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Abstract

We present a simple model based on Dirichlet distributions for pitch class proportions within
chords, motivated by the task of generating ‘lead sheets’ (sequences of chord labels) from symbolic
musical data. Using this chord model, we demonstrate the useof Bayesian Model Selection to
choose the appropriate granularity of labelling at all points in time throughout a song. We show how
to infer parameters for our models from labelled ground-truth data, and examine the performance
of our system on a test corpus (giving 75% correct windowing decisions from optimal parameters).
The performance characteristics of our system suggest thatpitch class distributions alone do not
capture all the information used in generating the ground-truth labels; we discuss the additional
features likely to improve performance, and demonstrate that they can be seamlessly incorporated
into our framework.

1 Introduction

This paper introduces a relatively straightforward model for labelling chords based on pitch class pro-
portions within windows, and using this model not only to generate chord labels given a symbolic
representation of a musical work, but also to infer the relevant level of temporal granularity for which
a single label is justified.

The generation of these chord labels was initially motivated by the desire to perform automated
musical analysis over a large database of high-quality MIDItranscriptions of musical performances, as
part of a larger study investigating musical memory. While the MIDI transcriptions are of high-fidelity
with respect to the performances they represent, they do notinclude any analytic annotations, such
as song segmentation, principal melody indications, or significant rhythmic or harmonic motifs; all of
these must be generated if desired, but it is not practical todo so manually over the collection of some
14,000 pop song transcriptions.

A time sequence of chord labels, as a compact representationof the harmony of the musical work,
can not only be used as the basis for the detection of larger-scale harmonic features (such as cadences,
clichśs and formulae), but can also inform a structural segmentation of the music, since harmony is
often an indicator of structure in Western pop music. Such segmentation is a necessary first step for
other feature extraction tools (it is, for example, a prerequisite for the melody similarity algorithms
presented in [8]).

A second use for these chord labels is the automatic generation of lead sheets. A lead sheet is a
document “displaying the basic information necessary for performance and interpretation of a piece of

∗c.rhodes@gold.ac.uk

1



popular music” [13,Lead sheet]. The lead sheet usually gives the melody, lyrics and a sequence of
short chord labels, usually aligned with the melody, allowing musicians to accompany the singer or
main melody instrument without having a part written out forthem.

An advantage of the model we present in this paper is that the overall framework is independent of
the type of harmony scheme that it is used with: for example, it can be adapted to generate labels based
on tertial or quartal harmonic classification [13,Harmony]. Furthermore, a similar model selection
stage can be used to choose which harmonic classification is most appropriate for a given work, a
decision which can be informed by information not present inthe observed musical data (such as a
genre label) by incorporating that information into a priorprobability model.

The rest of this paper is organized as follows: after a discussion of previous related work in section
2, we present our model for the dependency of pitch class content on the prevailing chord, forming
the core of our simple model, and discuss its use in window size selection in section 3. We discuss
implementation of parameter inference and empirical results in section 4, and draw conclusions and
suggest further work in section 5.

2 Previous Work

Most previous work on chord label assignment from symbolic data is implemented without an explicit
model for chords: instead, preference rules, template matching and neural network approaches have
been considered [14, Chapter 6 and references therein]; an alternative approach involving knowledge
representation and forward-chaining inference has also been applied to certain styles of music [9, 11].
One attempt to use probabilistic reasoning to assign chord labels uses a Hidden Markov Model approach
with unsupervised learning [10] of chord models; however, the authors note that they do not provide
for a way of making decisions about the appropriate granularity for labelling.

There has been substantial work in the symbolic domain on therelated task of keyfinding. For
instance, [4, Chapter 4] presents a decision procedure based on Pearson correlation values of observed
pitch-class profiles with profiles generated from probe-tone experiments. Another class of algorithms
used for keyfinding is a geometric representation of keys andtones, attempting to capture the perceived
distances between keys by embedding them in a suitable space[2]. The profile-based model has been
refined [14, Chapter 7] by making several modifications: altering details of the chord prototype profiles;
dividing the piece into shorter segments; adjusting the pitch-class observation vector to indicate merely
presence or absence of that pitch class within a segment, rather than the proportion of the segment’s
sounding tones; and imposing a change penalty for changing key label between successive segments.

