
User-extensible sequences

Christophe Rhodes∗

December 13, 2006

Abstract

Common Lisp is often touted as the programmable programming language, yet it some-

times places large barriers in the way, with the best of intentions. One of those barriers

is a limit to the extensibility by the user of certain core language constructs, such as the

ability to define subclasses of built in classes: even where this could be useful with minimal

penalties. We introduce the notion of user-extensible sequences, describing a protocol which

implementations of such classes should follow. We show examples of their use, and discuss

the issues observed in providing support for this protocol in a Common Lisp.

1 Introduction

Common Lisp is recognized as being an extremely flexible language: one in which linguistic
experimentation can take place, one where the method of solving a problem in a domain is first
to write an interpreter or a compiler for a language to express concepts in the domain of interest,
and then to use that domain-specific language to solve the problem. To some extent, then, it
might be surprising to find that the Common Lisp language itself is only conformingly extensible
(by the implementor or user) in limited ways. This is at least partially explained by the aims of the
standardizers, which included “stricter standardization for portability” (Pitman and Chapman,
1994, section 1.1.2): codification of existing practice was a large part of the X3J13 committee’s
work, and it is difficult to ensure portability with a highly-extensible language core.

However, the standardization process was not intended to close the door to language devel-
opment: merely to provide a stable platform which could be agreed on. For example, the CLOS
system for object orientation was standardized without very much scope for extensibility; how-
ever, it was intentionally (Steele, 1990, chapter 28) upwardly compatible with something close to
the Metaobject Protocol described in Kiczales et al. (1991), which is often (though not always)
supported by contemporary Lisp implementations.

Meanwhile, other languages and language environments have not stood still; many of Lisp’s
once-unique features are now to be found in other languages (Norvig, 2002), though some are
still not1; additionally, sometimes these languages have features not found in any available Lisp
implementation. In some cases, such as Aspect-Oriented Programming (Kiczales et al., 1997)
these features can be straightforwardly implemented by any interested user – this itself is one
of Lisp’s unique features not often found elsewhere – but some features need implementation
support for them to be used to maximum effect: addition of features by the Lisp programmer
can suffice for certain needs, but they are not pervasive in the way that one would want; such
extensions, even upwardly-compatible extensions, need to be explicitly used by third-party code.

∗Goldsmiths, University of London, New Cross Road, London, SE14 6NW. e-mail: c.rhodes@gold.ac.uk
1and it has been argued that their inclusion would convert their host language into a Lisp of some form.

1

mailto:c.rhodes@gold.ac.uk

(defun foo (x)

(handler-case

(etypecase (ignore-errors (make-sequence x 8))

(null ...) ; make-sequence threw an error

(list ...)

(vector ...))

(type-error (c)

;; we get here if make-sequence returned a

;; non-list non-vector

(error "BUG: system threw ~S on ~S" c ’make-sequence))))

Figure 1: How to detect violations of the contract of make-sequence

One such extension is the ability for the user to define new sequence types. While it is
possible to recommend ways of accessing and iterating over both Common Lisp sequences and
other objects in userspace, there is no way of having those other objects (conceptually sequences
though not of type sequence) seamlessly interoperate with the standard Common Lisp sequence
functionality, or with third-party code which does not follow the recommendation. Additionally,
such a userspace implementation is inconvenient, as there are portions of the sequence func-
tionality in Common Lisp which are tedious or tricky to implement2; it is more convenient to
require implementation of a few simple methods. Possibly most importantly, the need for new
names for essentially the same concept – such as climacs-buffer:size and flexichain:nb-

elements (Strandh et al., 2004) for length; or, worse, tabcode-syntax:buffer-position-if
(Rhodes et al., 2005) for position-if, to take examples from real-world code – is a barrier
to clear expression and understanding of Common Lisp code which defines objects which are
conceptually sequences, and we aim to remove this barrier with this proposal.

In what follows, there will be reference to new operators without explicit package prefixes:
in such cases, the symbols’ package should be assumed to be the sequence package. A number
of new operators have the same name as standardized operators of Common Lisp; except in
appendix C, the operator without an explicit prefix should be taken to mean the Common Lisp
operator, while the new operators will have an explicit sequence: prefix.

The rest of this paper is organized as follows: after discussing compatibility issues and related
work in sections 1.1 and 1.2, we give an introduction for the prospective user of extensible
sequences in section 2, and some examples in section 3, and some details of our implementation
are given in section 4. As a snapshot of our work in progress, a more formal specification of the
protocols is presented in appendix C, intended in the first instance to stimulate discussion rather
than to be the definitive specification.

1.1 Compatibility

The types [sic] vector and the type list are disjoint subtypes of type sequence, but
are not necessarily an exhaustive partition of sequence.

Pitman and Chapman (1994, System Class sequence)

Although the quote above might suggest that there would be no problem from the point of
view of standard conformance for an implementation to offer non-standard types of sequence,

2The author, in developing this extension, wrote the implementation first and test cases second: the test cases
revealed five implementation errors.

2

http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=position-if
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence

the outline code in figure 1, as a result of Issue CONCATENATE-SEQUENCE (Pitman, 1991), is defined
by ANSI CL never to get to the type-error branch of the handler-case, which was probably
not intended by the standardizers. For a fuller discussion of this issue, and a suggestion for a
resolution, see Rhodes (2006).

An additional issue is that ANSI CL specifies for the length function and the elt accessor
that their sequence argument should be a proper sequence, which is defined in the normative
glossary as a sequence which is not an improper list; that is, a vector or a proper list ; again,
this definition was probably not intended to prohibit non-standardized sequences, even though,
interpreted strictly, the second half of it implies that no non-standard sequence is a proper
sequence.

There is also the issue of cultural compatibility with the body of Common Lisp code available
in the wild. Perhaps because of the historical lack of generic sequences offered by Common Lisp
implementations, there seems to be little in the way of packages written to exploit the abstract
sequence data type; instead, packages choose a concrete sequence type and implement their
functionality atop that, manipulating a particular kind of sequence rather than sequences in
general3. However, it is likely that if user-extensible sequences become available, code will be
modified or written afresh to take advantage of it.

It would be possible to implement this proposal (or something like it) entirely portably (in
‘userspace’), by defining a new package shadowing many of the standard Common Lisp functions
and macros, and implementing the generic functionality on the standard types by trampolining
to the standard functions. However, such an implementation strategy has drawbacks:

• Implementation-specific compiler optimizations (such as compiler macros) for the shadowed
functions would essentially be lost. As an example, if an implementation has a specialized
implementation of map-into for arguments known at compile-time to be certain types of
vector, that optimization will go unused in a putative userspace implementation in function
calls to sequence-cl:map-into.

• The userspace implementation of extensible sequences would not interoperate with third-
party Common Lisp code: programs already written with generic (not necessarily user-
extensible) sequences in mind, using the common-lisp package, will not be able to inter-
operate cleanly with sequences defined using this portable implementation.

• Innocuous-looking uses of explicit package prefixes (such as in cl:sequence) would have
surprising and potentially difficult-to-debug effects. Other maintenance headaches include
how to support both native and portable implementations in library code.

A userspace implentation might be better than nothing, for a transition period, but support from
the Lisp implementation is required for seamless operation.

That said, there is an issue regarding portability of libraries using extensible sequences: until
it is ubiquitously implemented, use of this facility in bodies of code render those bodies of code
unportable in practice. Whether this unportability itself becomes a problem in practice is largely
a matter for the user community to decide.

1.2 Related Work

Much inspiration for this proposal was drawn from the Dylan (Shalit, 1996) iterator protocol,
which provides for iteration over collections with the open generic function forward-iteration-

protocol. Where our design is similar to this protocol, it is largely for the same reasons: we

3There are exceptions: for instance, the split-sequence library, designed by readers of news:comp.lang.lisp
in 2001, works without modification on generic sequences of the form described in this paper.

