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The Shock Scaffold
— A directed graph hierarchy for the 3D medial axis and shape:

The Symmetry Set (SS) is the closure of the locus of centers of spheres tangent to smooth surface patches
in two or more loci; such bitangent spheres are called “contact spheres.” The Medial Axis (MA) is the subset
of the SS for which all such spheres are maximal, i.e., such that no other contact spheres are contained in them.?

A classification of MA points was introduced by Giblin and Kimia [6, 7], which we now summarize. Let
A7 denote a circle (in 2D) or a sphere (in 3D) osculating a boundary element at » distinct points, each with
k + 1 degree of contact, Figure 1: k = 1 denotes regular tangency; k = 2 denotes a sphere of curvature for a
surface patch; k& = 3 denotes a sphere of curvature at a ridge point; & = 4 denotes a sphere of curvature at a
turning point of a ridge, etc. [8, Ch.6]. Only odd orders of contact (i.e., k = 1, 3) can contribute to a MA type
of shock, that is, as being the center of a maximal sphere. Then, a classification based on the number and order
of contact [6] leads to five principal types of shock points: A2, A3, A3, A and A; A3 (Figure 1).

1. A? contact: this is a sphere with two ordinary A; contacts. The local form of the A% is such that the
centers of the contact spheres trace a surface, called sheet, which is locally smooth.

2. Aj contact: this is the limiting case of two A? points which come together; it corresponds in 2D to the
center of curvature at a curvature extrema and in 3D to rib curves associated to ridges on the boundary.

3. A? contact: the contact sphere has three ordinary A; contacts. The local form is one where three sheets
come together at a curve, i.e., choosing any 2 of these 3 tangency points and moving the sphere so that it
remains bitangent to the bounding surface at points close to these two, results in a smooth sheet of the SS
or MA for each pair.

4. A, Az contact: it contains the centers of spheres which have contact with the surface in two places, one
near the original Ay point (i.e., ordinary tangency) and one near the As rib point. Furthermore, at an
A; A3 point, an A3 curve also “terminates” together with the A3 curve.

5. Af contact: the contact sphere has four ordinary contacts, which is generic, i.e., four points in space
determine a unique sphere (such that they are not co-linear nor co-circular). At the center of the sphere
passes six smooth sheets of the MA (i.e., 6 distinct pairs from 4 contact points). An alternative view
of this event, is as the combination/intersection of four A% curves (i.e., 4 distinct triplets from 4 contact
points).

Two observations are significant here. First, the topology of each of these types is as follows: A? points
are interior points of a medial surface, called “sheet;” A3 points organize into curves representing ridges on
surfaces and are the “exterior” boundary of MA sheets, called “ribs” or “skeletal edges;” A3 points organize
into curves which are the intersection of three A? sheets — these curves often correspond to “generalized axis”
as well as to “interior” boundary of MA sheets, and are sometimes called “seams” or “axial curves;” A% and
A1 Az are isolated points where four A3 or a pair of A% and Aj curves intersect, respectively

Extract from Frederic Fol-Leymarie’s Ph.D. thesis [9, Ch.3].

2Contact with isolated input points is taken as the limit of a contact with tiny spheres having radii shrinking to zero. The maximality
criterion is equivalent to “emptyness,” i.e., a maximal contact sphere is such that it contains no other input points.

3This notation corresponds to the one used to describe singularity varieties of minima functions of three variables in the Singularity
Theory of Dynamical Systems, e.g., see the works of Arnold [1]. The “A” comes from the relation to the simple Lie groups of type A.
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Figure 1: lllustration of the notation A} based on contact of a curve with a circle (from [6]). & + 1 counts order or degree
of contact (indicated by straight short dark segments): A; is regular tangent contact, A» is regular “curvature” contact,
Aj3 is a curvature maximum contact. The superscript n counts the number of contact points, so that A? means two A,
contacts. A similar definition holds for the contact of surfaces with spheres.

Shockflow | 1 | 2 3 4
Sheet A3-1| A?-2 A3-3 A4
Ridge As—1| Az-2 Asz-3 Az—4
AXxis A3-1| A3-2 A3-3 A3—4

Rldge end - A1A3—2 | AjA3—3 | A1A3—4
Axis end - Al-2 A$-3 At—4

Table 1: Final classification of 18 possible shock points based on contact with spheres, A%, and flow type.

