, two integer adds, two integer squares (multiplications), one floating square root and, possibly,
two assignments and one or two increments/decrements.
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(a) (b)

Figure D.1: The four masks used in the sequential signed
�����

. Two sets of masks are
shown. In (a) are shown the four masks for the � � ����� . In (b) are shown the four
masks for the �   ����� . The masks are centered at pixel � (indicated by a white dot). The
pairs of weights in each mask (

� 	�
 ���
pairs) represent the distances from � in horizontal

and vertical steps or increments. The reference frame (  and � directions) is shown to be
positioned in the top-left corner of an image, � . The arrows (next to the masks) indicate
in which direction a given mask is passed over � . The convolution of these masks over �
is performed in two picture scans (indicated by dashed arrows) in opposite directions (here
downward for masks 1 and 2, and upward for masks 3 and 4). For each row of � the pairs
of masks (1,2) and (3,4) are moved in opposite horizontal directions so that the propagation
of distance values is isotropic (see text).
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However, there is a much better way to perform these computations using integers only,
getting rid of the multiplications and bypassing the square root operations completely.7

Since we only wish to compare the amplitudes of
� � � 	 and its neighbors (e.g.,

� ����� � � � ( 	 ),
it is equivalent and sufficient to compare the squares of their amplitudes (e.g.,

� � � 	 < and� <��� � ), thereby saving the floating point operation. Furthermore, we can augment the vector
image

�
by also assigning the sum

� <( & � <� (
� � < ) to each pixel � [44, 160], thereby

obtaining a new vector image representation,
�

� , as follows:

�
�
� � � � 	 � � � ( � � <( & � <� � � � � ( � � �

� � < � � (D.3)

Then,
� ��� � � � � ( 	 can be evaluated easily from the stored data as follows:

� <��� � � � � ( 	 � � � ( � � � ( 	*& � 	 < & � <� � � � ( 	
� � � <( � � � ( 	*& � <� � � � ( 	 � & � � ( � � � ( 	*& �
� � < � � � ( 	*& � � ( � � � ( 	*& � �

Indeed, since now
� < is kept stored in

�
� , we can in this example (and similarly in all other

cases; see below) evaluate
� ��� � � � � ( 	 < using only one add, one left-shift (i.e., a multiplica-

tion by two) and one increment.8 We summarize all the possibilities when evaluating
� ��� �

for both the
� � �  � � and � � �  � � in the following four equations:

� � ( � � 	 < & � <� � � < � � � ( & � � (D.4)� <( & � �
�
� � 	 < � � < � � � �

& � � (D.5)� � ( � � 	 < & � �
�
� � 	 < � � < � � � � ( & �

�
� � 	 �

(D.6)� � ( � � 	 < & � �
�
� � 	 < � � < & � � � � ( � �

�
& � 	 � � < � � � � ( � �

�
� � 	 (D.7)

We can now evaluate the numerical complexity of both algorithms. Let us define the
integer constant � < to represent the total number of object pixels found in an image

�
.9 Let

us first consider the case of the
� � �  � � . Then, only equations (D.4) and (D.5) are to be

considered. The complete updating procedure will require for each object pixel six com-
parison operations, which we refer to by using the symbol

� � � � � � � , with the six neighbors
defined by the masks of the

� � �  � � (Figure D.1.(a)). A
� � � � � � � operation represents

7This optimized implementation was first brought to our attention in an unpublished work of one of our
colleagues at McGill University [44]. Since then a similar idea has been presented by Ye [160], but without
much detail.

8An increment (or decrement) is usually faster to compute (or at least as fast to compute) on most machines
than an add (or subtract).