3

http://www.xach.com/clhs?q=type-error
http://www.xach.com/clhs?q=handler-case
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=sequence
news:comp.lang.lisp

do not wish to impose unnecessary run-time overhead (in space or speed) for those uses which
need high performance. However, in this proposal, we aim to provide a little more of a layer of
convenience for the user who does not need to minimize overhead.

Many other languages provide some form of iteration or collection protocol. Python, for
instance, allows the implementor of a collection to define a method on __iter__() to return
an iterator object, which itself must have methods on __iter__() and next(). Apparently
for reasons of efficiency, the Python iterator protocol (Yee and van Rossum, 2001) provides no
explicit means for checking for termination of an iteration, instead requiring the iterator to signal
an exception when next() is called on an iterator representing a terminated iteration.

The Scheme language (Kelsey et al., 1998) definition has little built-in support for extensible
or even generic sequences. Its community has made one attempt (Miller, 2004) at defining
an interface and conventions for collections; however, this SRFI has apparently not seen many
Scheme implementations decide to support it natively; as of two years after its finalization, the
SRFI status page reports no implementation as supporting it.

The Factor language’s sequence interface is conceptually very similar to that described in the
following sections for Common Lisp, including the distinction between sequence protocol (defining
the fundamental operations that sequences must implement) and ‘utility words’, analogous to
functions performing computations over sequences (Pestov, 2006, Sequences), which will work
on any object implementing the sequence protocol.

In the Common Lisp world itself, an early (pre-CLOS) attempt to provide generic sequence
functionality was presented in Haible (1988) for the GNU CLISP implementation; however,
that proposal was never formally exported or documented (Haible, 2006); the author’s primary
concern was in supporting the necessary operations efficiently. Some of these issues of efficiency
remain in this proposal, though we believe that they might be resolved in a Lisp implementation
supporting sealing and inlining of methods.

2 Supporting User-Defined Sequences

In this section, we must draw the distinction between the implementor of a sequence class, and
the implementation of Common Lisp which supports this user-extensible sequence facility. Most
of the time, we will use ‘user’ to mean the implementor of a sequence class, and ‘implementor’
to mean implementor of a Common Lisp implementation, and we hope that it will be clear from
context when this does not apply.

The names of the various operators have been chosen to maximize both backward- and
forward-compatibility (with Common Lisp as standardized and potential related extensions to
Common Lisp such as a collections protocol); we specify operators corresponding to standardized
functions such as find to be named like sequence:find, so that an implementation of Com-
mon Lisp ‘natively’ implementing this proposal can simply import the relevant symbols from
the sequence package4. Thus, we specify sequence:adjust-sequence rather than (setf se-

quence:length), so that an implementation can import sequence:length into the common-lisp
package without inadvertantly causing there to be a setf function for length, in contravention
of the standard (Pitman and Chapman, 1994, Section 11.1.2.1.1).

We also aim to be not incompatible with similar extensions to Common Lisp, such as a
protocol for accessing and iterating over general collections; in this proposal we are dealing
with user-defined sequence classes because Common Lisp as standardized has a large library of
functions acting on generic sequences, while it has no functions acting on generic collections –

4According to some interpretations of the standard, the implementation may not simply make sequence a
nickname for the common-lisp package, as the list of package nicknames is standardized as cl only.

4

http://www.xach.com/clhs?q=find
http://www.xach.com/clhs?q=setf
http://www.xach.com/clhs?q=setf
http://www.xach.com/clhs?q=length

sequence:length sequence:elt (setf sequence:elt)

sequence:adjust-sequence sequence:make-sequence-like

Table 1: The protocol functions which must be implemented for a sequence class.

and so a ‘userspace’ implementation of a collections protocol would not pose the interoperability
problems discussed in section 1.1.

2.1 Sequence Datatypes

The user can define a direct subclass of sequence using defclass, specifying sequence as one
of the superclasses (but not the only one: for code portable between implementations of this
proposal, standard-objectmust be in the superclasses list too). The resulting class is subtypep
sequence, and instances of the class are typep sequence.

The fundamental operations defined in Common Lisp which can be performed on a sequence
are length, elt, and (setf elt); in order to support these, the user of the extensible sequence
facility (the implementor of the sequence class) should define methods on sequence:length,
sequence:elt and (setf sequence:elt).

The set of functions making up the sequence protocol of this proposal (see table 1) con-
sists of the analogues to the three Common Lisp functions, and two others: sequence:adjust-
sequence, which is similar to the adjust-array function, but generalized to sequences; and
sequence:make-sequence-like, which creates a new sequence of the the same kind5 as its first
argument, with length given by its second argument.

The rationale for make-sequence-like is to support the subseq and copy-seq operators, and
sequence functions which are defined to return a freshly-consed sequence (such as substitute).
Additionally, this operator is easier both to specify and to implement efficiently than one like
the make-sequence function, which requires a full understanding of the Common Lisp type
system; make-sequence-like can operate as a simple generic function specialized on its sequence
argument.

To support the delete and delete-duplicates functions, we provide adjust-sequence,
which adjusts various properties, including the length, of a sequence. Users of this protocol
are encouraged to document the circumstances under which their methods on this operator
will preserve the identity of its sequence argument, and must arrange that if a new sequence
is allocated, the sequence argument must be unmodified; however, in general, callers (either
explicit or implicit) may not assume that the sequence returned from adjust-sequence is the
same sequence as its argument.

Once methods for these generic functions have been implemented for a sequence class, all the
regular Common Lisp sequence functionality will work as expected. However, some sequences
may not admit implementations of all these operations, or indeed might offer means to implement
certain operations more efficiently, so in the following sections we describe the protocol by which
the Lisp implementation provides the sequence functionality.

2.2 Iteration

It is common to iterate over sequences, both in the conception of many of the Common Lisp
sequence functions, and in user-defined operations. In this section, we describe the protocol

5Neither ‘type’ nor ‘class’ is quite right here, as cons and null are distinct types and classes, while both being
subtypes of the sequence type list.

5

http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=defclass
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=standard-object
http://www.xach.com/clhs?q=subtypep
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=typep
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=(setf elt)
http://www.xach.com/clhs?q=adjust-array
http://www.xach.com/clhs?q=subseq
http://www.xach.com/clhs?q=copy-seq
http://www.xach.com/clhs?q=substitute
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=delete
http://www.xach.com/clhs?q=delete-duplicates
http://www.xach.com/clhs?q=cons
http://www.xach.com/clhs?q=null
http://www.xach.com/clhs?q=list

and interface for iterating over sequence contents, both built-in and user-defined. The protocol
discussed here has a set of default methods specialized on the sequence class, so that any sequence
class for which methods on the protocol functions of section 2.1 have been implemented will obey
the protocol. However, these default methods cannot take into account the characteristics of the
sequence class, and so for efficiency users may wish to override them for their own classes.

The essential concept is of an iterator object to represent the current state of an iteration. It
is not necessary for this iterator object to have a distinguished class, as the sequence over which
it is iterating is present in all function calls in this protocol (and therefore its class can be used
for specialization of methods); indeed, the conceptual object is represented in this protocol by
three objects and six functions.

The make-sequence-iterator operator constructs one of these iterator objects: after the
required sequence argument, it accepts keyword :start, :end and :from-end arguments, and
returns nine values. The first three of those values are an iterator state, a limit and the from-end
argument; the remaining six are functions which, respectively, return a state one step ahead; test
the state against the limit for termination; retrieve the element at the current iteration state
from the sequence; set the element at the current iteration state to a new value; return the index
corresponding to the current iteration state; and return a distinct iteration state representing a
copy of the current one.

