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Abstract—We propose an automatic method for measuring con-
tent-based music similarity, enhancing the current generation of
music search engines and recommender systems. Many previous
approaches to track similarity require brute-force, pair-wise pro-
cessing between all audio features in a database and therefore are
not practical for large collections. However, in an Internet-con-
nected world, where users have access to millions of musical
tracks, efficiency is crucial. Our approach uses features extracted
from unlabeled audio data and near-neigbor retrieval using a
distance threshold, determined by analysis, to solve a range of
retrieval tasks. The tasks require temporal features—analogous to
the technique of shingling used for text retrieval. To measure simi-
larity, we count pairs of audio shingles, between a query and target
track, that are below a distance threshold. The distribution of
between-shingle distances is different for each database; therefore,
we present an analysis of the distribution of minimum distances
between shingles and a method for estimating a distance threshold
for optimal retrieval performance. The method is compatible with
locality-sensitive hashing (LSH)—allowing implementation with
retrieval times several orders of magnitude faster than those using
exhaustive distance computations. We evaluate the performance of
our proposed method on three contrasting music similarity tasks:
retrieval of mis-attributed recordings (fingerprint), retrieval of
the same work performed by different artists (cover songs), and
retrieval of edited and sampled versions of a query track by remix
artists (remixes). Our method achieves near-perfect performance
in the first two tasks and 75% precision at 70% recall in the third
task. Each task was performed on a test database comprising 4.5
million audio shingles.

Index Terms—audio shingles, distance distributions, lo-
cality-sensitive hashing, matched-filter distance, music similarity.

I. INTRODUCTION

WE ARE interested in efficient algorithms for finding sim-
ilar musical pieces based on their acoustic signal. Sys-

tems for song retrieval are most clearly characterized by the
specificity of the query. To illustrate, let us consider four types
of audio queries; the first three types have the common property
that they match sequences of audio features; therefore, they use
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temporal features, while the fourth and least specific can be an-
swered using statistical averages.

1) Fingerprinting: Audio fingerprints are the basis of the
most specific type of query. The fingerprint query aims to
uniquely identify a recording in the presence of a distorting
communications channel. For example, a song might be
corrupted by loud background noise and very lossy com-
pression. Fingerprinting is valuable to consumers as it
allows delivery of more information about a song they are
hearing.

2) Remixes: A remix is a version of a song that contains audio
content from the original song, but it is remixed to give a
different feel, often but not always by the same artist. A
remix query returns songs which contain a (possibly dis-
torted but closely matching) fragment of the query song.

3) Cover songs: In contrast, cover-song retrieval seeks to find
all versions of the same song title performed by different
artists. In this case, we do not expect any of the query’s
audio to be contained within the retrieved songs, i.e., it is
the overall musical content that is in some sense similar.

4) Genre: The least specific type of audio matching disre-
gards temporal information altogether and attempts to
match global spectral properties of songs, usually using
temporally insensitive statistical models.

In fingerprinting, we typically look for exact matches, but the
second and third types of queries are approximate matches, and
thus we need to find near neighbors in some feature space.

Whether a song is relevant to a given query type and query
track can be determined by counting the number or proportion
of near-neighbors, short sequences of feature vectors from the
query track, which are from relevant songs. This paper addresses
the problem of finding near neighbors for acoustic signals in a
high-dimensional space, as well as the issue of determining a
relevant threshold for such neighbor computation.

Potential applications include near-duplicate elimination for
improving the ranks of relevant search results, sampling source
identification, high-level music structure extraction (identifying
repeats), remixed-song retrieval, cover-version retrieval, and
linking of recommendation data between closely related songs.
We wish to describe an implementation of such applications in
today’s million-song music databases.

A. Approach

1) Audio Shingles: Our approach is motivated by the
specificity of our queries and by the scale of today’s music
search problems. Specific queries require sequences of features
for similarity evaluation, rather than either single feature or
bag-of-features models. We organize a sequence of feature
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vectors with dimension , into a shingle of dimension

(1)

Shingles are taken exhaustively from each track by advancing
the shingle window by one feature vector.