There are existing explicit models for keys and pitch class profiles: one such [15] is defined such
that for each key, the presence or absence of an individual pitch class is a Bernoulli distribution (so that
the pitch class profile is the product of twelve independent Bernoulli distributions); in this model, there
are also transition probabilities between successive chords. This model was further refined in [16] by
considering not just pitch classes but the interval betweensuccessive notes. These models are based
on the notion of a fixed-size ‘segment’, which has two effects: firstly, the key models are not easily
generalized to windows of different sizes, as the occurrence of a particular scale degree is not likely to
be independent in successive segments; secondly, unless the segment length is close to the right level
of granularity, a postprocessing stage will be necessary tosmooth over fragmented labels.

There has been more work towards chord recognition in the audio domain, where the usual paradigm
is to model the chord labels as the hidden states in a Hidden Markov Model generating the audio as
observation vectors [1, 12]. One problem in training these models is in the lack of ground truth; ap-
proaches have been made to generate ground truth automatically [5], but such automatic ground truth
generation depends on a reliable method of generating labels from the symbolic data.

One feature of the method presented in this paper in contrastto most existing harmony or key
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identification techniques is that it has an explicit musically-motivated yet flexible model for observ-
able content at its core, rather than performing somead-hoc matching to empirical prototypes. This
flexibility confers two modelling advantages: firstly, the parameters of the model can be interpreted
as a reflection of musical knowledge and adjusted in a principled way; secondly, if evidence for ad-
ditional factors influencing chord labels surfaces, in general or perhaps for a specific style of music
under consideration, these additional factors can be incorporated into the model framework without
disruption.

3 Model

The repertoire of chords that we represent is triad-based; we aim to distinguish between major, minor,
augmented, diminished and suspended (sus4 and sus9) triadswith any of the twelve scale degrees as
the root, and we will infer probability distributions over these chord labels given the musical content of
a window. We introduce the Dirichlet distribution on which our chord model is based, give our explicit
model for the dependence of pitch class distributions on thechord, and then explain how we can use
this to perform selection of window size in a Bayesian manner.

3.1 Dirichlet distributions

The Dirichlet distribution is a model for proportions of entities within a whole. It has density function

p(x|α) =
1

B(α)

∏

i

xαi−1
i

(1)

with support on the simplex
∑

i
xi = 1. The normalizing constantB(α) is defined as

B(α) =

∏

i
Γ(αi)

Γ (
∑

i
αi)

(2)

whereΓ is the gamma functionΓ(x) =
∫

∞

0
tx−1e−tdt.

Note that for each individual component of the whole, represented by an individual random variable
xi, the correspondingαi controls the dependence of the density (1) for small values of this component:
if αi > 1, the probability density tends towards zero in the limitxi → 0; if αi < 1, the density increases
without limit asxi → 0.

3.2 The Chord Model

Our introductory chord model is triad-based, in that for each chord we consider the tones making up
the triad separately from the other tones. The proportion ofa region made up of triad tones is modelled
as a Beta distribution (a Dirichlet distribution with only two variables), and the triad tone proportion is
then further divided into a Dirichlet distribution over thethree notes in the triad.

Denoting the proportion of non-triadic tones ast̄, and that of triadic tones ast, where the latter is
made up of rootr, mediantm and dominantd, we can write our chord model as

p(rmdtt̄|c) = p(tt̄|c)p(rmd|tt̄c) (3)

with support on the simplexest + t̄ = 1, r + m + d = 1; each of the terms on the right-hand side is a
Dirichlet distribution. We simplify the second term on the right-hand side by asserting that the division
of the harmonic tone is independent of the amount of harmonictone in a chord, so thatp(rmd|tt̄c) =
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p(rmd|c). In principle, each chord model has two sets of independent Dirichlet parametersα; in
practice we will consider many chords to be fundamentally similar, effectively tying those parameters.

This simple chord model does not allow for certain common harmonic labels, such as seventh
chords or open fifths (as these are not triadic); we leave thisextension for further work. Additionally,
there is a possible confusion even in the absence of noise between the suspended chords, as the tones
present in a sus4 chord are the same as those in a sus9 chord of the subdominant.