The default method on make-sequence-iterator is intended for convenience: for most uses,
it is unnecessary to construct the nine return values; instead, the default method (specialized
to sequence) on make-sequence-iterator generates the first three of the return values by
calling make-simple-sequence-iterator, and returns in addition six protocol generic func-
tions: #’iterator-step (which advances the iteration state); #’iterator-endp, testing an it-
eration for termination; the accessors #’iterator-element and #’(setf iterator-element);
#’iterator-index, returning the sequence index corresponding to the iterator state; and fi-
nally #’iterator-copy, returning a copy of the iteration state. These functions have methods
specialized to list and vector to provide iterators for the built-in sequence classes.

While implementors of sequence classes may choose to use this CLOS-based iterator protocol
(at the potential loss of efficiency through generic function dispatch at each step), users of the
iteration protocol (who define functions which perform iterations over sequences) may not assume
that the sequence class implementor has done so, and so must call make-sequence-iterator or
the operators discussed below.

A small amount of syntactic sugar around make-sequence-iterator is provided by with-

sequence-iterator, which binds as if by multiple-value-bind the variables in its first ar-
gument to the result of applying make-sequence-iterator to its second argument, and then
executes the body. A slightly simpler variant is with-sequence-iterator-functions, which
binds the six names in its first argument to six local functions (which have dynamic extent and
close over the return values from make-sequence-iterator) which perform the various iterator
manipulations.

For programmer convenience, we also provide a dosequence macro, behaving as dolist

(but for arbitrary sequences), and an extension for loop using the loop keywords element and
elements, in a similar fashion to the for-as-package loop path (Pitman and Chapman, 1994,
Section 6.1.2.1.7).

It is intended that the iteration protocol described here will be compatible with an iteration
protocol for general collections (including hash tables, trees and other similar data structures);
at the minimum, any such protocol should be able to specify its behaviour for sequences in terms
of the operators described here.

6

http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=multiple-value-bind
http://www.xach.com/clhs?q=dolist
http://www.xach.com/clhs?q=loop

Common Lisp Function Extensible Generic Function
copy-seq, subseq sequence:copy-seq, sequence:subseq
reduce sequence:reduce

reverse, nreverse sequence:reverse, sequence:nreverse
sort, stable-sort sequence:sort, sequence:stable-sort
count, find, position sequence:count, sequence:find, sequence:position
count-if, count-if-not sequence:count-if, sequence:count-if-not
find-if, find-if-not sequence:find-if, sequence:find-if-not
position-if, position-if-not sequence:position-if, sequence:position-if-not
search, mismatch sequence:search, sequence:mismatch
replace sequence:replace

substitute, nsubstitute sequence:substitute, sequence:nsubstitute
substitute-if, substitute-if-not sequence:substitute-if, sequence:substitute-if-not
nsubstitute-if, nsubstitute-if-not sequence:nsubstitute-if, sequence:nsubstitute-if-not
remove, delete sequence:remove, sequence:delete
remove-if, remove-if-not sequence:remove-if, sequence:remove-if-not
delete-if, delete-if-not sequence:delete-if, sequence:delete-if-not
remove-duplicates, delete-duplicates sequence:remove-duplicates, sequence:delete-duplicates

Table 2: Common Lisp functions, and the corresponding generic functions specified to be exten-
sible in this protocol.

2.3 Sequence Functions

For most of the functions in the sequences chapter of the standard, there is an analogous generic
function which can be specialized for user-defined sequence classes. The complete list of generic
functions specified to be extensible, and their corresponding Common Lisp function, is given in
table 2. Implementations may choose to make the Common Lisp function eql to the extensible
generic function, or even make the symbols themselves eql to each other; however, users may
not assume this.

The Common Lisp functions in table 3 are not extensible in this proposal; however, where
ANSI CL specifies that they accept sequence arguments, the implementation must accept any
user-defined sequence, and where ANSI CL specifies that they accept a sequence type-specifer,
they must accept a user-defined sequence name or class object (see also Rhodes (2006) for a
discussion of the implications of this with respect to the standard behaviour).

3 Examples

In this section, we present two examples of uses for the protocols discussed in this paper. Firstly,
in section 3.1, we present the implementation of a distinct sequence type along with the method
definitions to allow it to interoperate; then, in section 3.2, we demonstrate the definition of a
mixin class and methods specialized on it to provide additional functionality to generic sequences

some every notany notevery

map map-into concatenate merge

coerce make-sequence

Table 3: Common Lisp functions applicable or otherwise relevant to sequences which are not
specified as extensible in this protocol; however, the implementation’s versions are specified to
be applicable to arbitrary sequence types, and to produce the expected result.

7

http://www.xach.com/clhs?q=copy-seq
http://www.xach.com/clhs?q=subseq
http://www.xach.com/clhs?q=reduce
http://www.xach.com/clhs?q=reverse
http://www.xach.com/clhs?q=nreverse
http://www.xach.com/clhs?q=sort
http://www.xach.com/clhs?q=stable-sort
http://www.xach.com/clhs?q=count
http://www.xach.com/clhs?q=find
http://www.xach.com/clhs?q=position
http://www.xach.com/clhs?q=count-if
http://www.xach.com/clhs?q=count-if-not
http://www.xach.com/clhs?q=find-if
http://www.xach.com/clhs?q=find-if-not
http://www.xach.com/clhs?q=position-if
http://www.xach.com/clhs?q=position-if-not
http://www.xach.com/clhs?q=search
http://www.xach.com/clhs?q=mismatch
http://www.xach.com/clhs?q=replace
http://www.xach.com/clhs?q=substitute
http://www.xach.com/clhs?q=nsubstitute
http://www.xach.com/clhs?q=substitute-if
http://www.xach.com/clhs?q=substitute-if-not
http://www.xach.com/clhs?q=nsubstitute-if
http://www.xach.com/clhs?q=nsubstitute-if-not
http://www.xach.com/clhs?q=remove
http://www.xach.com/clhs?q=delete
http://www.xach.com/clhs?q=remove-if
http://www.xach.com/clhs?q=remove-if-not
http://www.xach.com/clhs?q=delete-if
http://www.xach.com/clhs?q=delete-if-not
http://www.xach.com/clhs?q=remove-duplicates
http://www.xach.com/clhs?q=delete-duplicates
http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=some
http://www.xach.com/clhs?q=every
http://www.xach.com/clhs?q=notany
http://www.xach.com/clhs?q=notevery
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=make-sequence

(defclass queue (standard-object sequence)

((%data :accessor %queue-data) (%pointer :accessor %queue-pointer)))

(defmethod initialize-instance :after ((o queue) &key)

(let ((head (list nil)))

(setf (%queue-data o) head (%queue-pointer o) head)))

(defgeneric enqueue (data queue)

(:argument-precedence-order queue data)

(:method (data (o queue))

(setf (cdr (%queue-pointer o)) (list data))

(setf (%queue-pointer o) (cdr (%queue-pointer o)))

o))

(defgeneric dequeue (queue)

(:method ((o queue))

(prog1 (cadr (%queue-data o))

(setf (cdr (%queue-data o)) (cddr (%queue-data o))))))

(defclass funcallable-queue (funcallable-standard-object queue)

() (:metaclass funcallable-standard-class))

(defmethod initialize-instance :after ((o funcallable-queue) &key)

(flet ((fun (&optional (new nil new-p))

(if new-p (enqueue new o) (dequeue o))))

(set-funcallable-instance-function o #’fun)))

Figure 2: Basic definitions of a queue data structure, including a funcallable variant.

implemented as in this paper.

