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Introduction

This work describes and investigates a practical use-case for searching in an ex-
ploratory fashion for fragments of audio within a small collection, in the manner
of Query-by-Example. Our motivation for this is to help performers, especially
of improvised music, to critically assess their own improvisation style and how
it relates to others’; we aim to support investigation of questions such as how
performance characteristics

e develop through a single performance;

e change over the course of a career;

e compare with those of great, professionally-recorded musicians;
o are affected by performance or recording context.

In addition, because many musical performers are not highly technical users,
this has acted as a demonstrator for a high-level user interface to the au-
dioDB search engine [8] developed by the OMRAS2 project, as well as a proof-
of-concept to an integrated workflow using other semantically-enriched tools
[1], such as Vamp plugins for audio feature extraction.

CAMUS

CAMUS (previously iAudioDB) provides a friendly and familiar interface to
audioDB’s functionality for users wishing to investigate and understand their
own collections. It does not require knowledge of the workings of feature ex-
tractors, as it is able to use RDF descriptions of Vamp plugins to perform ex-
traction; nor does it require knowledge of the low-level audioDB functionality
— it automatically constructs databases, and presents query results in a tabular
form, ordered by distance from the query.
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t_q5.wav 0.3 0.01756181
t_q3.wav 0.3 0.01759718
Christian)acob.wav 300.95 0.01805255
Christian)acob.wav 16.55 0.01807558
Christian)acob.wav 300.9 0.01808991
LookingUpSoloPetruccianiiwav  124.25 0.01873825

/Users/mikej/pitches.adb Dim: 12 Files: 11 Slice: 50ms Ext: adb_chroma

CAMUS is not the only interface to audioDB’s functionality; others, specialized
to different tasks and user communities, are in development or have already

been described (e.g. [6,7]).

Results

Ranked retrieval lists from CAMUS were compared against manually-annotated
ground truth for each query to establish precision and recall performance of
the system on this retrieval task, summarized in the table below.

audioDB

audioDB is a content-based similarity search engine, capable of matching on
time series [3] of arbitrary content-related features, provided a suitable dis-
tance measure can be defined. Sequences of features are concatenated to form
features in a higher-dimensional space:
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For certain distance measures (e.g. Euclidean, Manhattan), we can probabilis-
tically index the database of feature vectors in such a way that investigations
can scale to very large commercial-scale or Internet-scale collections of audio.
We have also developed a simple statistical model for thresholding judgments
[2], allowing both automatic relevance cut-off at small collection scales and
automatic selection of indexing parameters at large collection scales [8].
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Experiment

Our corpus contained several recordings of Looking Up by Michel Petrucciani,
performed in a variety of ways: in professional and amateur contexts, as a solo
performance or in ensemble, on electric and acoustic pianos, and recorded in
studio or by a laptop’s internal microphone. In addition, the corpus contained
recordings of other tracks (Ambleside Days by John Taylor and My Romance by
Rogers and Hart).
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Audio Features

We extracted a number of simple audio features for each track in our corpus
using multiple feature extractors: both fftExtract, intended to cover MPEG-7
Audio features, and the Chromagrams and MFCCs from the QM Vamp plugins.
Using these features, we then searched for motifs present in Looking Up within
our database.
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Perhaps unsurprisingly given the invariances that we wish to abstract over
[5] in this search task, even very simple (FFI-based) chromagram features
perform well, reaching a balanced F-Score of 89%. Note that because the
audioDB engine is agnostic to the feature being searched over, better-designed
feature variants can be used to improve retrieval performance if the variant is
applicable to a particular task [4].

The principal cause of failure to retrieve relevant results in our corpus arose
because of the use of the sustain pedal in the query fragment. This relation-
ship of retrieval failure to performance characteristic pointed to a distinction in
performance style previously unknown to our amateur improvising pianist.

[8] C. Rhodes and others. Investigating Music Collections at Different Scales with AudioDB.
Journal of New Music Research, accepted.
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