2) Track Model: Our model of between-track similarity
counts matching shingles. Thus, pairs of tracks with more
matching shingles are more similar. To determine when two
shingles are a match, we use a distance threshold: .
We are only interested in those pairs of shingles with distance
falling below this threshold, see Section III-C. Thus, we express
the track similarity problem as a radius-bounded, near-neighbor
search which, as discussed below, allows efficient implemen-
tations.

3) Efficiency: The shingling technique that we employ for
temporal specificity in our queries multiplies the dimensionality
of features by a shingling factor l, see (1). For low-dimensional
data, there exist many space-partitioning methods that solve ap-
proximate near-neighbor search with sublinear time complexity.
Locality-sensitive hashing (LSH) algorithms [1], on the other
hand, are based on random projections of high-dimensional fea-
tures to low dimensions and solve radius-bounded approximate
near-neighbor problems with sublinear time complexity. Our
method is directly compatible with such algorithms and there-
fore can be efficiently implemented using LSH.

4) Null Hypothesis: We determine the distance threshold
from unlabeled audio data; that is, we sample the be-
tween-shingle distances to estimate a background distance
distribution. This forms the null hypothesis: that the distance
between two shingles is drawn from the background distance
distribution. When the probability of the distance between
shingles is in the tail of the distribution, tending toward zero
distance, we reject the null hypothesis and conclude that the
distance between the pair of shingles is due to another distribu-
tion: that of matching shingles. This requires a robust method
to estimate the distance value, and therefore a radius where
we reject the null hypothesis. This is achieved by analysis.
First, we derive a model of the between-shingle background
distribution and from this we derive a model of the distribution
of minimum values of the null-hypothesis distribution. The
limiting tail of the value distribution contains the shingles that
match, see Fig. 1.

5) Specificity: The specificity of shingle matching for music
querying depends on the features and the distribution of be-
tween-shingle distances in the database. For example, a data-
base that consists of many versions of the same recording, with
different distortions, will have a narrower background distance
distribution that is weighted closer to zero than a database con-
sisting entirely of different tracks by different artists in dif-
ferent musical styles. Those pairs of shingles whose distance
do not fit the background will differ in the two databases be-
cause the probability distributions suggest a different distance
for rejecting the null hypothesis. By selecting different parts of a
database to compute a background distribution, or by changing
the feature from which shingles are drawn, we solve different

Fig. 1. Squared-distance histograms of two distributions from a database of
1.4 million shingles. The left bump is the minimum between 1000 randomly se-
lected query shingles and this database. There are few matches. The right bump
is a small sampling (1/98 000 000) of the full histogram of all distances and il-
lustrates the difference in location and dispersion of the two distributions. The
task-dependent similar shingles are in the left tail, toward zero, of a very large
distribution.

queries by sampling to form a null hypothesis and rejecting this
hypothesis for matching pairs.

6) Evaluation: We evaluate our proposed method on three
contrasting music similarity tasks: retrieval of misattributed
recordings (fingerprint), retrieval of the same work performed
by different artists (cover song), and retrieval of edited and
sampled versions of a query track by remix artists (remixes).
The three tasks form a continuum of high- to mid-specificity
music queries, thus demonstrating that our method solves a
range of music-similarity tasks.

7) Contributions: The contributions in this paper are:
1) between-track similarity expressed as radius-bounded,
near-neighbor retrieval; 2) a new algorithm for similar-track
retrieval that admits efficient implementation using LSH;
3) analysis of between-track distance distributions and min-
imum-value distance distributions; and 4) experimental evi-
dence that the track-similarity problem, as stated, is well-posed.

