
Investigating Music Collections at Different Scales with
AudioDB

Christophe Rhodes∗, Tim Crawford∗, Michael Casey†, Mark d’Inverno∗

January 12, 2011

Abstract

Content-based search of music collections presents differing challenges at different scales
and according to the task at hand. In this paper, we consider a number of different use cases
for content-based similarity search, at scales ranging between a detailed investigation of a single
track to searching for fragments of a track against a collection of millions of media items. We
pay particular attention to the varying tradeoff between precision and recall in these contexts,
both from the point of view of system evaluation and from the point of view of a user of a system
searching an unknown collection. We present the audioDB software for content-based search, and
describe how it has been used to address use cases across these different collection sizes; we in
addition show that the interpretation of similarity as a distance which can be modelled statistically,
initially motivated by our desire to achieve sublinear retrieval time on large databases, can be used
to improve the precision of searches over small and medium-sized collections.

1 Introduction

1.1 Information Retrieval from Recorded Music Collections
One aspect of Music Information Retrieval (MusicIR) is the management and navigation of music
collections, which come in a range of sizes. The techniques and technologies used to manage and
retrieve information about items in these collections differ substantially at small, medium and large
scales.

The largest kind of collection include Internet repositories of user-contributed content, such as
YouTube, which consist of hundreds of millions of digital items, both video and audio. To address
copyright concerns these services employ robust fingerprinting techniques which identify near du-
plicates of a known set of target copyrighted works [Baluja and Covell, 2008]; however, their end-
user interface is typically a metadata or free-text search, where such metadata can be authoritative,
user-provided (through mechanisms such as collaborative filtering) or a combination.

Also at the large scale, but an order of magnitude smaller, are commercial music radio, sub-
scription and download services that maintain collections of several million digital music items with
their corresponding metadata. To use these items effectively, both metadata- and content-based in-
formation retrieval methods are employed to provide users with an experience of the collection that
is suited to their music listening habits or interests [John, 2006, Wang, 2003, Wang, 2006].
∗Department of Computing, Goldsmiths, University of London
†Bregman Music Audio Research Studio, Dartmouth College, NH

1



At the medium scale are collections of sounds or music that are oriented towards professional
use. Containing tens to hundreds of thousands of items, they include production mood and inciden-
tal music libraries, sound effects libraries, global ethnomusicological collections, DJ music sites,
music production sites and individual record label catalogues. Uses for music information retrieval
methods at this scale include: replacing copyrighted music with similar production music for broad-
cast; automated identification of musical works; matching music to a production context; playlist
generation; beat matching and many others.

Finally, at the small scale, are the narrowly cast music collections of specialist researchers such
as those investigating performances of works by a single composer, folk song and ethnomusicologi-
cal collections of a particular tradition, and music for personal pleasure stored on portable playback
devices. Here the application of music information retrieval methods includes: identifying meta-
data from unidentified recordings; analysing short time-scale similarities between small groups of
recordings and inspecting the results by listening – this is a use case for the musicologist, identify-
ing concepts such as creative influence, musical appropriation and lineage in performance practice
[Cook, 2007, Cook, 2010].

Thus, a plethora of tools and techniques have emerged, each oriented toward a single type of
collection and a single task without regard for how the technique might scale, downwards or upwards
in collection size, or wider or narrower in specificity. The result is that every new collection and task
requires building a new system out of different music information retrieval components, and there
have been no unified frameworks for MusicIR.

With the goal of unification across collection size, task specificity and feature selection, the OM-
RAS2 project at Goldsmiths, University of London designed an all-purpose feature vector database
system called audioDB1. In this paper we explain our underlying model of information retrieval
based on geometric methods, and show how that model can be applied to different use cases at
different scales and with different tasks.

We present previous work in content-based similarity retrieval in Section 1.2. Section 2 describes
the audioDB software, developed in order to unify treatment of content-based similarity search;
Section 3 presents a series of use cases of the audioDB system at a variety of database scales, which
motivates our experiment described in section 4 to verify whether our geometric approach improves
search engine performance. Finally, we discuss our findings and conclusions in Section 5.

1.2 Content-based similarity retrieval
A MusicIR system first extracts musical features from audio or symbolic music representations
which can be used for searching music. Two broad strategies are employed: those based on multi-
dimensional time-series features and those using statistical models. The former are often called
sequence methods and have been widely adopted for copyright detection and cover song detection
tasks. Statistical features are often called bag-of-features (BOF) models as they reduce whole tracks
to an aggregate feature vector representing summary statistics or probability distributions derived
from time-series features.

Statistical summary features were first used for music genre classification experiments and sub-
sequently explored for measuring similarity between audio tracks. Systems based on Gaussian mix-
ture models were proposed by [Logan and Salamon, 2001] and [Tzanetakis and Essl, 2001]; here
models of music are learnt from training data and subsequently new data is tested against each model
using either the Earth Mover’s Distance (EMD), in the case of [Logan and Salamon, 2001], and the
Jensen-Shannon (symmetric Kullback-Leibler) divergence, in the case of [Tzanetakis and Essl, 2001].
The model with closest fit to the data was selected as the representative class in these experiments.

1http://www.omras2.org/audioDB/

2

http://www.omras2.org/audioDB/


Other statistical feature systems employ hidden Markov models (HMMs) [Casey, 2001] that are
trained on exemplars from 20 music genre classes, then for a previously unseen music track, the
HMM model with maximum probability is selected as the representative class among an ensemble
of trained models. These methods were extended to general audio similarity by [Rauber et al., 2002,
Flexer et al., 2005] and [Levy and Sandler, 2006], by training models for each individual track and
comparing models using Kullback-Leibler divergence to get a measure of similarity between tracks.

The common elements among the above statistical feature systems are that they require training
data and model fitting via a method to learn the parameters to probability models of a given type
(such as 20-state HMMs), and they require a complex distance measure such as EMD which has
time-complexity O(d2) in the dimensionality of the features.