3.3 Bayesian Model Selection

Given a set of models for explaining some data, where each individual model is in general parameter-
ized by multiple parameters, we can make Bayesian decisionsbetween models in a similar fashion to
selecting an instance from a particular model; or, in general, we can generate probability distributions
over models given data in a similar way as generating probability distributions within a given model.
For a full exposition of Bayesian Model Selection, seee.g. [6, Chapter 28].

In the context of our problem, of chord labelling and window size selection, we choose a temporal
region of a structural size: in our investigation for popular music, we choose this region to be one bar,
the basic metrical unit in that style. Then the different models for explaining the musical content of
that bar are different divisions of that bar. For instance, one possible division of the bar is that there
is no segmentation at all; is is all one piece, with one chord label for the whole bar. Another possible
division is that the bar is made up of two halves, with a chord label for each half bar. These divisions
of the bar play the rôle of distinct models, and the set of possible chord labels for each model are the
parameters. In our experiment described in section 4, the corpus under consideration only contains
works in common time, and we consider all eight possible divisions of the bar at the beat level.

The Bayesian Model Selection framework naturally incorporates the Occam factors in a quantitative
manner: if there is evidence for two different chord labels,then the whole-bar model will not be a good
fit to the data; if there is no evidence for two distinct chord labels, then there are many more different
poor fits for a more fine-grained model than for the whole-bar model.

To be more precise, we can write the inference over modelsM given observed dataD as

p(M |D) =
p(D|M)p(M)

p(D)
(4)

where
p(D|M) =

∑

c

p(D|cM)p(c|M) (5)

is the normalizing constant for the inference over chord labelsc for a given modelM . Note that there
is an effective marginalization over chord labels for each model – when considering the evidence for a
particular model, we add together contributions from all ofits possible parameters, not simply the most
likely. We can use the resulting probability distribution (4) to select the most appropriate window size
for labelling.

The flexibility of this approach is evident in equation (5): the chord modelsp(D|cM) can differ
in parameter values or even in their identity between windowsizes, and that the prior probabilities for
their generationp(c|M) can also be different between modelsM .

4 Experiment

4.1 Parameter estimation

We can rewrite the Dirichlet density function (1) ase−
P

i[(1−αi) log xi]−log B(α), demonstrating that it is in
the exponential family, and that

∑

i
log xi is a sufficient statistic for this distribution; additionally, there
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is a conjugate prior for the parameters of the form

π(α|A0, B0) ∝ e−
P

i[(1−αi)A
0
i ]−B0 log B(α) (6)

with supportαi ∈ R
+
0 .

GivenN observationsx(k), the posterior density is given byp(α|x(k)) ∝ p(x(k)|α)π(α), which is

e
−

P

i

h

(1−αi)
“

A0
i +

PN
k log x

(k)
i

”i

−(B0+N) log B(α)
; (7)

that is, of the same form as the prior (6), but with the hyperparametersA0 andB0 replaced byA =
A

0 +
∑

k
log x

(k) (with the logarithm operating componentwise) andB = B0 + N . The likelihood is
of the form (7), withA0 andB0 set to 0.

The maximum likelihood estimate for parameters is then obtained by equating the first derivatives
of the log likelihood to zero; from (2), we see
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∂
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(

∑
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αk
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αk

)

, (8)

whereΨ is the digamma function, and so

∂ logL
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giving Ψ (
∑
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αk) = Ψ(αi) −

Ai

B
for the maximum point, which we solve numerically forαi using

the bounds discussed in [7]. In addition, performing a quadratic (Gaussian) approximation around
the maximum, we can obtain estimates for the error bars on themaximum likelihood estimate from
∂2 logL

∂α2
i

∣

∣

∣
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αi
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2

; (10)

for the purpose of the confidence interval estimates in this paper, we disregard covariance terms arising
from ∂2 logL

∂αi∂αj
.

We defer detailed discussion of a suitable form of the prior on these chord parameters to future work.
We have derived an approximate noninformative [3, Chapter 12] prior within the conjugate family, but
its use is inappropriate in this setting, where we can bring considerable musical experience to bear (and
indeed the maximuma posteriori estimates generated using this prior give inferior performance than
the maximum likelihood estimates in our experiment).