8) Structure: The structure of the paper is as follows. We
review different approaches to audio similarity in Section II;
we develop a model for retrieving tracks by audio shingles in
Section III-B; we then give details of related-track recognition
algorithms in Section III-C and give an analysis of the algo-
rithms in Section IV; finally, we present the results of various
related-track retrieval experiments on 4.5-million feature vector
data sets in Section V, and we conclude with the implications
of our results for efficient audio matching applications in
Section VI.

II. RELATED WORK

There is a wide spectrum of previous work covering a range of
music-similarity tasks: from very specific identification or fin-
gerprinting work [17], [29] to genre recognition [28], [24]. Our
work falls in the middle: we aim to find songs that are similar,
but not exactly like another song. Our tasks need both musically
relevant features—we do not expect the very specific features
used in fingerprinting to work—and a robust matching criterion,
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because we expect that remixes will have segments rearranged
and new material inserted.

All fingerprinting and musical-similarity systems combine
feature analysis and a matching stage. There is always a tradeoff
between the complexity of the feature and the amount of effort
needed to discriminate good from bad matches in the song data-
base. Roughly speaking, each system transforms the audio into
a musically relevant feature vector, then looks for that vector in
the music database. Both of these steps are hard: the wrong fea-
ture magnifies meaningless differences between the query and
the database entries, and brute-force, linear-search techniques
are no longer viable due to the size of today’s music libraries.
For context, we will talk about each aspect in turn, as they are
used in other music-similarity systems.

A. Fingerprinting

Querying for similar songs is different from the classic work
that has been done on audio fingerprinting [9], [19], [22], and
[29]. These fingerprint systems typically assume that some por-
tion of the audio is an exact match such that conventional com-
puter hashes can reduce the search space. We do not expect to
see exact matches in remixes.

Our work also differs from traditional fingerprinting or
matching work because we choose a different division of labor
between the feature and the matching stages. Many systems
use relatively short features, perhaps 20 ms long, and then
use a more complicated matching scheme to find a sequence
of matches. Our approach, on the other hand, uses a long
acoustic-feature vector (3 s) and a single, conceptually simple,
lookup algorithm to find the near neighbors. We implement
the near-neighbor lookup using a randomized algorithm, LSH,
which we believe is of increasing importance as our databases
grow in size. The long feature vector and the relatively simple
lookup algorithm makes analysis of our performance feasible.

B. Features for Similarity

Features used in music-similarity tasks range from simple
to specific. At the simplest level, features provide a relatively
straightforward representation of the musical signal. Examples
of such systems include Kurth [23] and our own work on the
cover song and remix tasks [10], [11]. Both these systems use a
musical representation based on 12 equal-temperament chroma
in an octave. With the exception of smoothing or downsampling
of the signal, the resulting feature vector contains the essential
aspects of the musical signal. One could reconstruct a musically
expressive audio signal from these features alone.

The same is not true of the classic fingerprint systems. In fin-
gerprinting, users want to find the name of a recording, given a
sample of the audio. The key to make fingerprinting work is the
use of a robust feature of the signal that is not harmed by diffi-
cult communications channels (e.g., a noisy bar or a cell phone).
Typical features include the peaks of a spectral–temporal rep-
resentation [29], the relative energy levels in adjacent spectral
bands [18], and the spectral–temporal wavelets with maximum
energy [2]. These aspects of the signal are not (often) harmed
by noisy environments and are good for finding exact matches.

More recent fingerprinting or identification systems have
learned their feature representation. Burges [8] used an opti-

mization procedure to design acoustic features that are robust
to nine low-level distortions: compression, nonlinear ampli-
tude/bass distortion, various notch filters or frequency boosts,
pitch distortion, and companding. They learn projection vectors
by training the system with noisy and clean versions of the
same signal, and from all these vectors they estimate suitable
overall covariance and correlation matrices. Similarly, other
researchers have learned features from a timbral representation
known as Mel-frequency cepstral coefficients (MFCCs) [30] or
by optimizing their features based on spectrograms as part of
an overall identification system [3], [30]. The adaptive nature
of these features makes it hard to analyze their performance.