While scalability with statistical features is plausible for generic tasks, where a single model
exists per track or per genre, this strategy does not scale for tasks that require sub-track similarity
computation. Such tasks include fingerprinting, near duplicates and cover song detection, which are
the primary use cases for large collections. Here the model training and distance function complexity
of statistical methods is prohibitive.

Distances between time series features can be measured by simple geometric distance functions
such as Manhattan distance and Euclidean distance, i.e. L1 and L2 norms, that afford very efficient
near constant-time implementations via geometric hashing schemes [Casey and Slaney, 2006a]. Sys-
tems that use time-series features have been proposed to solve robust identification [Wang, 2003], in
which patches of time-frequency distributions are stored as acoustic landmarks and matched at query
time using exact hashing. They have also been used for cover song detection [Serra and Gomez, 2007,
Ellis and Poliner, 2007], remix identification [Casey and Slaney, 2006b, Casey and Slaney, 2006a],
and work identification for classical music [Müller, 2007] with these systems operating at the sub-
track level. Time series features were used with complex distance measures such as Dynamic Time
Warping (DTW) [Ellis and Poliner, 2007, Ellis, 2007] with an improvement in accuracy for cover
song retrieval, but making the time requirement prohibitive for operation at medium and large scales
as DTW has complexity O(L2) in the length of the track and requires tracks to be considered pair-
wise.

The additional cost of a more complex distance metric is offset in the case of statistical fea-
tures by having only one feature vector per track or genre. Conversely, for time-series features, the
data is large because sequences often number thousands or tens of thousands of vectors per track,
so for a collection with ten thousand recordings, there can be upwards of ten million vectors to
be searched at query time. Our system, that we describe in the next section, is general enough to
use any distance measure in principle, but for particular choices of distance measure can be made
to scale to very large numbers of vectors; one way of recovering the ability to use statistical fea-
tures efficiently is by embedding them into a simple metric space, such as L1, with little distortion
[Grauman and Darrell, 2004].

2 The audioDB system
AudioDB is an open-source database system, implemented in C++, for storing, indexing and search-
ing high-dimensional feature vectors. It was designed to implement, via a single unified abstraction
(described more formally in [d’Inverno et al., 2011]), many different music search use-case scenar-
ios at different scales. While we do not claim that audioDB implements every method conceived
within the field of music information retrieval, we have shown that it can implement a wide range of
commonly-requested tasks, as well as new tasks. Unlike a standard relational database management
system (RDBMS) audioDB has at its core an abstraction that treats each field in the database as a

3



vector or matrix, possibly of high dimensionality.
The database system has five components that inter-operate, each of which is analogous to stan-

dard database operations: database creation; data insertion; indexing; search; and result filtering and
formatting. In the following sections, we describe aspects related to search (section 2.1) and result
filtering and indexing (section 2.2).

2.1 Time-series matching
AudioDB matches, via some distance measure, time series [Casey and Slaney, 2006b] of features
from audio. Feature vectors with dimension d are first extracted using an arbitrary feature extractor
(such as a suitable VAMP2 plugin, or a simple FFT-based extractor supplied with audioDB), and
the resulting numerical features inserted into a database instance. At query time, the set of feature
vectors for each music track are interpreted as multi-dimensional time series. The user specifies
the length l of the time-series, and the search for matches then involves the distance between two
l × d-dimensional vectors according to the distance measure.

d2Euc(x, y) =

l∑
i=1

d∑
j=1

x2
ij +

l∑
i=1

d∑
j=1

y2ij − 2

l∑
i=1

d∑
j=1

xijyij (1)

d2EucNormed(x, y) = 2− 2√∑l
i=1

∑d
j=1 x

2
ij

∑l
i=1

∑d
j=1 y

2
ij

l∑
i=1

d∑
j=1

xijyij (2)

The Euclidean and normed Euclidean distance measures (as defined in Equation 1 and Equa-
tion 2) are provided out of the box, with a direct implementation in terms of a matched filter im-
plementation with memoization of partial sums, yielding an algorithm with complexity O(ldN)
for a search, where N is the size of the database. For large-scale collections, a search algorithm
linear in the size of the database is too slow to be practical; we have therefore implemented a prob-
abilistic indexing technique, described in the next section, for these distance measures. While the
framework allows for other distance measures to be used to compare feature vectors, not all dis-
tance measures allow indexing in this way, though many do (in particular the Euclidean distance,
the cosine distance, and all Lp norms for 1 ≤ p ≤ 2); the fact that the L1 norm or Manhattan
distance is indexable allows the system to be directly useful for features based on statistical models
[Grauman and Darrell, 2004].

2.2 Efficiency, Indexing and Thresholding
Use of a simple distance metric admits highly efficient approximate implementations via locality
sensitive hashing [Datar et al., 2004, Andoni and Indyk, 2006]; for our use cases, described in Sec-
tion 3 below, we accept the approximate, probabilistic nature of LSH as a price to pay for scalable
query times.

A form of geometric hashing that uses random projections, LSH yields time complexity for
search that is O(wdn1/c) for an approximation factor c. To use LSH we first have to build hash
tables out of the vectors in the database. This is the indexing step discussed in Section 2. Then at
query time, we hash the query vectors into the hash tables and retrieve those database vectors with
which the query vectors collide.

2http://vamp-plugins.org/

4

http://vamp-plugins.org/


LSH employs an ensemble of K hash functions of the following form:

h
(k)
ak,bk

(v) =

⌊
aTk v + bk

w

⌋
, k = 1 . . .K (3)

where a ∈ Rd is a random vector drawn from an i.i.d. p-stable distribution – Gaussian for approx-
imating the L2 norm and Cauchy for approximating the L1 norm; v ∈ Rd is the data vector to be
hashed (in our case this is a stacked sequence of time-series vectors); b is a uniform random scalar
offset drawn in the interval [0, w) and w is the hash bucket width. The effect of each independent
hash function, h(k), is to project the data vector to the real line which is divided into equal parts of
length w. The offset parameter, b, effectively scatters projections uniformly between neighbouring
bins. Finally, the K multiple hash values, which are integers, are combined into a single hash value
using a standard hashing algorithm.