9 � � ����� ��� 

	�� , where � ��� iff
� � � � ��� 	 � and � � � iff

� � � � � � 	 � � .
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one left-shift, one add (or subtract), one increment and one compare. Therefore, finding the
minimum distance values in the case of the

� � �  � � will require a total of
� � < � � � � � � �

operations. In the case of the � � �  � � the four equations above are used. The complete
updating procedure will require for each object pixel ten comparison operations. Six of
them are just the

� � � � � � � operations as previously. The four other comparisons are derived
from equations (D.6) and (D.7) where both

� ( and
�

� are incremented/decremented simul-
taneously. They are associated with the four diagonal neighbors (with respect to � ) found in
the masks of Figure D.1.(b). We refer to these four comparison operations using the symbol� � � � � � � . A

� � � � � � � operation represents one left-shift, two add(s)/subtract(s), one incre-
ment/decrement and one compare. Therefore, finding the minimum distance values in the
case of the � � �  � � will require a total of

� � < � � � � � � � plus
� � < � � � � � � � operations;

or in other words, � � � < (left-shift, increment/decrement, compare) + � � � < (add/subtract)
operations.

Once we have completely updated the vector image
�

� , the real Euclidean distance map
is recovered by computing the square roots of

�
� ’s third elements (equation (D.3)). This

accounts for � < floating point operations. However, in many practical cases the (integer)
squared distance values may be sufficient. Furthermore, since we know the maximum
possible size of an object (

� � � � � � <( & � <� ), for fixed-sized images
�

(i.e., an image
of size � ( � � � ), we can store in a double-index lookup table all possible distance values���

begincitation [160]. This table can be indexed using the absolute values of the first two
elements of the vector image

�
� , that is, � � ( � and � � � � . Such an approach is particularly

useful for fixed-size images if distance maps are to be evaluated often.
This completes our detailed analysis of Danielsson’s algorithms optimized for numer-

ical performance. In the following subsection we show how these algorithms compare to
the non-Euclidean ones (i.e., the

� � � ’s).

D.1.1 Comparison between Euclidean and Non-Euclidean Distance
Transforms

Let us first consider the four simplest
� � � ’s: the city block

� � , the chessboard
� � ,

and the chamfer
� � ’s [28] for the two smallest neighborhood sizes (i.e., 3x3 and 5x5).

In Figure D.2 are shown the masks used for these
� � � ’s. Note that only two masks are

sufficient for each
� � � while four were used for the  � � (compare with Figure D.1).

This implies that the propagation of distances will not be isotropic and will generate errors
in the distance map. However, this type of error is negligible “compared to the difference
between the Euclidean distance and the non-Euclidean approximations” [127].

The chamfer
� � ’s have different sizes and weights that can be chosen to satisfy vari-

ous needs. A 3x3 chamfer
� � is named chamfer-

�
-
�

where
�

and
�

represent the mask’s
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weights10 (Figure D.2.(a)). The weights
�

and
�

are chosen to take into account accuracy
and numerical efficiency. Chamfer

� � ’s are scaled (i.e., multiplied) by a factor \ , usually
by the weight

�
. This means that the computed distance values need to be divided by \ ,

this to recover the best possible approximation to the Euclidean distance values. The “opti-
mal” weights, for accuracy, are

� � � � � � � � � and
� � � � �	� � � � [29]. However, for practical

applications, the weights
� � � �

and
� � � �

are preferred,11 this to maintain only inte-
ger computations [150]. A 5x5 chamfer

� � is named chamfer-
�
-
�
- � where an additional

weight � is needed. For such a neighborhood size, certain mask pixels do not contribute
to the distance value propagation (i.e., they are redundant). They are therefore suppressed
from the local search for a minimum distance value (marked with a minus symbol ( � ) in
Figure D.2.(b)). Again the weights

�
,
�

and � are chosen to satisfy the needs of accuracy
and numerical efficiency. The optimal accuracy is obtained for

� � � � � � � � � ,
� � � � � � � � �

and � � � � � � � � � [150]. For practical applications, the weights
� � �

,
� � �

and � � �K� are
preferred to maintain only integer computations [29, 150].

For the city block
� � (Figure D.2.(a)) a complete updating procedure will require for

each object pixel four comparison operations,
� � � . A

� � � operation involves one incre-
ment and one compare. For the chessboard

� � (Figure D.2.(b)), each object pixel will
require eight comparison operations,

� � � (i.e., same operations as for the city block
� � ).