3.1 Queue

As an example of a non-standard sequence, consider implementing a queue data structure, which
supports the operations enqueue and dequeue. Figure 2 shows one way in which such a queue
could be implemented, using a list as the storage for the data, and keeping a reference to the
cons cell at the back of the queue. Purely for interest, we also implement a variant of the queue
which is also funcallable, and arrange so that calling the funcallable queue with no arguments
performs dequeueing, while with one argument it enqueues that argument.

An implementation of the sequence and iteration protocol for a queue implemented in this
fashion is shown in figure 3. Note that we have not paid any particular attention to efficiency:
we could improve this implementation by storing the current length in a slot and by using
knowledge of the implementation in figure 2 to support make-sequence-like more efficiently,
without calling enqueue many times.

Given the code in figure 3, queues can be used wherever Common Lisp specifies that a
sequence is acceptable. For instance, one can ask for the position of an element in the queue
using position, with all the keywords (:test, :key, :start etc.) that the Common Lisp
function accepts; some examples are given in figure 4. Furthermore, this queue implementation
will potentially interoperate with bodies of code written for generic sequences, as long as there
are no uses of the formal interpretation of the requirements of make-sequence and friends.

8

http://www.xach.com/clhs?q=position
http://www.xach.com/clhs?q=make-sequence

(defmethod sequence:length ((o queue))

(length (cdr (%queue-data o))))

(defmethod sequence:elt ((o queue) index)

(elt (cdr (%queue-data o)) index))

(defmethod (setf sequence:elt) (new-value (o queue) index)

(setf (elt (cdr (%queue-data o)) index) new-value))

(defmethod sequence:make-sequence-like

((o queue) length &key

(initial-element nil iep) (initial-contents nil icp))

(let ((result (make-instance (class-of o))))

(cond

((and iep icp)

(error "supplied both ~S and ~S to ~S"

:initial-element :initial-contents ’make-sequence-like))

(icp (unless (= (length initial-contents) length)

(error "length mismatch in ~S" ’make-sequence-like))

(setf (cdr (%queue-data result)) (coerce initial-contents ’list))

(setf (%queue-pointer result) (last (%queue-data result)))

result)

(t

(dotimes (i length result) (enqueue initial-element result))))))

(defmethod sequence:adjust-sequence

((o queue) length &key initial-element (initial-contents nil icp))

(cond

((= length 0)

(setf (cdr (%queue-data o)) nil) (setf (%queue-pointer o) (%queue-data o)))

(t (sequence:adjust-sequence (%queue-data o) (1+ length)

:initial-element initial-element)

(setf (%queue-pointer o) (last (%queue-data o)))

(when icp (replace (%queue-data o) initial-contents :start1 1)) o)))

(defmethod sequence:make-simple-sequence-iterator

((q queue) &rest args &key from-end start end)

(declare (ignore from-end start end))

(apply #’sequence:make-simple-sequence-iterator (cdr (%queue-data q)) args))

(defmethod sequence:iterator-step ((q queue) iterator from-end)

(sequence:iterator-step (cdr (%queue-data q)) iterator from-end))

(defmethod sequence:iterator-endp ((q queue) iterator limit from-end)

(sequence:iterator-endp (cdr (%queue-data q)) iterator limit from-end))

(defmethod sequence:iterator-element ((q queue) iterator)

(sequence:iterator-element (cdr (%queue-data q)) iterator))

(defmethod (setf sequence:iterator-element) (new-value (q queue) iterator)

(setf (sequence:iterator-element (cdr (%queue-data q)) iterator) new-value))

(defmethod sequence:iterator-index ((q queue) iterator)

(sequence:iterator-index (cdr (%queue-data q)) iterator))

(defmethod sequence:iterator-copy ((q queue) iterator)

(sequence:iterator-copy (cdr (%queue-data q)) iterator))

Figure 3: Implementation of the sequence protocol for the queues of figure 2.

9

(length #[a b c d]) ; => 4

(count 1 #[1 2 3]) ; => 1

(remove-if-not #’oddp #{1 2 3}) => #{1 3}

(remove-duplicates #[1 2 3 4 5] :end 4 :key #’oddp :from-end t) ; => #[1 2 5]

#2a#{#[1] #(2)} ; => #2A((1) (2))

Figure 4: Examples of using the queues as sequences. For the #[and #{ reader macros and
queue print functions, see appendix A.

3.2 Undoable mixin

To illustrate possible uses of the sequence protocol discussed in this document, we present in
figure 5 a mixin for implementing some undo functionality for a sequence. The undoable-mixin

class contains a record slot, which records enough information to reconstruct the state of the
sequence before an operation; if the user calls the undo function on a sequence with this class
mixed in, the previous state of the sequence will be reconstructed using undo-using-record

methods. A more sophisticated version of this might be useful as a component of an editor buffer
implementation, for example.

For (setf elt), we record the index and the value at that index before performing the
mutation; clearly, this permits reconstructing the previous state of the sequence. For operations
such as fill and nreverse, we could simply make do with this (and an analogous change for
the setter function of the iterator protocol; see appendix B for that detail), but this would have
the consequence that a single logical operation such as fill would require multiple calls to undo

to undo the state.
Instead, therefore, for fill, we record the contents between the bounding index designators,

while for nreverse we need record nothing, as it is a reversible operation6. An alternative
strategy for grouping multiple primitive operations, used in the method for recording calls to
nsubstitute and delete, is shown in appendix B.

4 Implementation Details

We have implemented the above proposal in SBCL (Newman et al., 2000). The first aspect of
SBCL itself which needed to be modified was the type system: the system needed to be informed
that sequence was no longer simply an alias in that implementation of (or list vector), but
was an unsealed (that is, subclassable) class with its own identity in the type system; since
the SBCL compiler makes heavy use of type inference, both when compiling user code and
when cross-compiling itself, it was also important for it to know that the types (and sequence

vector) and (and sequence list) are equivalent to vector and list respectively, irrespective
of the extensibility of sequence.

Additionally, the declared return type of various sequence functions such as copy-seq needed
to be altered: SBCL has the type consed-sequence, which was previously aliased to (or list

(simple-array * (*))), expressing that (in SBCL) freshly consed vectors do not have fill-
pointers, are not displaced and are not adjustable. In an implementation supporting extensible
sequences, this type alias needs to be changed to (or (simple-array * (*)) (and sequence

6We assume for expository purposes that the destructive sequence functions such as nreverse act in-place on
the user-extended sequences in which this class will be mixed.

10

http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=fill
http://www.xach.com/clhs?q=nreverse
http://www.xach.com/clhs?q=fill
http://www.xach.com/clhs?q=undo
http://www.xach.com/clhs?q=fill
http://www.xach.com/clhs?q=nreverse
http://www.xach.com/clhs?q=nsubstitute
http://www.xach.com/clhs?q=delete
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=or
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=and
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=and
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=copy-seq
http://www.xach.com/clhs?q=or
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=simple-array
http://www.xach.com/clhs?q=or
http://www.xach.com/clhs?q=simple-array
http://www.xach.com/clhs?q=and
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=nreverse

(defclass undoable-mixin ()

((recording :initform nil :accessor recording)

(record :initform nil :accessor record)))

(defclass setelt-record ()

((index :initarg :index :reader index) (value :initarg :value :reader value)))

(defclass fill-record ()

((start :initarg :start :reader start) (end :initarg :end :reader end)

(contents :initarg :contents :reader contents)))

(defclass nreverse-record () ())

(defmacro without-undoing ((object) &body body)

‘(let ((old (recording ,object)))

(unwind-protect

(progn (setf (recording ,object) t) ,@body)

(setf (recording ,object) old))))

(defmacro define-undo-method (name arglist &body body)

‘(defmethod ,name :around ,(substitute ’(o undoable-mixin) ’o arglist)

(if (recording o)

(call-next-method)

(without-undoing (o) ,@body (call-next-method)))))