Once hashed in this way, near-neighbour vectors, i.e. those that fall within some radius R of each
other, will hash to the same location with high probability. Some vectors will not hash to the same
location as their near neighbours – these are false negatives from the approximation involved – and
sometimes vectors that are not near neighbours hash to the same location, these are false positives.

By manipulating the number of locality sensitive hash functions combined into a standard hash
function, we control the false positive rate. Higher K means fewer false positives but more false
negatives. To decrease the number of false negatives we repeat the locality sensitive hashing multiple
times with H independent hash tables, increasing the true positive rate without impacting the false
positive rate adversely, at the cost of doing K ×H random projections.

The bin width parameter, w, is directly related to the desired retrieval radius R for searching;
thus, the hashing-based method requires a radius threshold for the search decided when building the
index data structures. Searches based on filtering retrieved results at that distance threshold are then
approximated by the hash lookup, with matches at a distance under the threshold R retrieved with
high probability and those at a distance over cR – the threshold multiplied by the approximation
factor – returned with low probability. The radius threshold, and hence the bin width parameter,
therefore encodes the decision boundary between retrieved and non-retrieved documents, which
ideally should be the same as the relevant / non-relevant boundary.

The methods described in [Casey et al., 2008] estimate a whole-database distance threshold for
a pair of data vectors to be significantly closer than expected (based on the background statistics of
the database), which then allows the above probabilistic indexing scheme to be implemented. False
positives resulting from the probabilistic indexed retrieval (though not from the feature itself) can be
eliminated with a post-processing stage on the retrieved set; false negatives from the probabilistic
nature are not recoverable. In addition, the whole-database threshold is not necessarily appropriate
to all entries in the database, leading to additional false negatives from too tight a radius threshold
for certain queries (see figure 1). This and other considerations of retrieval system performance are
discussed further in the next section.

3 Use cases: retrieval at different scales
In this section, we describe particular use cases for content-based Music Information Retrieval that
have been or are in the process of being investigated using the audioDB software described in section
2. We begin in section 3.1 by discussing the large-scale picture, where any content-based investi-
gation at all is only possible because of the indexing admitted by the geometric interpretation of
our sequence-based features described in section 2.2. In sections 3.2 and 3.3, we specify various
scenarios where our sequence-based matching approach is also able to address particular tasks of

5



E

× ×××

××××

×

×
×

×

×
×

×

Figure 1: Distribution of nearest-neighbours in high-dimensional spaces of our musical features is
highly non-uniform. A threshold appropriate for one track in the database (the filled circle) may
cause musical similarity between other pairs of tracks to be missed completely.

E(0)

E(1)

E(2)

sp
ec

ifi
ci

ty

high

low

specific recording identification

rights management, plagiarism detection

cover-song and multiple-performance handling

melody extraction and retrieval

performer or composer identification

recommender systems

style, mood, genre detection

music-speech segmentation

Figure 2: Illustration of different notions of similarity at different scales (left), where the notion
of what is considered similar depends on the overall contents of the database under consideration.
Compare and contrast with the specificity of similarity notions (right), modelled after [Byrd, 2007].

6



musical interest in medium and small-sized collections. This variation of tasks by scale (and the
corresponding effect of the scale of the task on the success criteria for the task, described in more
detail below) can be thought of as successive identifications of a coherent set of tracks from a larger
database, illustrated in figure 2; notions of similarities at these different scales bear comparison with
the specificity of music similarity searches, enumerated in [Byrd, 2007]. The notion of specificity is
related to the size of the database but also to the size of the desired results set; thus although some
of the highly-specific tasks (specific recording identification, rights management) are performed on
large databases, it is not appropriate to perform some of the less specific tasks on small-scale collec-
tions.

3.1 Large-scale
Using time-series features, we can perform three types of search: single-time-point search, exhaus-
tive track search, and database cross product search. For a million-song collection, where each song
has on the order of a thousand segments, the single-time-point query would require distance com-
putation and sorting of distances for 1,000,000× 1000 ∼ 109 vector sequences. For the whole-song
version, 1000 such comparisons are required resulting in ∼ 1012 distance measurement and sort op-
erations. This estimate of operation count is for a near-neighbour search for all portions of a single
track against the entire database.

However, generally speaking, MusicIR tasks for large collections are batch operations, in the
sense that the database of tracks to be matched against is known and acquired in advance. This
means that the user experience of the large collection can be enhanced by a back-end system that
has pre-trawled the data set and precomputed facets of interest, such as near-duplicate detection,
which was first used in Web search engines to reduce the redundancy between the most highly-
ranked search results [Broder et al., 1997] (and so to improve the overall relevance of the group of
results returned).

One application of such methods to music is related song substitution. Here, we observe that
a large music collection sometimes does not contain the specific song that a user requests in a
metadata search, but may contain a different version of the same song: such as a remix, alternative
language version, live versus studio version or a cover version by a different artist. Motivated by
the prospect of recommending alternative songs for failed queries, shingling was applied to audio
features [Casey and Slaney, 2006a] to construct a high-dimensional metric space. The application
required performing a database cross product, i.e. all tracks against all tracks, at the subsequence
level. This required (1000× 1,000,000)2 ∼ 1018 distance computation and comparison operations,
which, for high-dimensional feature vectors, can result in ∼ 1020 floating point operations.

To reduce the computational complexity of the search, we employed geometric hashing using
locality sensitive hash (LSH) functions, see Section 2.2. AudioDB using LSH has been employed
in near-duplicate detection, related-song classification and audio database exploration. The results
for a subset (containing about 2 × 106 vectors) of a larger collection, used to test the identification
of related songs, is shown in Figure 3. Here the precision and recall performance of the LSH based
system is shown to perform with the same level of accuracy as the brute-force computational method,
given a suitable choice of threshold radius hashing parameter. Tradeoffs in accuracy are manifest as
lower recall rates for large databases at full scale; however, the benefit comes in the lower runtime for
the query (in this experiment, the brute force search took about 100 times longer than constructing
the LSH data structures and performing the indexed search).