Chamfer-
�
-
� � � ’s (Figure D.2.(a)) require eight comparison operations,

� W � � � +T��N , per ob-
ject pixel. A

� W � � � +)��N comparison consist of one add and one compare. Chamfer-
�
-
�
- �� � ’s (Figure D.2.(d)) require sixteen comparison operations,

� W � � � +)��N , per object pixel
(i.e., same operations as for chamfer-

�
-
� � � ’s). In Table D.1 we compare both the  � � ’s

and the
� � � ’s we have studied so far from the point of view of both numerical complexity

and accuracy.
Let us first note that both the � � �  � � and the

� � �  � � have maximal possible errors
(MaxDiff in Table D.1) expressed in absolute pixel unit values, � � , which are less than the
sampling error of the digital grid (

� � � � � � ). Therefore, these errors can be considered
negligible in the discrete domain [127]. Moreover, as the distance values are augmented,
these possible errors become more and more negligible (in relative percentage), that is,
they tend rapidly toward zero. Also, these errors can only occur in a few rare and sparsely
distributed locations [46] and therefore they do not propagate over the distance map. In
the case of the

� � � ’s, all errors are expressed as some percentage of the real Euclidean
distance value. Therefore, the contrary to the  � � ’s, as the distance values,

�
, augment

the absolute errors do also. Finally, these errors generally occur at groups of pixels (i.e.,
non-isolated) and propagate rapidly to corrupt large portions of the distance map.

10Note that the city block and the chessboard
���

’s can be interpreted as the chamfer-1-2 and chamfer-1-1���
’s, respectively (Figure D.2.(a)). In the case of the city block

���
the weight � becomes redundant (i.e.,

� � ����� ) and the masks can be further reduced in size.
11The weights � � � and � � � may be preferred over ��� � � and � � ��� when the scaling by � ��� is

required. In this case � � � and the divide operation is simply replaced with a right-shift operation.
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(a) (b)

Figure D.2: Masks used for
� � � ’s for the two smallest neighborhood sizes (i.e., 3x3 and

5x5). The masks are centered at pixel � (indicated by a white dot). The weights in each
mask represent the (approximated, unsigned and scaled) distance from � . The reference
frame (

�
and � directions) is shown to be positioned in the top-left corner of an image,�

. The arrows (next to the masks) indicate in which direction a given mask is passed over�

. The convolution of these masks over
�

is performed in two picture scans (indicated by
dashed arrows) in opposite directions (here downward for masks labelled 1 and upward for
masks labelled 2). In (a) are shown the masks for the 3x3 chamfer

� � ’s where
�

and
�

are
weights to be optimized (see text). The city block and the chessboard

� � ’s can be seen
as particular cases of 3x3 chamfer

� � ’s; that is, the chamfer-1-2 and chamfer-1-1
� � ’s,

respectively. In (b) are shown the masks for the 5x5 chamfer
� � ’s where

�
,
�

and � are
three weights to be optimized, and where some mask pixels, shown by a minus symbol ( � ),
are suppressed (see text).
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Distance Numerical Complexity Accuracy
Transform Comparison Op. Floating Pt. (MaxDiff)
� � �  � � � � � < � � � �T& & � � � � � 	 � < � � 	

-0.09 � � (1)& � �	� < ��& � � 	� � �  � � � � < � � � �T& � � �T&
& � � 	 � < � � 	
-0.29 � � (1)

Chamfer-
�
-
�
- � � � � < ��& � � 	 � < � � 	� � � � � � � , � � � � � � � , � � � � � � � “ “ -1.872% (2)� � �

,
� � �

, � � �K� “ “ 2.175% (2)
Chamfer-

�
-
�

�
� < ��& � � 	 � < � � 	� � � � � � � ,

� � � � � � � “ “ 4.491%(2)� � � �
,
� ��� �

“ “ 6.209% (2)� � �
,
� ���

“
� � � 	

13.40% (3)
Chessboard �

� < ��&
& � � 	
None 41.4% (3)

City block
�	� < ��&
& � � 	

None -58.6% (3)