C. Querying for Similarity

Given a feature set, there are many ways to find the database
entries that are closest to the query. The brute-force solution is
easy to describe: look at each database entry, compute the pair-
wise distance, and then return the pair with the minimum dis-
tance. In practice, query approaches differ based on whether the
algorithm finds exact matches, or whether they allow approxi-
mations, and whether they are concerned with large databases
and need efficient solutions.

Brute-force techniques, searching every database entry, are
possible for small databases. Mueller’s audio matching system
[23] is successful with this approach, as well as Burges’ [8].
However, this will not work in practice for databases with mil-
lions of songs containing billions of audio snippets.

Conventional hashing techniques work well if one is looking
for an exact match. A conventional hash converts a set of data,
whether a string or a numerical vector, into an index into a table.
If the desired entry is present in the table, it is returned; other-
wise, a miss is recorded. This converts an problem, where

is the size of the database, into an problem in time,
but in memory. This type of exact hash is the basis of
the classic fingerprinting work [18], [29]. Ke [21] extends their
low-dimensional queries to include nearby variations based on
small, deterministic changes to the query vector.

When using larger databases, and for systems that are inter-
ested in similarity as opposed to identification, a more sophis-
ticated approach is necessary. LSH was originally designed to
find nearby web pages [7], but has since been extended to music
[31], image retrieval, and other tasks [15]. At its core, LSH is
a randomized algorithm that finds near neighbors in high-di-
mensional spaces [26]. In practice, it is an implementation tech-
nique—it approximates the best answer in sublinear time. It is
a practical solution to the problems described in this paper, and
others [2]. Baluja [3] describes an improvement of LSH that re-
places the random projections in LSH with “projections” that
are learned from loose labels on the data.

Finally, a new approach by Weinstein [30] builds a finite-state
automaton to recognize a large collection of music. They train
up to 1024 musical “phones” by clustering, and then recognize
sequences of these phones using the automata. A collection of
15 000 songs, after combining related nodes, leads to a finite-
state automata with 60 million edges.

Our work in this paper uses two simple features (to be defined
in Section III-A) and our matching threshold is motivated by
LSH’s query threshold. The simple features and the brute-force
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query allow us to perform the statistical analysis we describe
in Section IV. Employing this analysis, we chose a theoretical
optimum radius for a given false alarm rate in retrieving similar
audio sequences. This paper focuses on estimating and testing
the optimum radius in three different tasks.

D. Query Optimization

Finally, we are not the first to note that nearest neighbors is
a difficult problem in high dimensions. Beyer shows that the
problem becomes unstable as the dimensionality tends toward
infinity because the nearest neighbor and the farthest neighbor
are so close in distance [5]. In this paper, we show the problem
is not so bleak with realistic data and finite dimensions. Beyer’s
work led to important work characterizing various indexing
schemes that might or might not be useful in high-dimensional
spaces [25]. Shaft notes the sensitivity of LSH to the search
radius, a problem we mitigate with the statistical analysis
in this paper because we derive statistical properties of our
high-dimensional musical spaces and use them to derive the
best search radius.

Query optimization is an important part of modern database
systems—a database system wants to estimate how much data
different parts of a complicated query are going to return so they
can properly order the calculations for most efficient processing.
Thus, depending on the computational complexity, one needs to
decide whether to first search for nearest neighbors or for some
other aspect of the query. The cost of searches and the expected
number of results for queries in multidimensional spaces have
been addressed, both for low- and medium-dimensional spaces
[27] and high-dimensional spaces [6]. We continue this line of
work by deriving an estimate of the true dimensionality of the
data, and derive the analytical expressions for the probability
distributions of nearest neighbors.

III. TRACK MODEL

In this section, we develop our track model starting from
audio features, then describe how we perform audio shingling
and, finally, discuss the distance measure and similarity model
for two tracks. The motivation for the methods described in this
section was presented in Section I-A.