The same approach has also been used in an experimental manner on image searches. While
for images it is not possible to construct a consistent linearization of the image data that preserves
locality, it is possible to take a two-dimensional cepstral feature, treating that as the feature for the

7



Figure 3: Results of identifying remixes in a 2, 000, 000-vector subset using (dashed line) brute-force
sequence comparisons and (solid lines) locality sensitive hashing for radius thresholds of between
0.04 and 0.2. (from [Casey and Slaney, 2006a]).

8



image. Because there is no notion of sequence in still images, the sequence approach is inapplicable;
however, treating the image features as having an effective sequence length of one, the audioDB
software is still able to return images with reasonable similarity to a query image, tested using a
subset of the Flickr Photo Sharing website3 [Slaney, 2009].

In all these applications of content-based searching on large collections, the primary requirement
is that the returned list of results be relevant to the query: the precision should be high. It is usually
less important, except for special cases4, for recall to be high: there will usually be many items in
the database that are relevant to a query, and the user is generally not interested in retrieving them
all. In such circumstances, the tradeoff of reducing recall (by introducing a distance threshold; see
section 2.2) in the interest of maintaining high precision while allowing for short retrieval times is
an acceptable one.

It should be noted that the benefits of the probabilistic indexing using locality-sensitive hashing
on large databases is task- and data-specific. In some cases, the LSH data structures themselves can
directly represent the desired task result: effectively, a ‘map’ of close relationships between shingles
in the database. Some other tasks, with less tolerance for false positives from the probabilistic
nature of the index, require validation of the relationships by going back to the audio feature data
to compute the exact distances – and if the data are such that large portions of the database are
close to each other (relative to the LSH threshold radius) there will be no net benefit from the
index, as effectively an exhaustive search will need to be done to find the nearer neighbours in any
case. Nevertheless, for the various tasks we have performed, LSH affords a speedup of orders of
magnitude on the larger datasets we have examined.

3.2 Medium-scale
A medium-scale database for our purposes is one where a full scan of the database for a single query
is not prohibitively expensive; this search is O(N) in the number of feature vectors in the database,
and limits for the audioDB software are of the order of 50000 tracks, with up to 10 feature vectors
per second, giving an overall estimate of ∼ 108 feature vectors in the database (of course, this
estimate varies substantially with the available hardware and the constraints of the task: a real-time
task on consumer electronics hardware will have a substantially smaller limit than a search which
can be left to run over lunch on a cluster of compute servers).

Content-based searching of large collections as a primary user-access mechanism is never likely
to be attractive, since standard metadata-based techniques are more efficient. More focused medium-
sized collections offer the possibility of direct access via content-based searching for a variety of
uses, particularly in professional contexts. An example is the problem of work-identification: OM-
RAS 2 has been approached by the curators of a publicly-maintained academic online classical
music collection 5 with a request to help correct errors in their online metadata: they suspected that
several items in the collection (over 420 tracks) had been mis-identified in the cataloguing process,
although they did not know which ones, and putting this right promised to be a very costly exercise
involving intensive listening by experts.

Using the method we investigate in this article, there is a straightforward solution to this problem
which would, however, depend on the existence of a trusted, medium-scale ‘authority’ collection
with reliable metadata. This would need to be a comprehensive set of recordings of at least the most
popular works in the Western classical music canon (of the order of 10,000 to 20,000 tracks). Once
an audioDB database has been built from the authority collection, it is a simple matter of performing

3http://flickr.com/
4such as the ‘googlewhack’: searching for particular terms which have low absolute numbers of matches in the database.
5The Culverhouse Collection http://www.filmandsound.ac.uk/collections/culverhouse.shtml

9

http://flickr.com/
http://www.filmandsound.ac.uk/collections/culverhouse.shtml


searches with each item in the ‘problem’ collection in turn and substituting correct information from
the authority collection’s metadata as needed. Such a mechanism, if made accessible online, could
act as a ‘cataloguer’s assistant’ for music libraries.

In these scenarios, or any that might involve legal aspects, the most important consideration is
the unambiguous identification of the music being performed (i.e. the query track); this requires that
the (usually single) item in the ‘authority’ collection being searched comes very near the top of the
result list, i.e. high precision. On the other hand, the provision of substitutes from a medium-sized
collection which need be more loosely ‘similar’ to a given query, or the construction of playlists, will
be less stringent in terms of precision, but will benefit from high recall of likely candidate tracks.

A substantially different use of similarity-based search is the provision of a navigation interface
to a sizeable collection of varied music, such as a recording label’s collection. We have investigated
the provision of useful interfaces to a database of 50,000 tracks from the Artists Without a Label
catalogue [Magas et al., 2008], where the emphasis is on exploration of a collection of music by rel-
atively unknown artists whose work is less likely to be discovered by using metadata. By presenting
the user with tracks that contain at least one passage musically similar to a passage the user has
selected, fresh and sometimes surprising discoveries are easily made within the collection, with the
effect of greatly enhanced exposure for the artists concerned; in this scenario consistently achieving
a high precision (measured against a carefully-considered ground truth) is less important and would
arguably be counterproductive.

3.3 Small-scale
A small-scale database is one where a full, database cross-product, brute-force exhaustive search –
O(N2) in the number of vectors in the database – is not prohibitively slow. As with the estimate
of medium-scale databases in section 3.2, this is not an absolute definition of scale, but varies de-
pending on the use case; a task requiring near-real-time response, such as playlist generation on a
consumer music player device, will only work in this fashion on smaller databases than exhaustive
searches on collections of music for research purposes, where a search can be left to run overnight
and the results inspected the following day. Broadly, the audioDB software can perform this kind of
search on databases of up to of the order of 5000 tracks, with about 10 feature vectors per second
(so of the order of 106 to 107 feature vectors in the database, assuming tracks of about 4 minutes’
duration).