Table D.1: Comparison of Distance Transforms (  � � ’s and
� � � ’s) for both numer-

ical complexity and accuracy.
� � ’s are ranked by accuracy performance. For chamfer� � ’s, the best real and integer weights are given. For numerical complexity performance,

both comparison and floating point operations are shown. The significance of the symbols
is: left-shift ( � � ), right-shift (

� �
), increment/decrement (

& & � �	� ), add(s)/subtract(s)
(
& � � ), compare ( � ), square root ( � ), divide ( � ). For accuracy performance, the maxi-

mum possible difference (MaxDiff) or error with respect to the true Euclidean distance is
given in percent (

�
) or in absolute pixel units, � � (i.e., the distance between two horizontal

or vertical pixel centroids). References for accuracy performance: (1) = [46], (2) = [150],
(3) = [28].
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Let us now consider the numerical complexity of these different
� � algorithms. We

first ignore the floating point operations; this eliminates the chamfer
� � ’s that use real-

valued weights. Thus, the fastest
� � is the city block

� � (because it uses the smallest
masks), but it is also the least accurate. In second place we find that the chessboard

� � and
the
� � �  � � have similar numerical complexity with a slight advantage for the chessboard� � . The

� � �  � � is slightly slower than the chessboard
� � , even though the latter

requires a visit to
� � �

more pixels, because the comparison operations for the
� � �  � �

are more complex than in the chessboard case. In fourth place follows the chamfer-23-33
which has comparison operations as complex as the ones for the

� � �  � � (if we neglect
the left-shift and the increment operations in front of the add/subtract operation), but which
requires a visit to

� � �
more pixels. In fifth place comes the � � �G � � and in last place is

the chamfer-5-7-11 (followed by any other chamfer
� � ’s defined on larger neighborhood;

e.g., 7x7 chamfer
� � ’s).

If we do consider floating point operations, then the city block
� � is still the fastest

followed by the chessboard
� � (they do not require any floating point operations). In third

place comes the chamfer-2-3
� � which does not require floating point operations because

the divide operation is a division by 2 (=
�
) which is simply implemented with a right-

shift. In fourth place comes either the
� � �  � � or the chamfer-23-33

� � depending on
whether or not a square root is faster then a divide operation on a given machine.12 Then
the � � �  � � , the 5x5 chamfer

� � ’s, and chamfer
� � ’s for larger neighborhoods, follow

in that order.
In the worst possible case, with respect to the numerical complexity of the  � � ’s,

where increment/decrement operations are not significantly faster than add/subtract per one
and square root operations are slower than (floating point) divisions, we can still say that the
� � �  � � is faster than any

� � � defined over neighborhoods larger than 3x3. Similarly,
the � � �G � � is faster than any

� � � defined over neighborhoods larger than 5x5. Con-
sidering the inaccuracy of

� � � ’s and their relative lack of speed improvement compared
to the  � � ’s it seems that for practical applications they have little to offer.

The only possible advantage of
� � � ’s over  � � ’s is that they have lower memory

requirements. An efficient implementation of an  � � algorithm like the one we have
described in section D.1, requires three times more space than the

� � � ’s (to store the
vector image

�
� ). However, the extra information we obtain might be very useful (other

than the fact that
�

� gives us exact Euclidean distances at a low numerical complexity). For
example, because we store both the

�
and � distance values and their signed orientation

(given by
� ( and

�
� ), we always know the exact position of the nearest background pixel

for any object point. This information can become particularly useful when employed
in conjunction with the skeleton of the object (Chapter 5). This information permits us

12For example, on our standard equipped SUN 3 workstation, square root operations are faster than (floating
point) divide operations. However, if we use a look-up table to bypass the square root computations ( � D.1),
the �

���
� ��� is definitely faster than any chamfer- � - � that requires floating point divisions.
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to directly recover the complete boundary from the skeleton, thereby yielding the Inverse
Grassfire Transform [25].

D.2 The Distance Surface

In this section we briefly give definitions and properties related to the notion of a distance
surface. See [69] for proofs and more extensive details.