(define-undo-method (setf sequence:elt) (new-value o index)

(push (make-instance ’setelt-record :index index :value (elt o index)) (record o)))

(define-undo-method sequence:fill (o item &key (start 0) end)

(push (make-instance ’fill-record :start start :end end

:contents (subseq (coerce o ’vector) start end))

(record o)))

(define-undo-method sequence:nreverse (o)

(push (make-instance ’nreverse-record) (record o)))

(defun undo (object)

(undo-using-record object (car (record object)))

object)

(defmethod undo-using-record ((o undoable-mixin) (r null))

(error "Nothing to undo"))

(defmethod undo-using-record :after ((o undoable-mixin) r) (pop (record o)))

(defmethod undo-using-record ((o undoable-mixin) (r setelt-record))

(without-undoing (o) (setf (elt o (index r)) (value r))))

(defmethod undo-using-record ((o undoable-mixin) (r fill-record))

(without-undoing (o)

(with-accessors ((start start) (end end) (contents contents)) r

(setf (subseq o start end) contents))))

(defmethod undo-using-record ((o undoable-mixin) (r nreverse-record))

(without-undoing (o)

(sequence:nreverse o)))

Figure 5: Illustration of a simple implementation of undo for sequences: an undoable-mixin

class which can be mixed in to a sequence class, providing undo functionality (illustrated here
for (setf elt), fill and nreverse.

11

http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=fill
http://www.xach.com/clhs?q=nreverse

(not vector))) to correctly represent the implementation’s behaviour7.
After these modifications to the type system, the implementation of the remainder of this

proposal involved two distinct parts: modifying SBCL itself to insert calls to the sequence generic
functions, and implementing those generic functions in a userspace library. For reasons of con-
venience, it was decided to preserve a distinction between Common Lisp functions and their
extensible counterparts, trampolining to the latter if a sequence argument was neither a list nor
a vector; incremental development of the SBCL internals was eased by the use of a seq-dispatch

macro, taking a sequence argument and expanding into either two or three cases: one for when
the argument is a list, one when it is a vector, and (optionally) one for neither: the third case is
only executed when a generic sequence is encountered.

The various compiler transformations and optimizations of sequence functions (such as find,
position, map, coerce) were largely unaffected, as either the various checks on their applicability
were already restrictive enough, or else the optimizations performed were generic to all sequences.
The implementation of find and position (and their -if and -if-not) relatives needed a small
amount of alteration to allow the protocol for sequence:find and sequence:position described
in section C.3 to be implemented, while the implementation of map was improved in the process
of development, being rewritten to use dynamic-extent support, resolving a long-standing issue
in the system.

Support for defining subclasses of sequence from the customized PCL (Bobrow and Kiczales,
1988) which SBCL incorporates to implement CLOS was as simple as modifying the system
method for mop:validate-superclass to allow sequence as a direct superclass of classes of
metaclass standard-class and mop:funcallable-standard-class. Additionally, to support
the operations involving sequence type specifiers (such as map and merge), we used make-

sequence-like acting on the mop:class-prototype of the class named by the type specifier, if
that class was a subclass of sequence.

SBCL’s loop facility is based on the MIT implementation, so it was straightforwardly ex-
tended using the add-loop-path operator as follows:

(defun loop-elements-iteration-path (variable data-type prep-phrases)

(let (of-phrase)

(loop for (prep . rest) in prep-phrases do

(ecase prep

((:of :in) (if of-phrase

(sb-loop::loop-error "Too many prepositions")

(setq of-phrase rest)))))

(destructuring-bind (it lim f-e step endp elt seq)

(loop repeat 7 collect (gensym))

(push ‘(let ((,seq ,(car of-phrase)))) sb-loop::*loop-wrappers*)

(push ‘(sequence:with-sequence-iterator (,it ,lim ,f-e ,step ,endp ,elt) (,seq))

sb-loop::*loop-wrappers*)

‘(((,variable nil ,data-type)) () () nil (funcall ,endp ,seq ,it ,lim ,f-e)

(,variable (funcall ,elt ,seq ,it) ,it (funcall ,step ,seq ,it ,f-e))))))

(sb-loop::add-loop-path

’(element elements) ’loop-elements-iteration-path sb-loop::*loop-ansi-universe*

:preposition-groups ’((:of :in)) :inclusive-permitted nil)

7SBCL has a sophisticated understanding of the Common Lisp type system, so such complex types do not
cause difficulty in type inference.

12

http://www.xach.com/clhs?q=not
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=find
http://www.xach.com/clhs?q=position
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=find
http://www.xach.com/clhs?q=position
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=dynamic-extent
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=standard-class
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=loop

5 Conclusions

We have described an extension to Common Lisp to allow users to define their own sequence
classes in an interoperable manner, and have described the changes necessary to implement this
extension in a contemporary implementation. Additionally, we have attempted to justify the
need for this extension in terms of expressivity and parsimony, and given simple examples of
using it.

It is intended that a revised version of appendix C should be submitted to some suitable
forum for standardization of some form; it is likely that feedback gathered from discussion of
this paper will mean that there will be some changes in detail in the revision process, so users
should not rely on the description in this paper remaining authoritative.

Acknowledgments

The author thanks Nikodemus Siivola, Marcus Pearce, Eric Marsden, Peter Housel, Cyrus Har-
mon, Peter Graves, Paul Dietz and Pascal Costanza for fruitful and helpful discussions.

References

Bobrow, D. G. and Kiczales, G. (1988). The Common Lisp Object System Metaobject Kernel:
A Status Report. In Lisp and Functional Programming, pages 309–315.

Gray, D. N. (1989). Issue STREAM-DEFINITION-BY-USER. Failed Issue, X3J13, ANSI.
http://www.nhplace.com/kent/CL/Issues/stream-definition-by-user.html.

Haible, B. (1988). The Abstract Datatype Sequence. Technical report, University of Karlsruhe.
http://tinyurl.com/yy3eys.

Haible, B. (2006). personal communication.

Kelsey, R., Clinger, W., and Rees, J. (1998). Revised5 Report on the Algorithmic Language
Scheme. Higher-Order and Symbolic Computation, 11(1).

Kiczales, G., des Rivières, J., and Bobrow, D. G. (1991). The Art of the Metaobject Protocol.
MIT Press.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and Ir-
win, J. (1997). Aspect-Oriented Programming. In European Conference on Object-Oriented

Programming, pages 220–242.

Miller, S. G. (2004). Collections. SRFI 44, schemers.org.
http://srfi.schemers.org/srfi-44/srfi-44.html.

Newman, W. H. et al. (2000). SBCL User Manual. http://www.sbcl.org/manual/.

Norvig, P. (2002). Large-Scale Web Services, and the Programming Languages that Build Them.
In International Lisp Conference Proceedings.

Pestov, S. (2006). Factor documentation. http://factorcode.org/responder/help/.

Pitman, K. and Chapman, K., editors (1994). Information Technology – Programming Language

– Common Lisp. Number 226–1994 in INCITS. ANSI.

13

http://www.nhplace.com/kent/CL/Issues/stream-definition-by-user.html
http://tinyurl.com/yy3eys
http://srfi.schemers.org/srfi-44/srfi-44.html
http://www.sbcl.org/manual/
http://factorcode.org/responder/help/

Pitman, K. M. (1991). Issue CONCATENATE-SEQUENCE. Issue 73, X3J13, ANSI.
http://www.lisp.org/HyperSpec/Issues/iss073-writeup.html.

Rhodes, C. (2006). Revisiting CONCATENATE-SEQUENCE. Document 3, Common Lisp Document
Repository. http://cdr.eurolisp.org/document/3.

Rhodes, C., Strandh, R., and Mastenbrook, B. (2005). Syntax Analysis in the Climacs Text
Editor. In International Lisp Conference Proceedings.