When investigating such a small database, in general there is a very specific kind of simi-
larity being sought. For example, the smallest database of music tracks to be investigated is a
database with a single track, whereupon the search for similar time-series of features becomes a
means of discovering structural segmentation of individual tracks, as in [Rhodes and Casey, 2007,
Abdallah et al., 2006] and references therein. Indeed, the approach to computing distances between
pairs of points in equations 1 and 2 has a direct connection to the music structure plots and similarity
matrices of [Foote, 1999] and successive investigations. We have carried out initial investigations
on the recognition of similar musical motives and themes using sequence matching (for example,
within musical forms such as the typical verse/chorus of songs or the classical rondo or sonata-form
movement), with encouraging preliminary results.

Beyond the single track, there are many small, coherent collections of musical interest; their co-
herence (effectively, some form of curation) means that there is a desire to investigate the collection
in a focussed way. Collections on which we have worked include one of digitized 78 rpm discs
from the Kings Sound Archive (see section 4 below); a collection of about 2000 tracks, representing
most of the Chopin Mazurka discography (collected by the CHARM project6), and of particular

6http://mazurka.org.uk/

10

http://mazurka.org.uk/


musical interest given the particular history of some of those recordings [Cook and Sapp, 2008,
Casey, 2009]; a collection of ethnomusicological field recordings [Magas and Proutskova, 2009]; a
set of Charlie Parker recordings; and many more besides. The audioDB software is flexible enough
to accommodate a variety of strategies for dividing tracks into segments (by external segmenter, beat
detector or constant time interval) and of acoustic feature (provided the distance metrics in equations
1 or 2 represent a ‘semantic’ distance between feature values) and so these varied databases and as-
sociated use cases can all be handled within the same framework.

In the majority of these investigations, recall of relevant results is highly important; for many,
missing any relevant results can be strongly detrimental. Precision, however, remains important,
particularly given the temporal nature of the medium: often, in these smaller use cases, in order to
assess the performance of a system (or to decide how to proceed), if precision is low and recall high
the user of the system is forced to listen to every result returned, taking time and quickly leading to
fatigue in repeated searches.

This point, that investigations on even small collections would benefit from an algorithmic means
to limit the retrieved results in a principled way (in order to minimize user dissatisfaction), moti-
vates the experiment in section 4, where we adapt our previous work regarding similarity thresholds
[Casey et al., 2008], which we there used to implement efficient, probabilistic indexing, to compute
adaptively a relevance threshold for each query track.

4 Experiment
The experiment that we perform here is to find the effect of using a relevance threshold, previously
motivated for the purpose of indexing a large collection, to improve the usability of the audioDB
software and its associated search and retrieval paradigm on small to medium collections. The
approach that we take is to consider first audioDB as a ‘search engine’, returning vectors in the
database in order of distance from a set of query vectors. This ranked list in principle contains all
the vectors in the database; we can cut this down by only considering the minimum distance between
all vectors in the query and all vectors in each track in the database, but this still means that each
query retrieves all database tracks. We therefore adopt a common search engine paradigm and cut
off the retrieved list after the 10th result, roughly corresponding to the first page of results for online
text-based searches, beyond which few typical users progress7.

However, in doing this we will usually retrieve too many results; in many collections, and cer-
tainly in the one we consider below, there are fewer than 10 true positives per query track, and many
will have none at all. In practice, then, the utility of the search tool will be increased if the user is
required to listen to fewer false positives, if this can be achieved without paying too high a cost in
overall recall. We therefore modify the retrieved list in two ways: the first is to cut the list of 10
retrieved documents off at a distance threshold estimated by sampling the database, exactly as in our
indexing strategy detailed in 2.2. However, we expect this to have a significant impact on recall, as
at least some tracks are likely to have relevant documents lying outside the whole-database threshold
(see figure 1). The second modification is, for each query, also to sample the database beforehand to
estimate the distribution of distances between database and that specific query (which can be done in
a small amount of time compared with a search); a threshold estimated from this distribution, again
exactly corresponding with the estimation for the indexing data structure, is then used to trim the
retrieved results list down from the previous limit of 10. We then evaluate the effect of these two
trimmings on the recall and the effective precision, defined as the proportion of true positives in the
retrieved results.

7http://www.iprospect.com/premiumPDFs/iProspectSurveyComplete.pdf (accessed 21 Jan 2010)

11

http://www.iprospect.com/premiumPDFs/iProspectSurveyComplete.pdf


The use-case that forms the basis of the experiment concerns the identification of the same work
in multiple performances in a collection of historical recordings on 78 rpm discs. The identification
of ‘covers’ of this type, where each artist is principally concerned with individual interpretation of a
work (usually existing in a musical score form broadly common to each recording) rather than with
changes in harmony or compositional structure, is of primary importance in the use of historical
recordings for the study of performance history.

The ‘similarity scale’ for this use-case runs from multiple digitisations of the same 78 rpm disc,
via performances which are identical in instrumentation and similar in tempo, through to re-scorings,
transpositions and renditions in which structure is altered in minor ways (such as the performance
of repeats). We are concerned here with the identification of the “same musical content” invariant
to the historical recording process, which can, especially in the case of acoustic recordings (made
before about 1927), severely affect timbral quality.

The collection is a test sample of 2018 digitised recordings of 78 rpm sides, averaging around 3
minutes in length, from the King’s Sound Archive (KSA) maintained at King’s College, London.8

These are archived as stereo 16-bit wav files sampled at 48 kHz which we downsampled to 44.1 kHz
mono as part of our feature-extraction process. The musical repertory is predominantly classical
music, vocal and instrumental, with a roughly equal balance of orchestral and chamber music; a
small number of jazz, sound-effect and spoken-word recordings are also included.