We call a distance surface a surface � � � � ��� �
	
such that

�
is a solution of the following

differential equation:13

� � � 	 < � � � �
� �  < & � � �

� �  < � � � (D.8)

Let � be the base set (or object contour) on which
� �������
	 � �

. An associated set at� ����� � 	 ���
, where

�
is a constant, consist in planar curves ��� which are parallel to � at

a signed distance
�

from � . The orthogonal trajectories (i.e., the directions of maximal
gradient of � � �

) of these level curves are straight lines. These straight lines emerge
from the base set � . Therefore, � � �

is a ruled surface generated by such a set of lines.14

These lines make an angle � � with the
�

-
�

plane (i.e., the slope of a tangent to these lines is
always of magnitude one). Furthermore, � � �

is also a developable surface (i.e., it can be
rolled out flat onto a plane) which implies that any of its regular point has a null Gaussian
curvature [37]. This is easily understood if we note that, at any regular point of � � �

, one
of the principal directions is always along an orthogonal trajectory of a level curve ��� (i.e.,
a straight line). Therefore the corresponding principal curvature is null.

From equation (D.8) we have directly that the gradient magnitude of � � �
is constant

and equal to one at all regular points (i.e., � � � � � � ). Furthermore, the directions in
which this gradient magnitude of � � �

is maximal and equal to one are, by definition, the
directions of the orthogonal trajectories of the level curves ��� . Therefore, � � �

varies with
the Euclidean distance along these orthogonal trajectories (i.e., straight lines of unit speed).
In other words, the maximal slope amplitude of � � �

is always along these orthogonal
trajectories (direction of maximal gradient). At singular points (i.e., non-regular points
where ?	�? ( and ?
�? � are undefined), � � �

is the radius of curvature of � (i.e., the center of
a maximal inscribed circle).15 At these points the orthogonal trajectories emerging from �
intersect. We call these points of intersection ridge points of the distance surface � � �

.
In the following subsection we demonstrate that the slope along successive ridge points is

13This equation is known as the eikonal equation in geometrical optics [68].
14The projection of these lines onto the � - � plane correspond to the “pannormals” of Blum (Chapter 5,

� 5.4.1).
15This is not necessarily true: a medial symmetry depends of two or more contacts irrespective of the local

curvature at each such contact point (erratum, February 2003).
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always smaller in magnitude than the maximal slope at regular points of � � �
, this being

a consequence of the fact that ridge points do not belong to the minimal path, that is, a path
of minimum distance, of any other point [86].

D.2.1 Ridge Points of the Distance Surface

Let us define a symmetric axis segment to be a finite length 3-D curve (opened and non-
planar) which trace consists of a connected set of ridge points. The trace of this curve is
constrained to be on the distance surface � � � ����� � 	

. Since the orthogonal trajectories
of
�

are of unit speed, the slope magnitude along a tangent to a symmetric axis segment is
necessarily less than one. This follows from the distance constraint imposed on ridge points
(i.e., being part of � � �

). For example, consider two ridge points
� :

and
� < separated by

a distance � � (arc length) along the symmetric axis segment (Figure D.3). By definition,
� :

and
� < are at a minimal distance

1 :
and

1 < , respectively, from the base set � . Let us assume
that

� < is farther away from � than
� :

; that is:

1 < � 1 : � � \ 1 < � 1 : & � 1 � (D.9)

At
� < , because of the minimal distance constraint, we have the following:

1 < � 1 : & � � � (D.10)

Therefore, combining equations (D.9) and (D.10), we get:

� 1 � � � � (D.11)

But the average slope magnitude, � � , along the ridge from
� :

to
� < is simply:

� � �
� � � < 	 � � � � : 	

� �
� � 1

� � � (D.12)

Therefore, equations (D.11) and (D.12) imply that � � is necessarily lesser than one. The
same result holds in the limit as

� < is chosen to be closer and closer to
� :

; that is, as � �
tends to zero,16


 � � � ���,���� E �
1 � � � 	
� �

� � � (D.13)

where

 � is the slope magnitude at any ridge point, and � 1 � � � 	 is equal to the difference

between
1 < and

1 :
(equation (D.9)) but varies as � � tends to zero. Therefore,


 � is taken
along a tangent to the symmetric axis and is always smaller than one.