Shalit, A. (1996). The Dylan Reference Manual. Addison-Wesley, Redwood City, CA, USA.
http://www.opendylan.org/books/drm/Title.

Steele, Jr, G. L. (1990). Common Lisp: The Language. Digital Press, second edition.

Strandh, R., Villeneuve, M., and Moore, T. (2004). Flexichain: An editable se-
quence and its gap-buffer implementation. In European Lisp and Scheme Workshop.
http://p-cos.net/lisp-ecoop/submissions/StrandhVilleneuveMoore.pdf.

Yee, K.-P. and van Rossum, G. (2001). Iterators. PEP 234, Python Software Foundation.
http://www.python.org/dev/peps/pep-0234/.

14

http://www.lisp.org/HyperSpec/Issues/iss073-writeup.html
http://cdr.eurolisp.org/document/3
http://www.opendylan.org/books/drm/Title
http://p-cos.net/lisp-ecoop/submissions/StrandhVilleneuveMoore.pdf
http://www.python.org/dev/peps/pep-0234/

A Queue reader macro

;;; syntax: #[1 2 3 ...] for ordinary queues, #{1 2 3 ...} for

;;; funcallable ones

(macrolet ((def (name open close)

(let ((reader-name (intern (format nil "~A-~A" name ’reader))))

‘(progn

(defun ,reader-name (stream char n)

(declare (ignore char n))

(let ((contents (read-delimited-list ,close stream t))

(result (make-instance ’,name)))

(dolist (o contents result)

(enqueue o result))))

(set-dispatch-macro-character #\# ,open ’,reader-name)

(set-syntax-from-char ,close #\))

(defmethod print-object ((o ,name) stream)

(when (and *print-readably*

(not (eq (class-of o) (find-class ’,name))))

(call-next-method))

(format stream "#~C" ,open)

(do ((data (cdr (%queue-data o)) (cdr data))

(i 0 (1+ i)))

((null data) (format stream "~C" ,close) o)

(unless (or *print-readably* (not *print-length*))

(when (= i *print-length*)

(format stream "...~C" ,close)

(return o)))

(let ((*print-level* (and *print-level*

(1- *print-level*))))

(write (car data) :stream stream))

(unless (null (cdr data))

(format stream " "))))))))

(def queue #\[#\])

(def funcallable-queue #\{ #\}))

15

B Undoable mixin

(defmethod sequence:make-sequence-iterator :around

((o undoable-mixin) &key from-end start end)

(declare (ignore from-end start end))

(multiple-value-bind (s l f step endp elt setelt index copy)

(call-next-method)

(values s l f step endp elt

(lambda (nv s i)

(if (recording s)

(funcall setelt nv s i)

(without-undoing (s)

(push (make-instance

’setelt-record :index (funcall index s i)

:value (funcall elt s i))

(record s))

(funcall setelt nv s i))))

index copy)))

(defmacro with-compound-recording ((object) &body body)

‘(let ((old (recording ,object))

(or (record ,object)))

(unwind-protect

(progn (setf (recording ,object) nil) (setf (record ,object) nil)

,@body)

(setf (recording ,object) old)

(setf (record ,object)

(cons (make-instance ’compound-record :records (record ,object)) or)))))

(defclass compound-record () ((records :initarg :records :reader records)))

(defmethod undo-using-record ((o undoable-mixin) (r compound-record))

(dolist (r (records r))

(undo-using-record o r)))

(defmacro define-compound-undo-method (name arglist)

‘(define-undo-method ,name ,arglist

(with-compound-recording (o)

(call-next-method))))

(define-compound-undo-method sequence:nsubstitute

(new old o &key from-end start end test test-not key count))

(define-compound-undo-method sequence:nsubstitute-if

(new old o &key from-end start end key count))

(define-compound-undo-method sequence:nsubstitute-if-not

(new old o &key from-end start end key count))

(defclass adjust-sequence-record ()

((previous :initarg :previous :reader previous)

(discarded :initarg :discarded :reader discarded)))

(define-undo-method sequence:adjust-sequence (o length &rest args)

(push (make-instance ’adjust-sequence-record :previous (length o)

:discarded (when (< length (length o))

(coerce (subseq o length) ’vector)))

(record o)))

16

(defmethod undo-using-record ((o undoable-mixin) (r adjust-sequence-record))

(sequence:adjust-sequence o (previous r))

(when (discarded r)

(setf (subseq o (- (length o) (length (discarded r)))) (discarded r))))

(define-compound-undo-method sequence:delete

(item o &key from-end (start 0) end test test-not key count))

(define-compound-undo-method sequence:delete-if

(item o &key from-end (start 0) end key count))

(define-compound-undo-method sequence:delete-if-not

(item o &key from-end (start 0) end key count))

(define-compound-undo-method sequence:delete-duplicates

(o &key from-end (start 0) end test test-not key))

(define-undo-method sequence:replace

(o sequence2 &key (start1 0) end1 (start2 0) end2)

(push (make-instance ’fill-record :start start1 :end end1

:contents (coerce (subseq o start1 end1) ’vector))

(record o)))

(define-undo-method sequence:sort (o predicate &key key)

(push (make-instance ’fill-record :contents (coerce o ’vector) :start 0 :end nil)

(record o)))

(define-undo-method sequence:stable-sort (o predicate &key key)

(push (make-instance ’fill-record :contents (coerce o ’vector) :start 0 :end nil)

(record o)))

17

C Specification

In the sections below, all of the generic functions and macros being specified are named by symbols
external in the sequence package. In cases where the generic function being defined corresponds
to a standardized Common Lisp function, it is not specified whether the corresponding Common
Lisp function is distinct from the specified generic functions, nor indeed whether the symbol
in the common-lisp package is distinct from that in the sequence package; that is, #’length
might or might not be eql to #’sequence:length, and length might or might not be eql to
sequence:length. The sequence package may have additional, implementation-specific names;
sequence need not be the package-name of the package.

It is not specified whether the methods specified on list and vector are in fact called when
the Common Lisp function corresponding to the generic function is called on such data. It is not
specified whether the methods specified on sequence are called when the Common Lisp function
corresponding to the generic function is called on data of type vector or list.

In implementations which support the Metaobject Protocol as defined in Kiczales et al.
(1991), suitable methods on mop:validate-superclass should be provided such that no error
is signalled for user-defined sequence classes of metaclass standard-class; such implementa-
tions are additionally encouraged to allow mop:funcallable-standard-class as a compatible
metaclass for user-defined sequence classes.

C.1 Basic sequence operations

Generic Function length

Syntax:
length sequence

The generic function length corresponds to calls to the Common Lisp function length.

Primary Method length (l list)

Primary Method length (v vector)

The methods provided simply compute the length of the sequence, as if by length.

Primary Method length (s sequence)

This method signals an error of type type-error, for compatibility with the requirements of
length’s argument to be a proper sequence.

Generic Function elt

Syntax:
elt sequence index

This generic function corresponds to calls to elt.

Primary Method elt (l list) index

Primary Method elt (v vector) index

These methods simply return the element of the provided sequence at the given index, as if by
elt.

18

http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=package-name
http://www.xach.com/clhs?q=standard-class
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=type-error
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=elt

Primary Method elt (s sequence) index

This method signals an error of type type-error, for compatibility with the requirements of
elt’s sequence argument to be a proper sequence.

Generic Function (setf elt)

Syntax:
(setf elt) new-value sequence index

This generic function corresponds to calls to (setf elt).

Primary Method (setf elt) new-value (l list) index

Primary Method (setf elt) new-value (v vector) index

These methods set the element of the provided sequence at the given index to be new-value, as
if by (setf elt)

Primary Method (setf elt) new-value (s sequence) index

This method signals an error of type type-error, for compatibility with the requirements of
(setf elt)’s sequence argument to be a proper sequence.