As ‘ground truth’, from supplied but unvalidated metadata we identified 88 works which appear
more than once in the collection; one important issue is that these are often spread across more
than one 78 rpm side (the maximum capacity for a 12” record side being about 4 minutes); for this
reason, although side-breaks do not in general consistently occur at the same instant in a work, we
limit our ground-truth ‘covers’ to sides which represent the same musical passages. This means that
matches between a query-passage in, say, side 1 of a movement and a repetition of the same passage
on side 2 are not listed as covers; this leads to some loss in precision.9 The resulting list of 322 sides
for which covers exist in the collection was used as audioDB queries; while the majority have just
one cover, some items are present in up to six renditions (such as J. S. Bach’s Toccata and Fugue
in D minor, BWV 565, represented by several of the original organ version as well as some piano
and orchestral arrangements). For each item in this list there were thus for comparative evaluation
purposes between one and five ‘relevant’ tracks in the collection, considered as known items for the
purpose of evaluation.

Because historical recordings tend to be somewhat inconsistent in terms of recorded pitch owing
to the mechanical difficulty of maintaining consistent recording speed, we use 36-bin chromagrams
with the aim of allowing matches where pitch varies between recordings. Although fine-pitch in-
variance can be easily achieved in the same manner as can deliberate musical transposition, by
query-feature rotation, for the present experiment we restrict ourselves to same-pitch matches only.
Again, there may be a slight inherent loss of precision on this account; in fact we know some cov-
ers are performed at different transpositions. Further, while it is possible that performances of the
same work differ in tempo, we use fixed-width chroma vectors; it is possible that generating beat-
or onset-synchronous chromagrams would improve performance by detecting these variants better,
but this would be dependent on the accuracy of the onset detector, which would need to be assessed
separately.

The overall retrieval performance of our system, using all 322 queries with the aim of retrieving
as many covers as possible for each query is illustrated by the conventional 11-point interpolated
precision/recall curve in figure 4. While we do not claim that performance on this known-item

8http://www.kcl.ac.uk/schools/humanities/depts/music/res/soundarchive.html
9An alternative, concatenating multiple-side recordings into complete movements - as on a modern CD re-issue - was not

done for reasons of time.

12

http://www.kcl.ac.uk/schools/humanities/depts/music/res/soundarchive.html


0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

recall

pr
ec

is
io

n

Figure 4: The overall precision-recall curves for our system, working with an exhaustive search over
the entire database for the closest 20 seconds of audio in each track to any 20 seconds in the query
track and ordering by distance, with ground truth for assessment generated from metadata.

Strategy Retrieved Relevant Precision Recall
1. Fixed rank (10 results) 3220 371 11.5% 65.5%
2. (1) and whole-database threshold 1667 298 17.9% 52.7%
3. (1) and per-query threshold 2235 352 15.7% 62.2%

Table 1: Retrieved and relevant results from the investigation described, with corresponding effective
precision and recall figures, over the 322 tracks with at least one cover present in the database.

search task is ‘good’, the precision above 0.6 at low recall shows that we can fairly reliably find
several covers at high positions in the ranked result lists – and using a more refined method for
computing chroma features (with the rest of the experiment unchanged) yields a precision at low
recall of above 0.85 and an F -score of about 0.8 [Crawford et al., 2010]. We discuss the overall
performance of our system and what can be done to improve it in section 4.1.

The rest of this section examines the practical implications of using the system to search for
unknown data – that is, finding ‘new’ covers at high rankings – and how the use of distance thresh-
olding can make the use of retrieval systems like ours more practical and user-friendly. To begin
with, first note that the overall precision-recall curve in figure 4 contains no information about query
items with no known relevant results in the database (which must be considered in the unknown-item
case).

Additionally, the utility of the search tool will be increased if the user is required to listen to
fewer false positives, as long as this can be achieved without paying too high a cost of overall recall.
The precision/recall curve shows the best possible effective precision at a given recall; irrelevant
results beyond the last relevant one are not reflected in figure 4.

The results of our investigation are summarized in table 1. While this change in performance

13



from the per-query threshold may not seem like a significant improvement (the F -measure [van Rijsbergen, 1979],
using these ‘effective precision’ numbers, increases from 9.78% to 12.5%), the change in absolute
terms for the user of a search engine like this is large: each document that is no longer retrieved is
20s less music to listen to: a total of 5 hours’ listening saved in this use case, at a small loss of recall.

4.1 Observations
While our per-track threshold estimation clearly reduces the number of non-relevant retrieved re-
sults, it does not eliminate them entirely; for some queries (such as a performance of R. Strauss’
‘Morgen’10, spectrogram displayed in the top panel of figure 5), the threshold performs as desired,
returning only covers; for others, such as the Brahms sonata11 whose spectrogram is displayed in the
bottom panel of figure 5, the threshold is significantly larger than many of the minimum distances.
In almost all of these latter cases, the large number of retrieved non-relevant results originate from a
specific portion of the query track.

Our sampling method essentially assumes that all of the musical material is in some sense ‘sim-
ilar’, not necessarily in acoustic or musical terms but in a statistical sense: drawn from the same
underlying distribution; this is an assumption made in the estimation of minimum distances in
[Casey et al., 2008]. However, in some of the tracks in the database in question, there are quali-
tatively different processes going on: for example, in the Brahms sonata displayed in figure 5 the
majority of the piece is smooth, calm and slow-moving, but there are sections of fast, percussive
piano activity (at 40s, 100s and 160s in this recording). These active regions, in the feature space
and distance measure we are using, resemble broadband noise, and – crucially – resembles other
percussive regions found in the database. Thus there are some statistically relevant (but musically
non-relevant) documents in the database, as a result of a feature with insufficient discriminatory
power. This is also responsible for the fact that we retrieve many documents when querying the
database with a track with no known covers according to our ground truth.

Because of the nature of the tracks in the database, and the form of search that we are doing
(single minimum-distance ‘hit’, exhaustive pairwise search of 20s sequences between tracks), our
ground truth data will miss some pairs of tracks that are musically related: longer works divided
into multiple sides (multiple tracks in our database) will often, though not always, share musical
content judged similar with respect to our feature; those tracks are sometimes retrieved ahead of the
corresponding side from a different recording of the same musical work.