A. Audio Features

We look at two different features in this work. We chose: log-
frequency cepstral coefficients (LFCCs) for the high-specificity
task (fingerprint retrieval); and equal-temperament pitch-class
profiles (PCPs) for cover-song retrieval and remix retrieval, the
mid-specificity tasks.

All features are extracted from uncompressed audio sourced
from the CHARM Mazurkas collection [13], and the Yahoo!
Music database. The audio sources are in 44.1 kHz uncom-
pressed, stereo format, which we convert to mono by extracting
the left channel for the fingerprint task and by mixing the chan-
nels for the other tasks. We window the audio using a 8192-point
Hamming window with 4410-sample (100 ms) hop and compute
a 16384-point discrete Fourier transform (DFT) using the fast
Fourier transform (FFT). We choose the FFT window size so
that two samples are available from the DFT for the lowest pitch
class surrounding Hz; i.e., DFT samples at 64.59 Hz

and 67.29 Hz. The band edges are chosen at the mid-point (quar-
tertone) between chromatic pitch classes with the low-edge set
to 63.5 Hz and high-edge of 7246.3 Hz, a quartertone above A7.

We assign the 8193 DFT magnitudes to pitch-class bands and
share samples near the band edges proportionally between the
bands [4], and we ignore the remaining DFT coefficients. We
then fold the pitch-class assignments into a single octave by
summing over all octaves for each pitch class, and take the logs
of sums yielding the 12-dimensional PCP vector every 100 ms.

The LFCC features used the same logarithmic bands as the
PCP but instead of folding down into one octave we take the
log of the values and transform the result to cepstral coefficients
using a discrete cosine transform (DCT) yielding 20 coefficients
per 100 ms. Note this feature is a slightly modified form of the
widely used MFCC feature, the difference being in the concen-
tration of low-frequency components. We designed this feature
so that we can reuse the FFT coefficients between the PCP and
LFCC calculations.

B. Audio Shingles

By analogy to the work on finding duplicate web pages [7],
audio shingles represent short (several seconds) segments of
audio. We concatenate 30 feature vectors at a time into a single
high-dimensional vector representing a sequence of audio fea-
tures. Informed by previous studies [11], [23], we use a window
of 3 s with a hop of 0.1 s yielding 10 Hz 20 dimensions s

dimensions for LFCC and 10 Hz 12 dimensions s
dimensions for PCP.

We did not want silence or noise to be included in the matches
between songs, since these two processes are generic to all songs
and might corrupt the recognition of similar content. We re-
moved silence by thresholding audio segments by one quarter
of the geometric mean of the shingle power in each song.

The remaining shingles are normalized to unit norm so that
differences in power between pairs of shingles are not included
in the distance metric. This provides invariance to differences
in levels between different recordings of the same work, for ex-
ample, or different treatments of the same track, as in the finger-
print task.

C. Track Similarity

Let be the set of -dimensional audio shingles from a
query sound and be the shingles for track (an entire
song) drawn from the database with tracks. Let and

be shingles drawn from tracks and ,
respectively. We define the similarity between tracks using the
Euclidean distance implemented by a dot product between the
two unit-normed shingle sequences. This operation is equiva-
lent to a multidimensional matched filter, which we see by ex-
panding the quadratic formula for distance and noting that the
two vectors are unit norm

(2)

Then, we measure the similarity between the query track and
a database track by counting the number of query shingles

that are within the distance threshold of the
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track’s shingles . We do this by first forming a
binary indicator function

if

for
otherwise

(3)

where denotes the cardinality of the set . Finally, we define
the similarity count for the track pair to be

(4)

The indicator function of (3) tells us whether any parts of the
two tracks are similar, so that only one relevant shingle in each
track is counted per query shingle. The maximum count, there-
fore, is and the minimum is 0. Those tracks from the data-
base with the highest count, with respect to the query track, are
the most similar. The value is critical. Values of
that are too small result in retrieval of too few shingles and the
false negative rate for retrieving near shingle pairs is high. In the
extreme , no shingles are returned for all tracks. For
values of that are too large, the false positive rate will be
high, admitting pairs of shingles as being relevant where they
are not. In the extreme for , all tracks in the database
return a count equal to the number of shingles in the query track.