Generic Function make-sequence-like

Syntax:
make-sequence-like sequence length &key initial-element initial-contents

This generic function returns a sequence of the same class as its sequence argument, with the
specified length. If neither initial-element nor initial-contents is supplied, the consequences are
undefined if any element of the resulting sequence is read before being written. If initial-element

is provided, it is used to initialize the resulting sequence; if initial-contents is provided, it must be
a sequence of length length, which is used to initialize the resulting sequence. The consequences
are undefined if both initial-element and initial-contents are supplied.

Primary Method make-sequence-like (l list) length &key initial-element initial-contents

Primary Method make-sequence-like (v vector) length &key initial-element initial-contents

No behaviour for these methods is specified beyond that for the generic function.

Primary Method make-sequence-like (s sequence) length &key initial-element initial-contents

This method signals an error of type type-error.

Generic Function adjust-sequence

Syntax:
adjust-sequence sequence length &key initial-element initial-contents

Primary Method adjust-sequence (l list) length &key initial-element initial-contents

Primary Method adjust-sequence (v vector) length &key initial-element initial-contents

This method functions in a similar manner to adjust-array, though the implementation may
choose to preserve the identity of the argument if it has a fill pointer and the length argument is
not greater than the size of the vector.

Primary Method adjust-sequence (s sequence) length &key initial-element initial-contents

This method signals an error of type type-error.

19

http://www.xach.com/clhs?q=type-error
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=type-error
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=type-error
http://www.xach.com/clhs?q=adjust-array
http://www.xach.com/clhs?q=type-error

C.2 Iteration

Generic Function make-sequence-iterator

Syntax:
make-sequence-iterator sequence &key from-end start end

This generic function returns nine values: three values corresponding to an iterator state, a limit
state and from-end, and six functions with signatures and functionality like the iterator-foo

functions below.

Primary Method make-sequence-iterator (s sequence) &key from-end (start 0) end

This method returns the three values returned by calling make-simple-sequence-iterator,
along with the functions #’iterator-step, #’iterator-endp, #’iterator-element, #’(setf
iterator-element), #’iterator-index and #’iterator-copy.

Generic Function make-simple-sequence-iterator

Syntax:
make-simple-sequence-iterator sequence &key from-end start end

This generic function returns three values: an iterator object, a limit state and from-end. These
values, along with sequence, are to be used for calling to the iterator generic functions, below;
the consequences are unspecified if objects not returned by a call to make-simple-sequence-

iterator are passed as arguments to the iterator functions.

Primary Method make-simple-sequence-iterator (l list) &key from-end (start 0) end

Primary Method make-simple-sequence-iterator (v vector) &key from-end (start 0) end

These methods, in combination with methods on the iterator generic functions, below, produce
objects of implementation-defined nature to allow iteration to occur.

Primary Method make-simple-sequence-iterator (s sequence) &key from-end (start 0) end

If from-end is false, this method returns the three values start, end (or the length of s if end is
nil), and nil. If from-end is true, this method returns the three values (1- (or end (length

s))), (1- start), and from-end.

Generic Function iterator-step

Syntax:
iterator-step sequence iterator from-end

This generic function returns a new iterator state representing the advancement of the iteration
across sequence in the direction indicated by from-end.

Primary Method iterator-step (l list) iterator from-end

Primary Method iterator-step (v vector) iterator from-end

No behaviour for these methods is specified beyond that for the generic function.

Primary Method iterator-step (s sequence) iterator from-end

20

http://www.xach.com/clhs?q=nil
http://www.xach.com/clhs?q=nil

If from-end is true, this returns (1- iterator); otherwise, it returns (1+ iterator).

Generic Function iterator-endp

Syntax:
iterator-endp sequence iterator limit from-end

This generic function tests the iterator for having reached its end state for iteration across
sequence indicated in the direction indicated by from-end.

Primary Method iterator-endp (l list) iterator limit from-end

Primary Method iterator-endp (v vector) iterator limit from-end

No behaviour for these methods is specified beyond that for the generic function.

Primary Method iterator-endp (s sequence) iterator limit from-end

This returns the value of (= iterator limit).

Generic Function iterator-element

Syntax:
iterator-element sequence iterator

This generic function returns the element of sequence at the point of iteration indicated by
iterator.

Primary Method iterator-element (l list) iterator

Primary Method iterator-element (v vector) iterator

No behaviour for these methods is specified beyond that for the generic function.

Primary Method iterator-element (s sequence) iterator

This method returns the value of (elt s iterator).

Generic Function (setf iterator-element)

Syntax:
(setf iterator-element) new-value sequence iterator

This generic function sets the element of sequence at the point of iteration indicated by iterator

to new-value.

Primary Method (setf iterator-element) new-value (l list) iterator

Primary Method (setf iterator-element) new-value (v vector) iterator

No behaviour for these methods is specified beyond that for the generic function.

Primary Method (setf iterator-element) new-value (s sequence) iterator

This method returns the value of (setf (elt s iterator) new-value).

21

Generic Function iterator-index

Syntax:
iterator-index sequence iterator

This generic function returns the index of the point indicated by iterator in sequence.

Primary Method iterator-index (l list) iterator

Primary Method iterator-index (v vector) iterator

No behaviour for these methods is specified beyond that for the generic function.

Primary Method iterator-index (s sequence) iterator

This method returns iterator.

Generic Function iterator-copy

Syntax:
iterator-copy sequence iterator

This generic function returns an iterator state identifying the same point in an iteration as
iterator, such that changes to one do not affect the other.

Primary Method iterator-copy (l list) iterator

Primary Method iterator-copy (v vector) iterator

No behaviour for these methods is specified beyond that for the generic function.

Primary Method iterator-copy (s sequence) iterator

This method returns iterator.

Macro with-sequence-iterator (&optional state limit from-end step endp elt setelt index

copy) (sequence &key from-end (start 0) end) &body body

This macro binds the names in its first argument list as variables to the values returned by
make-sequence-iterator applied to its second argument list, and then executes body.

Macro dosequence (var sequence-form &optional result-form) &body body

This macro iterates over a sequence, in a similar fashion to dolist iterating over a list. The body

is like a tagbody, consisting of a series of tags and statements.
dosequence evaluates sequence-form, which should produce a sequence. It then executes the

body once for each element in the sequence, in the order in which the tags and statements occur,
with var bound to the element. Then result-form is evaluated with var bound to nil.

An implicit block named nil surrounds dosequence. return may be used to terminate the
loop immediately without performing any further iterations, returning zero or more values.

The scope of the binding of var does not include the sequence-form, but the result-form is
included.

It is implementation-dependent whether dosequence establishes a new binding of var on each
iteration or whether it establishes a binding for var once at the beginning and then assigns it on
any subsequent iterations.

22

http://www.xach.com/clhs?q=dolist
http://www.xach.com/clhs?q=tagbody
http://www.xach.com/clhs?q=nil
http://www.xach.com/clhs?q=nil
http://www.xach.com/clhs?q=return

Loop Path for-as-sequence

This allows using an iteration variable, as with other loop for-as- clauses, as if the following
clause were added to the loop grammar (Pitman and Chapman, 1994, Macro loop):

for-as-sequence::= var [type-spec] being {each | the}

{element | elements} {in | of} sequence

and the for-as-subclause clause permitted for-as-sequence along with the standardized
clauses. As with other iteration control clauses, the variable argument may be a destructuring
list. The effect of this clause is to iterate through the contents of a sequence, starting from the
zeroth element and terminating at the end of the sequence8.