In addition, a small but non-trivial number (about 20) of additional relevant results were identi-
fied from manual inspection of a subset of the results lists, indicating that our initial ‘ground truth’
derived from metadata was imperfect. In terms of the overall performance of the system, including
these relevant results in our ground truth would have the effect of increasing the precision at low
recall (and along with it the effective ‘search engine’ precision).

5 Conclusions
Motivated by consideration of user experience of searching for multiple performances of the same
musical work in a collection, we have described how the effective precision, considering all the
retrieved results in a system, can be increased, using the same statistical and geometric model as is
used for indexing large-scale collections. We have demonstrated that this technique for limiting the

10audio file available at http://images.cch.kcl.ac.uk/charm/liv/audio/flac/DB_1010_Cc_9888-2.flac
11http://images.cch.kcl.ac.uk/charm/liv/audio/flac/B_3098_Bb_16980-2.flac

14

http://images.cch.kcl.ac.uk/charm/liv/audio/flac/DB_1010_Cc_9888-2.flac
http://images.cch.kcl.ac.uk/charm/liv/audio/flac/B_3098_Bb_16980-2.flac


Figure 5: Spectra of R. Strauss, ‘Morgen’ (Elisabeth Schumann [sop], Isolde Menges [vln]), 1927
(top) and J. Brahms, Sonata in A major Op 100: I, 1 (Isolde Menges [vln], Harold Samuel [pfte]),
1929 (bottom). Observe the higher broadband noise component (darker grey background) displayed
in the spectrum in the bottom panel.

15



retrieved set of results from searching a database can give large savings in terms of user time and
energy, at a small cost in recall performance.

We have described a number of use cases for content-based similarity search, over different
kinds collections of music at different scales. Consideration of the tradeoffs between precision and
recall in each of these tasks allows us to use the same software framework to perform these tasks;
the audioDB software has been demonstrated to scale to millions of multimedia items, each with
thousands of vectors.

5.1 Future Work
The observation that, in some cases, there are many musically non-relevant documents retrieved
under the per-track threshold for a given track – and in particular, the nature of the match found,
being essentially a percussive section matching a percussive section – motivates the need for a bet-
ter chroma feature, or alternatively a secondary feature to indicate how much of the chromagram
came from ‘harmonic’ content in the audio; initial experiments [Crawford et al., 2010] in this direc-
tion demonstrate a dramatic improvement in retrieval performance using a more sophisticated note
content estimator [Mauch and Dixon, 2010] rather than a simple FFT-based chromagram estimator.

More generally, a way of filtering for this failure mode (an outlier region matching a large pro-
portion of the database) automatically would be valuable, as it is conceivable that there will be ana-
logues of this phenomenon in other features, and it is only rarely desireable to return a significant
fraction of a database in response to a query.

We have demonstrated the value of an adaptive threshold, working on a small database, at in-
creasing the effective precision. There are use cases at medium and large scale where the effective
precision of a search is likewise important; it is therefore important to be able to construct useful
indexes over the database for variable thresholds. This must be done with some care; it is not as
simple as building multiple indexes at different thresholds, because the size of such a naı̈ve index
would increase vastly as the threshold increases; we expect to have to perform some prefiltering of
points to index or to consider hierarchical indexing schemes.

Finally, we anticipate that consideration of further use cases will motivate extensions and en-
hancements to the audioDB software described here; both the core functionality and applications
using it will continue to be maintained and developed in its repository at http://source.omras2.
org/svn/audioDB.

Acknowledgments
We are grateful to Daniel Leech-Wilkinson, Andrew Hallifax and Martin Haskell for providing files
from the Kings Sound Archive collection, and to Denzyl Feigelson for providing media from the
Artists Without a Label collection. Some of the larger-scale investigations we describe were per-
formed with Malcolm Slaney on the media collections at Yahoo! Inc. We have benefited greatly
from conversations with Michael Jewell, and we thank the anonymous reviewers for their percep-
tive comments and constructive suggestions. This work was supported by EPSRC (grant number
EP/E02274X/1).

References
[Abdallah et al., 2006] Abdallah, S., Sandler, M., Rhodes, C., and Casey, M. (2006). Using duration

models to reduce fragmentation in audio segmentation. Machine Learning, 65:485–515.

16

http://source.omras2.org/svn/audioDB
http://source.omras2.org/svn/audioDB


[Andoni and Indyk, 2006] Andoni, A. and Indyk, P. (2006). Near-Optimal Hashing Algorithms for
Near Neighbor Problem in High Dimensions. In Proceedings of the Symposium on Foundations
of Computer Science, pages 459–468, Berkeley, CA, USA. IEEE Computer Science.

[Baluja and Covell, 2008] Baluja, S. and Covell, M. (2008). Learning to hash: forgiving hash func-
tions and applications. Data Mining and Knowledge Discovery.

[Broder et al., 1997] Broder, A., Glassman, S., Manasse, M., and Zweig, G. (1997). Syntactic
clustering of the web. In Selected papers from the sixth international conference on World Wide
Web, pages 1157–1166.

[Byrd, 2007] Byrd, D. (2007). A similarity scale for content-based music ir. http://www.

informatics.indiana.edu/donbyrd/MusicSimilarityScale.HTML.

[Casey, 2001] Casey, M. (2001). MPEG-7 Sound Recognition Tools. IEEE Transactions on Circuits
and Systems Video Technology. Special issue on MPEG-7.

[Casey, 2009] Casey, M. (2009). Audio Tools for Music Discovery. In Crawford, T. and Gibson, L.,
editors, Modern Methods for Musicology: Prospects, Proposals and Realities, Digital Research
in the Arts and Humanities, pages 127–135. Ashgate.

[Casey et al., 2008] Casey, M., Rhodes, C., and Slaney, M. (2008). Analysis of Minimum Dis-
tances in High-Dimensional Musical Spaces. IEEE Transactions on Audio, Speech and Signal
Processing, 16(5):1015–1028.

[Casey and Slaney, 2006a] Casey, M. and Slaney, M. (2006a). Song Intersection by Approximate
Nearest Neighbour Searching. In Proceedings of the International Symposium on Music Infor-
mation Retrieval.