The shock structure arises from a “dynamic” interpretation of the MA, as the locus of singularities — or
shocks — formed in the course of wave propagation from boundaries with associated direction and speed of
flow — as in Blum’s grassfire [4]. The flow for each M.A point is defined in the direction of increasing radius,
r, of associated maximal contact spheres in a neighborhood of that point. Flow is thus a vector field, taken as
the projection of the gradient of r on the MA: Vr - T', where T defines the tangent space to the MA sheets and
curves. This flow itself can have singularities, and shocks thereby can “flow” along sheets (4?2) or curves (A3
and A?) in various ways, as summarized below.

Regular shock (or 1st order): A shock point at which flow goes through smoothly: (i) along a sheet: A2—1;
(ii) along a curve: A3—1, A3—1.

Shock source (2nd order): A shock which initiate flow: (i) along a sheet: A2—2; (ii) along a curve: A$-2,
As—2; (iii) at a vertex: A1 A3—2.

Shock relay (3rd order): A shock which is both a source and sink for the flow: (i) for a sheet: A2—3; (ii) for a
curve: A3—3, A3—3; (iii) for a vertex: A1—2, A1—3, AjA3—

Shock sink (4th order): A shock at which flow type terminates: (i) for a sheet: A2—4; (ii) for a curve: A$—
Az—4; (iii) for a vertex: Af—4, AjAz—

This classification of the MA into eighteen types of shock points (Table 1) leads to a powerful graph structure
for its representation, where regular shock points need not be traced explicitly.

Our goal is to propose a small set of representations built from the MA and to make explicit a 3D graph
whose nodes are taken from the set of 15 types of shock singularities, i.e., sources, relays and sinks, and whose
links connect the selected nodes. We start with a general hypergraph which includes all special points as nodes,
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special curves as links, and sheets as hyperlinks. We then present coarser versions where hyperlinks have been
removed, therefore leaving a graph which is the shock scaffold proper, i.e., made of shock point singularities
as nodes, and linked by curve segments forming in space a structure resembling the scaffoldings used to erect
buildings. We follow standard definitions of hypergraphs and graphs from the literature (e.g., see [2, 3]); which
are constructed from the pair “nodes and (hyper)links.” First, we define the elements we will use to construct
the various representations in the hierarchy, i.e., nodes, links, and hyperlinks.

Definition 1 (Shock nodes, P) The set of shock nodes, denoted P, is comprised of shock sources, relays* and
sinks for shock curves and vertices, i.e.: A3—2, A3-3, A3—4, A3—2, A3—3 and A3—4 points for curves, and
all remaining types of A; A3 and A} points for vertices.

Definition 2 (Shock (curve) links, L) A shock link, L, for each curve segment between two shock nodes is an
ordered (by the radius function) pair of these two shock nodes, and it has attributes describing its geometry and
dynamics.

Definition 3 (Shock (sheet) hyperlinks, H) A shock hyperlink H for each sheet is the ordered, cyclic set of
shock nodes of its associated bounding curves and vertices. A hyperlink is attributed with geometry and dynam-
ics of the sheet.

Note that a hyperlink therefore gives an orientation to the shock sheet. We can now define the first level in
our hierarchy, which augments the AMA with a directed graph structure.

Definition 4 (Augmented shock scaffold, SC™) The augmented shock scaffold, denoted SC™, is the MA
augmented with the set of shock nodes, P, connected by links L and hyperlinks H.

The advantage of the augmented graph structure over the (“classical”) trace of the MA is that it organizes the
MA information into groups and specifies their connectivity. It is precisely the connectivity among these groups
which contains the qualitative information, while the remaining information allows for an exact reconstruction
or an approximation of the shape from the shock hypergraph [5]. If we drop from this SC* the hyperlinks, H,
which contain the explicit representation of the sheets and their interior, we are left with an “ordinary” graph
structure which defines the connectivity among the retained shock nodes via explicit links only. This graph
summarizes the MA (Figure 2).

Definition 5 (Shock scaffold, SC ) The shock scaffold is a geometric directed graph, denoted SC, with nodes
P and links L.

In general, the shock scaffold will be connected, i.e., each node in P will be reachable from other nodes
via a chain, i.e., a succession of links where we allow navigation against the radius flow.® When the initial data
consists of closed boundaries delimiting compact objects, the shock scaffold will be broken into separate sub-
graphs for the interior of each such object as well as for the exterior region; each sub-graph will be connected.
The shock scaffold is not a tree in general, i.e., it contains circuits (chains of links forming closed loops).

“Note that relays for the flow which correspond to degeneracies — i.e., at which the flow travels at infinite speed — can be represented
by an arbitrarily selected point along this shock “relay.”
5The shock scaffold is not strongly connected [10, p.29] in general, i.e., there exists no directed paths between certain pairs of nodes.