C.3 Sequence Function Specifications

Except as specified here, it is implementation-dependent whether methods on these generic func-
tions call other such generic functions or not. For each of these generic functions there is a
method, called the “default method” in the descriptions below, where all sequence parameters
are specialized on sequence, implementing the default behaviour given an implementation of the
iteration and basic sequence protocol in the sections above. The user of this protocol is permitted
to extend or override these generic functions, but is not permitted to specialize any non-sequence
argument.

It is unspecified whether the generic functions specified below are called when the corre-
sponding Common Lisp function has only list and vector arguments for sequences; however,
the implementation is required to provide methods for these generic functions implementing sim-
ilar behaviour, so that the user may call these generic functions on list and vector sequences.

Generic Function count

Syntax:
count item sequence &key from-end start end test test-not key

Generic Function count-if

Syntax:
count-if predicate sequence &key from-end start end key

Generic Function count-if-not

Syntax:
count-if-not predicate sequence &key from-end start end key

Generic Function find

Syntax:
find item sequence &key from-end start end test test-not key

Generic Function find-if

Syntax:
find-if predicate sequence &key from-end start end key

Generic Function find-if-not

Syntax:
find-if-not predicate sequence &key from-end start end key

8Note that this behaviour is different from that of the for-as-across loop clause on vectors with fill pointers.

23

http://www.xach.com/clhs?q=loop
http://www.xach.com/clhs?q=loop
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector

Generic Function position

Syntax:
position item sequence &key from-end start end test test-not key

Generic Function position-if

Syntax:
position-if predicate sequence &key from-end start end key

Generic Function position-if-not

Syntax:
position-if-not predicate sequence &key from-end start end key

Generic Function subseq

Syntax:
subseq sequence start &optional end

Generic Function copy-seq

Syntax:
copy-seq sequence

The default method on copy-seq calls subseq with parameters sequence and 0.

Generic Function fill

Syntax:
fill sequence item &key start end

Generic Function nsubstitute

Syntax:
nsubstitute new old sequence &key from-end start end test test-not key count

Generic Function nsubstitute-if

Syntax:
nsubstitute-if new predicate sequence &key from-end start end key count

Generic Function nsubstitute-if-not

Syntax:
nsubstitute-if-not new predicate sequence &key from-end start end key count

Generic Function substitute

Syntax:
substitute new old sequence &key from-end start end test test-not key count

Generic Function substitute-if

Syntax:
substitute-if new predicate sequence &key from-end start end key count

Generic Function substitute-if-not

Syntax:
substitute-if-not new predicate sequence &key from-end start end key count

The default methods on substitute, substitute-if and substitute-if-not call copy-seq on
sequence, and then call nsubstitute, nsubstitute-if and nsubstitute-if-not respectively
on their arguments with the provided sequence replaced by the copy.

24

Generic Function replace

Syntax:
replace sequence1 sequence2 &key start1 end1 start2 end2

Generic Function nreverse

Syntax:
nreverse sequence

Generic Function reverse

Syntax:
reverse sequence

The default method on reverse calls nreverse on the result of copy-seq on sequence.

Generic Function reduce

Syntax:
reduce function sequence &key from-end start end initial-value

Generic Function mismatch

Syntax:
mismatch sequence1 sequence2 &key from-end start1 end1 start2 end2 test test-not key

Generic Function search

Syntax:
search sequence1 sequence2 &key from-end start1 end1 start2 end2 test test-not key

Generic Function delete

Syntax:
delete item sequence &key from-end start end test test-not key count

Generic Function delete-if

Syntax:
delete-if predicate sequence &key from-end start end key count

Generic Function delete-if-not

Syntax:
delete-if-not predicate sequence &key from-end start end key count

Generic Function remove

Syntax:
remove item sequence &key from-end start end test test-not key count

Generic Function remove-if

Syntax:
remove-if predicate sequence &key from-end start end key count

Generic Function remove-if-not

Syntax:
remove-if-not predicate sequence &key from-end start end key count

The default methods on remove, remove-if and remove-if-not call copy-seq on sequence,
and then call delete, delete-if and delete-if-not respectively on their arguments with the
provided sequence replaced by the copy.

25

Generic Function delete-duplicates

Syntax:
delete-duplicates sequence &key from-end start end test test-not key

Generic Function remove-duplicates

Syntax:
remove-duplicates sequence &key from-end start end test test-not key

The default method on remove-duplicates calls copy-seq on sequence, and then calls delete-
duplicates on its arguments with the provided sequence replaced by the copy.

Generic Function sort

Syntax:
sort sequence predicate &key key

Generic Function stable-sort

Syntax:
stable-sort sequence predicate &key key

The default method on sort behaves as if it constructs a vector with the same elements as
sequence, calls sort on that vector, then replaces the elements of sequence with the elements of
the sorted vector.

C.4 Other affected functions

Six functions in the SEQUENCES chapter of the ANSI CL standard do not have the structure for
user-extensibility in the same way as the generic functions discussed in section C.3: they are
concatenate, map, merge, make-sequence, coerce and map-into.

Taking map-into first, we simply specify that an implementation of user-extensible sequences
must implement map-into such that target sequences and source sequences of arbitrary subtype
of sequence are supported given a complete implementation of the sequence and iteration pro-
tocol of sections C.1 and C.2. An implementation is not prohibited from providing a means of
customizing the behaviour of map-into, but neither is it required to.

Similarly, a means of customizing the behaviour of concatenate, map, merge, make-sequence
and coerce is left unspecified, though again an implementation of this document must provide
for the functionality of these functions to be available for objects of arbitrary sequence type and
type specifiers naming a concrete subtype of sequence; for details of how this interacts with the
ANSI CL specified behaviour of these functions, see Rhodes (2006).

As for functions which are not in the SEQUENCES chapter of the ANSI CL specification, the
intent is that where a particular behaviour is specified for a sequence argument, that behaviour
should be implemented for the user-extensible sequences. For instance, the short-circuiting quan-
tifiers some, every, notevery and notany should accept sequence arguments of arbitrary class;
make-array’s :initial-contents argument (and the #a array reader) should accept a sequence
of sequences, as specified, including user-extended sequences.

Particular attention must be paid to the functions read-sequence and write-sequence.
Although Gray (1989) does not suggest that these functions be extensible in the manner of the
other stream functions, it is likely that this is because read-sequence and write-sequencewere
added to the language after the extensible streams proposal was made, and indeed Common Lisp
implementations have provided stream-read-sequence and stream-write-sequence generic

26

http://www.xach.com/clhs?q=sort
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=some
http://www.xach.com/clhs?q=every
http://www.xach.com/clhs?q=notevery
http://www.xach.com/clhs?q=notany
http://www.xach.com/clhs?q=make-array
http://www.xach.com/clhs?q=read-sequence
http://www.xach.com/clhs?q=write-sequence
http://www.xach.com/clhs?q=read-sequence
http://www.xach.com/clhs?q=write-sequence

functions for user customizeability9. Lisps providing both an implementation of this proposal and
extensible streams based on Gray (1989) should document the effect of calling read-sequence

and write-sequence with arguments being instances of non-standardized classes.

9The simple-streams [ref franz] analogue does not even support all of the standard Common Lisp sequence
types: only strings and octet vectors are acceptable for filling with read-sequence of a simple-stream.

27

http://www.xach.com/clhs?q=read-sequence
http://www.xach.com/clhs?q=write-sequence
http://www.xach.com/clhs?q=read-sequence

	Introduction
	Compatibility
	Related Work

	Supporting User-Defined Sequences
	Sequence Datatypes
	Iteration
	Sequence Functions

	Examples
	Queue
	Undoable mixin

	Implementation Details
	Conclusions
	Queue reader macro
	Undoable mixin
	Specification
	Basic sequence operations
	Iteration
	Sequence Function Specifications
	Other affected functions