[Casey and Slaney, 2006b] Casey, M. and Slaney, M. (2006b). The Importance of Sequences in
Music Similarity. In Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing, volume V, pages 5–8, Toulouse, France.

[Cook, 2007] Cook, N. (2007). Performance Analysis and Chopin’s Mazurkas. Musicae Scientiae.

[Cook, 2010] Cook, N. (2010). The Ghost in the Machine: Towards a Musicology of Recordings.
Musicae Scientiae.

[Cook and Sapp, 2008] Cook, N. and Sapp, C. (2008). Purely coincidental? Joyce Hatto
and Chopin’s Mazurkas. http://www.charm.rhul.ac.uk/content/contact/hatto_

article.html.

[Crawford et al., 2010] Crawford, T., Mauch, M., and Rhodes, C. (2010). Recognising Classical
Works in Historical Recordings. In Proceedings of the International Symposium on Music Infor-
mation Retrieval. (accepted).

[Datar et al., 2004] Datar, M., Indyk, P., Immorlica, N., and Mirrokni, V. (2004). Locality-Sensitive
Hashing Scheme Based on p-stable Distributions. In Proceedings of the Symposium on Compu-
tational Geometry, pages 253–262, Brooklyn, New York, USA. ACM.

[d’Inverno et al., 2011] d’Inverno, M., Casey, M., Rhodes, C., and Jewell, M. (2011). Content-
based search for time-based media. in preparation.

17

http://www.informatics.indiana.edu/donbyrd/MusicSimilarityScale.HTML
http://www.informatics.indiana.edu/donbyrd/MusicSimilarityScale.HTML
http://www.charm.rhul.ac.uk/content/contact/hatto_article.html
http://www.charm.rhul.ac.uk/content/contact/hatto_article.html


[Ellis, 2007] Ellis, D. (2007). Beat tracking by dynamic programming. J. New Music Research,
Special Issue on Beat and Tempo Extraction.

[Ellis and Poliner, 2007] Ellis, D. and Poliner, G. (2007). Identifying ‘Cover Songs’ with Chroma
Features and Dynamic Programming Beat Tracking. In Proc. Int. Conf. on Acous., Speech, &
Sig. Proc. ICASSP-07, pages pp.IV–1429–1432, Hawai’i.

[Flexer et al., 2005] Flexer, A., Pampalk, E., and Widmer, G. (2005). Hidden markov models for
spectral similarity of songs. Technical report, Österreichisches Forschungsinstitut fr Artificial
Intelligence.

[Foote, 1999] Foote, J. (1999). Visualizing Music and Audio using Self-Similarity. In ACM Multi-
media (1), pages 77–80.

[Grauman and Darrell, 2004] Grauman, K. and Darrell, T. (2004). Fast Contour Matching Using
Approximate Earth Mover’s Distance. Procdeedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition.

[John, 2006] John, J. (2006). Pandora and the music genome project. Scientific Computing.

[Levy and Sandler, 2006] Levy, M. and Sandler, M. (2006). Lightweight measures for timbral sim-
ilarity of musical audio. In Proceedings of the 1st ACM workshop on Audio and music computing
multimedia, pages 27–36, Santa Barbara, California, USA.

[Logan and Salamon, 2001] Logan, B. and Salamon, A. (2001). A Music Similarity Function Based
on Signal Analysis. Proceedings of the IEEE International Conference on Multimedia and Expo.

[Magas et al., 2008] Magas, M., Casey, M., and Rhodes, C. (2008). mHashup: fast visual music
discovery via locality sensitive hashing. In ACM SIGGRAPH New Technology Demos, LA, USA.

[Magas and Proutskova, 2009] Magas, M. and Proutskova, P. (2009). A location-tracking inter-
face for ethnomusicological collections. In Workshop on Exploring Musical Information Spaces,
pages 12–17, Corfu, Greece.

[Mauch and Dixon, 2010] Mauch, M. and Dixon, S. (2010). Approximate Note Transcription for
the Improved Identification of Difficult Chords. In Proceedings of the International Symposium
on Music Information Retrieval. (accepted).

[Müller, 2007] Müller, M. (2007). Information Retrieval for Music and Motion. Springer Verlag.

[Rauber et al., 2002] Rauber, A., Pampalk, E., and Merkl, D. (2002). Content-based Music Index-
ing and Organization. In Proceedings of the 25th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR02), pages 409–410, Tampere,
Finland.

[Rhodes and Casey, 2007] Rhodes, C. and Casey, M. (2007). Algorithms for determining and la-
belling approximate hierarchical self-similarity. In International Conference on Music Informa-
tion Retrieval, pages 41–46, Vienna.

[Serra and Gomez, 2007] Serra, X. and Gomez, E. (2007). A Cover Song Identification System
Based on Sequences of Tonal Descriptors. Proceedings of the International Symposium on Music
Information Retrieval.

18



[Slaney, 2009] Slaney, M. (2009). Image Results using audioDB. personal communication.

[Tzanetakis and Essl, 2001] Tzanetakis, G. and Essl, G. (2001). Automatic Musical Genre Classifi-
cation Of Audio Signals. In IEEE Transactions on Speech and Audio Processing, pages 293–302.

[van Rijsbergen, 1979] van Rijsbergen, C. V. (1979). Information Retrieval. Butterworth.

[Wang, 2003] Wang, A. (2003). An Industrial Strength Audio Search Algorithm. In Fourth Inter-
national Symposium on Music Information Retrieval, pages 7–13, Baltimore.

[Wang, 2006] Wang, A. (2006). The Shazam music recognition service. Communications of the
ACM, 49(8):44–48.

19


	Introduction
	Information Retrieval from Recorded Music Collections
	Content-based similarity retrieval

	The audioDB system
	Time-series matching
	Efficiency, Indexing and Thresholding

	Use cases: retrieval at different scales
	Large-scale
	Medium-scale
	Small-scale

	Experiment
	Observations

	Conclusions
	Future Work


