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Introduction

A new unsupervised Bayesian clustering model ex-

tracts classified structural segments, intro, verse, cho-

rus, break etc., from recorded music. This extends pre-

vious work by identifying all the segments in a song,

not just the chorus or longest section, and by incor-

porating prior information on the temporal extent of a

segment. We present experimental results demonstrat-

ing that this method can produce accurate labelled

segmentations for popular music.

Signal Preprocessing

We generate a sequence of low-level symbolic states

from the audio by first generating a cepstrum, then

modelling each song with a 60-state HMM (using

Baum-Welch training and generating the maximum-

likelihood decoding). The cepstrum is generated by

taking a constant-Q power spectrum with 1
8th-octave

resolution, taking the logarithm of the spectral power

and performing PCA on the cepstral shape, retaining

the 20 principal components.

Wolff algorithm

Wolff’s algorithm was designed to simulate Ising, Potts

and x − y systems near critical temperatures without

the critical slowing down: it does so by doing block

updates, rather than single-site changes. Additionally,

it is tuned so that proposed steps are always accepted.

Our Wolff-Gibbs algorithm involves a Wolff domain

growing phase, followed by a block-Gibbs sampling

step updating the entire domain: first choose a ‘seed’

site; then grow from the seed with exponential prob-

ability in both directions (with a cut-off at current

boundary positions); finally, choose a segment label

from the lexicon (or, equivalently, one segmentation

from a clique) with probabilities proportional to the

prior multiplied by a boundary counting factor.

Cliques
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Histogram Clustering

By considering each segment in the signal to represent

a distinct process for generating the low-level features,

we are drawn towards the notion of observing dis-

tinct frequency distributions of our preprocessed fea-

tures (the HMM states). Taking windowed histograms

of the HMM state sequence, we can then compute

the likelihood of the ith histogram with class ci and

class-conditional state distribution Ajci
, leading to the

model energy for assignments c of

ε(c, θ) =

L∑

i

M∑

j

K∑

k

δkci
Xji log

Xji

Ajk
− log p(c). (1)
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Block Segmentation

We consider an energy function εH for segment du-

rations x, parametrized by ν and γ (generalizing

Gamma-like distributions)

εH(x, ν, γ) =
1

|ν|
x−ν + (γ + 1) log x, (2)

and take the prior probability for a segmentation c into

i segments with length leni(c) as

p(c) ∝
∏

i

e−βεH(leni(c),ν,γ). (3)

This prior represents the segment duration model, and

augments the energy function from the probability dis-

tribution model (1) to produce the final target distri-

bution.
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Performance measures

We can use a directional Hamming distance dGM by

finding for each segment in the machine segmentation

Si
M the segment in the ground truth S

j
G

with the max-

imum overlap, and then summing the difference,

dGM =
∑

Si
M

∑

Sk
G 6=S

j
G

|Si
M ∩ Sk

G|, (4)

and taking 1 − dGM

L as a measure of recall. Taking the

other direction of the Hamming distance dMG analo-

gously gives a precision-like measure in terms of frame

classification, although note that we have considered

only the correspondence between the extents of each

segment, not their labelling.

Summary statistics

Given precision P and recall R, it is common to use a

measure which combines the two. One way, balanc-

ing precision and recall and treating them as equally

important, is to use the F statistic given by

F =
2PR

P + R
(5)

Results

Segment precision vs. recall for our test corpus. The

line corresponds to F = 0.75.
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Future Work

We can refine the treatment of the inter-class dynamics

by allowing each class to have its own characteristic

timescale – chorus and verse sections typically last

longer than bridges – or by having non-uniform

transition probabilities between classes. The temporal

dynamics within a segment are presently unmodelled;

only the overall distribution of HMM states is ac-

counted for. This prevents us from detecting repeated

segments within the model, and leads us to consider

explicit modelling of the multiple levels of hierarchy.

We could improve performance and reliability by in-

troducing information from different modes of prepro-

cessing the audio: using information from an onset or

beat-detector to bias domain growing towards onsets

or even eight-bar boundaries.
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