16If, as � � ��� � , � � becomes smaller than � � (i.e., � is nonmonotonic along the ridge from � � to � � ), we
then simply reverse the roles of � � and � � and our result still holds.
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Figure D.3: The slope magnitude of the symmetric axis (S.A.). The figure shows two sym-
metry points (or ridge points)

� :
and

� < and their associated distances from the base set
� ,
1 :

and
1 < , respectively (only segments of the arbitrary base set � are shown). Two lines

of minimal distance from � are shown to converge at
� :

and
� < , respectively (correspond-

ing to the intersecting orthogonal trajectories emerging from � ; see text). � � is the length
between

� :
and

� < along the ridge (or S.A.).

D.3 The Snake Model and the Distance Surface

In this last section we show how we can improve the computations when applying the
snake model to a distance surface seen as a potential surface (Chapter 5,

�
5.3.1) by taking

advantage of the properties of such a surface obtained with an  � � .

� The slope of the distance surface is implicitly normalized (in magnitude). At regular
points it is bounded by one, while at singular points (or ridge points), if evaluated
over a discrete neighborhood, it will always be smaller than one (i.e., the steepest
slope corresponds to an angle of � � ).17 Therefore, we avoid the “slope normalization
step” that was required in the general case (Chapter 2,

�
2.7).

� We can use a signed  � � algorithm to our advantage to directly evaluate the slope
at any regular points of the distance surface. We employ the three entries of the
extended image vector

�
� (equation (D.3)) which give us the

�
(
� ( ) and � (

�
� )

17Note that this is not directly related to the property of the slope of the symmetric axis of being smaller
than one as given by equation (D.13). For example, we can evaluate the slope at a ridge point by looking
at the first differences in both � and � directions. Because the distance surface folds at this point into two
local distance surface patches (i.e., patches of the distance surface made of regular points only) the slope is
averaged over both patches and is always less than unity.
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directions (both signed) and the distance amplitude (
� < ). The directional slopes in

the
�

and � directions (
� ( and

�
� ) are then simply evaluated as follows:

� ( � � (� � < � � �
�

�
�� � < �

Obviously these equations are not valid at ridge points (where
� ( and

�
� are unde-

fined). Nevertheless, we can still evaluate
� ( and

�
� and observe variations from

expected behavior if these points were regular points. For example, we can observe
how the computed orientation of the slope (

� �
angle given by (

� ( � � � )) varies over
the iterations (when simulating the grassfire propagation). If we are in a region con-
sisting of regular points only, the orientation will change smoothly (ideally along an
orthogonal trajectory or pannormal). However, in the case of a neighborhood cen-
tered at a ridge point, the orientation

�
will change abruptly (corresponding to the

intersection of pannormals). When such a case is detected, we can backtrack (i.e., re-
set a snaxel to the previous position) and evaluate the directional slopes on the basis
of finite differences.

� The spatial sampling of snaxels (i.e., the number of snaxels per arc length unit) along
a snake segment can be efficiently updated by observing how the convergence of
pannormals18 influences the snaxels’ inter-distance, � � . Snaxels should follow the
directions imposed by pannormals when evaluating

� ( and
�
� . Therefore, for each

snake segment, we propose the following two heuristics to reset snaxel sampling. If
the average � � (averaged over all snaxels of a snake segment) becomes lower than a
desired limit, then the number of snaxels is reduced. This may be the case of a snake
segment initialized on a convex contour segment (e.g., circular arc). Otherwise, if the
average � � becomes larger than a desired limit, the number of snaxels is increased.
This may be the case of a snake segment initialized on a concave contour segment.
Furthermore, this resampling procedure permits us to keep the stiffness parameter8;: � � 	

constant thereby simplifying the snake computations (Chapter 2,
�

2.7).

18Three cases are possible: the pannormals converge (i.e., they emerge from a convex contour segment),
they remain parallel (i.e., they emerge from a straight contour segment), or they diverge (i.e., they emerge
from a concave contour segment).
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