4.2 Results

Our corpus of MIDI transcriptions is made up of files with tensof thousands of MIDI events, with
typically over five instruments playing at any given time; each bar typically contains several dozen
notes. We selected 16 songs in broadly contrasting styles, and ground truth chord labels for those
transcriptions of performances were generated by a human expert, informed by chord labels as assigned
by song books to original audio recordings. We then divided our corpus of 640 labelled bars into
“training” and “testing” sets of 233 and 407 bars respectively. Based on an initial inspection of the
training set, we performed maximum likelihood parameter estimation for the chord models for three
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Chord, win αtt̄ αrmd

Maj/Min, bar {6.28, 1.45} ± {0.49, 0.099} {3.91, 1.62, 2.50} ± {0.23, 0.11, 0.15}
Maj/Min, small {3.26, 0.72} ± {0.32, 0.054} {4.04, 2.66, 2.29} ± {0.21, 0.15, 0.13}
other {5.83, 1.04} ± {0.82, 0.12} {4.08, 2.35, 1.49} ± {0.38, 0.23, 0.16}

Table 1: Maximum likelihood estimates for Dirichlet distributions, based on labelled ground truth.

different sets of labels: major or minor chord labels for an entire bar; major or minor labels for windows
shorter than a bar; and all other labels.

From the inferred parameters for major and minor chords at different window sizes in table 1,
there was evidence for qualitatively different behaviour of labelling at sub-bar window sizes from the
behaviour of labelling whole bars: the sub-bar window sizeshave high probability density for small
non-chord components, while the parameters for the whole-bar windows have a vanishing probability
density near a zero proportion of non-chord tones. We interpret this as showing that the ground truth
labels were generated such that a sub-bar window is only labelled with a distinct chord if there is strong
evidence for such a chord –i.e. only small quantities of non-chord notes. If no sub-bar window is
identified, then a closest-match chord label is applied to the whole bar, where there is in general only
slight preference for chord notes. There was insufficient ground truth data to investigate this issue over
the other families of chords (indeed, there was only one example of an augmented chord in the training
data set).

Using the maximum likelihood estimates of table 1, we performed inference over window sizes
and chord labels over the testing set, obtaining 53% of correct windows and 75% of correct labels
given the window. Additionally, we performed a large (but byno means exhaustive) search over the
parameter space on the training data, and obtained parameter values which performed better than these
ML estimates on the testing set, giving 75% windows and 76% chords correctly. It should be noted that
the training and testing sets are quite similar in character, being individual bars drawn from the same
pieces; it would be difficult to justify claims of independence between the sets.

We interpret these trends as suggesting that the model for chords based simply on note proportions
is insufficiently detailed to capture successfully enough of the process by which ground truth labels are
assigned. The fact that maximum likelihood estimates perform noticeably worse than a set of parame-
ters from training indicates that there is structure in the data not captured by the model; we conjecture
that inclusion of a model for the chord label conditioned on the functional bass note in a window would
significantly improve the performance of the model. Anothermusically-motivated refinement to the
model would be to include an awareness of context, for instance by including transition probabilities
between successive chord labels (in addition to the implicit ones from the musical surface); however,
this changes the algorithmic characteristics of label generation, because of the need to perform infer-
ence over the entire sequence.

5 Conclusions

We have presented a simple description of the dependence of chord labels and pitch-class profile, with
an explicit statistical model at its core; this statisticalmodel can be used not only to infer chord labels
given musical data, but also to infer the appropriate granularity for those labels. Our empirical results
demonstrate that adequate performance can be achieved, while suggesting that refinements to the sta-
tistical description could yield significant improvements. The model presented ignores all context apart
from the window in question, and operates only on pitch classprofile data; incorporation of such extra
information can simply be achieved by extending the statistical model. Similarly, we can incorporate
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available metadata into our model, for instance by defining agenre-specific chord label prior; and we
can change the repertoire of chords under consideration without alteration of the framework, simply by
replacing one component of the observation model.
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