3of7



The shock scaffold by Frederic F. Leymarie, Oct. 2002

q A A,
5 i (ridge)
(axi 51) - (ridge) (axis)
A4,
e (node)
(node) e
Al
(sheet) | .As
(ridges) (ridges)
(b) — — © -

Figure 2: The 3D augmented shock scaffold, SC™, is illustrated for a truncated tetrahedron, which has 8 nodes, 7 links
and 9 hyperlinks. The dark broken lines are surface ridges (43), the smaller dots are surface vertices (A; A3), the larger
nodes are A} shocks, the interior links have arrows to indicate flow (all 43’s here), the hashed sheets are hyperlinks (A42;
not all shown). Sketches of SC™ in (b) and SC in (c) for a branching structure which at the top is a cylinder whose base
grows from a triangle to an ellipse, and which splits into two cylindrical structures with elliptic bases (only the hyperlink
interior to the shape is shown).

Despite the lack of an explicit representation of sheets, from the shock scaffold alone we are still able to
get a fairly good idea of the shape of the object due to the remaining connectivity (Figure 5). The MA can
be approximated by interpolating the missing M.A sheet points, by stretching smooth elastic surfaces over the
links L, much as is done when a “tent” is constructed from its scaffold. If we also make the representation of
shock curves implicit, we obtain a simpler graph.

Definition 6 (Reduced shock scaffold ) The reduced shock scaffold, denoted SC~, is the SC where link at-
tributes (i.e., geometry and dynamics) have been discarded.

The reduced and “ordinary” shock scaffolds have common (graph) properties (of being connected, etc.).
This three-tier hierarchical representation for the MA, where SC* D SC O SC, is illustrated in Figure 3.

We also note that at the very coarsest level only connectivity amongst nodes need be retained. That is,
we could do away with the geometry of nodes and define a strictly abstract graph, where a node is simply a
representative of a sheet, curve or vertex. We call this representation, void of geometry, the topological scaffold,
and denote it 7S (Figure 4.(b)).”

Finally, we can further characterize shock sheets’ interior by building a network connecting their nodes
together with the nodes at the boundaries of sheets, i.e., with nodes of bounding curves and vertices, thereby
defining a “full” shock hypergraph, denoted SH (Figure 4.(a)).

5Note that, although we represent the classical view of the AM.A without distinguishing medial curves and vertices, some authors do
define the M.A with an explicit identification of these, particularly in the domain of CAD (e.g., see [12, 11]).

"Note however, that we use the geometry of shock nodes in the construction of the shock scaffold itself [9, Ch.4]. And then, the
geometry of nodes proves also useful in applications such as surface recovery [9, Ch.6].
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Figure 3: From the “classical” MA static representation to the shock scaffold. (a) Typical situation in 3D, where three
medial sheets intersect into a medial curve. (b) Equivalent representation by the augmented shock scaffold, where shock
nodes along curves are connected by directed links; hyperlinks cyclic order is indicated by a counterclockwise arrow. (c)
Representation by the shock scaffold, where the interior of sheets is implicit. (d) Representation by the reduced shock
scaffold, where the trace of shock sheets and curves is implicit. Red points correspond to shock (or MA) vertices, i.e., A}
or A; A3. Green points correspond to shock sources of curves, e.g., 43 —2 points.
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Figure 4: Possible additional levels in the shock scaffold hi- links stripped of geometry.
erarchy. (a) The shock hypergraph adds to SC sources, relays V; TS Set of nodes and links
and sinks of shock sheets (indicated as blue dots) and links .

stripped of geometry.

amongst these as well as with respect to the sheet boundaries.

(b) The topological scaffold is obtained from the SC when only Table 2: The complete scaffold hierarchy is com-
the topology of the graph structure is preserved. prised of five levels.
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Figure 5: The augmented shock scaffold, SC™, of a rectangular box sampled by 7326 points (a) is depicted in (b). The
flow along sheets is shown using the color spectrum, where blue means close to the boundary, and red means as far as
possible. In (c) the geometry for the interior of the shock sheets is left implicit, and (A$) axial curves at the intercepts of
shock sheets are shown in pink, while (As3) ribs at the boundaries of shock sheets are shown in blue. This synthetic example
serves as a prototype of many real shapes, such as the pot sherd in (d) which can be thought of as a deformed rectangular
box with additional surface perturbations (approximatively 40.000 point samples here, obtained by laser scanning). SC*
of this sherd is shown in (e) with the flow along sheets color-coded similarly to (b) where the missing colors of the spectrum
correspond to the symmetries away from the concave part of the pot sherd (not shown here); white dots indicate input data.
In (f) is shown the corresponding SC (input point samples in black).
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