For application to automatic retrieval systems, we propose a
method to estimate the optimal value of given a sample
of the data set, so that the proportion of near shingles is higher
for relevant tracks than nonrelevant. In Section IV, we present
an analysis of the statistics of distance distributions to derive a
set of equations to estimate given a sample of nonrele-
vant shingle distances. These methods of computing inter-track
similarity have the following desirable properties.

1) We have an analytic method to derive a decision boundary
for detecting relevant and nonrelevant shingle pairs for a
retrieval task. The method uses a sample of nonrelevant
pairs of shingles as training data.

2) We have a measure of the resemblance between two tracks
that is robust to structural changes such as repeats, inser-
tions, and deletions. This is necessary for cover song and
remix retrieval, where versions of a work exhibit global
structural differences but preserve the local sequence in-
formation of the work.

3) There exists an efficient means to solve the above distance
and track ordering expressions. In naive implementations,
we evaluate the distances between the query shingles and
all database entries, and the resulting time complexity is

with respect to the total number of shingles in
the database and shingle dimensionality . LSH retrieves
only those database shingles that are within of the
query shingles, thus we can evaluate (3) and (4) with sub-
linear time complexity.

IV. MODELING DISTANCES BETWEEN SHINGLES

The distance between two shingles is the Euclidean distance
(in this -dimensional space) between the two vectors. These
vectors are long, perhaps hundreds of dimensions. It is hard to

Fig. 2. Histogram of normalized distances for points placed uniformly at
random in 4 (left-most curve), 8, 16, 32, 64, 128, 256, and 512 (inner curve) di-
mensional spaces. As the dimensionality of the space increases, the distribution
gets narrower, indicating that most points are equidistant.

find near neighbors in this kind of very high-dimensional space
without resorting to exhaustive distance computation.

Most importantly, the curse of dimensionality [20] means that
as the dimensionality grows, most data points are nearly equidis-
tant. This is demonstrated in Fig. 2, which shows a probability
distribution function (pdf) of the distance between points placed
at random in a series of high-dimensional spaces. As the di-
mensionality of the feature space grows, the distribution of dis-
tances becomes more sharply peaked. This suggests that finding
near neighbors in a high-dimensional space might be ill posed
[20]—all points are nearly the same distance from each other.
We are only interested in the left-hand tail of this distribution,
the pairs of points with the smallest distances between them, but
still we need to be careful to not look at too many points.

We wish to know if the shingle distances, from similar tracks,
are distributed differently from the background of nonsimilar
tracks, so that there are enough shingles in the left tail of the dis-
tance distribution, so the near-neighbor question is well posed.
This analysis is also important because it will help us determine
the optimum radius when using LSH to search for similar shin-
gles. In this section, we derive analytic approximations for five
quantities related to our problem.

IV-A the pdf of uncorrelated shingle distances.
IV-B an estimate of distribution parameters based on sam-
pling distances to other shingles.
IV-C the pdf of the nearest neighbor in a chi-squared dis-
tribution.
IV-D the pdf of the nearest neighbors for audio shingles.
IV-F a decision rule for determining related shingles.

The pdf of uncorrelated shingle distances follows a
chi-squared distribution (see Section IV-A). We derive an
approximation of this distribution for shingles that are close
to each other. We then derive a maximum-likelihood estimate
of the distribution parameters, given a set of sample data. Fur-
thermore, we can derive an estimate of the pdf for the distance
to the single shingle that is closest to the query. This is what
we need to derive a threshold, which is a decision rule, that
allows us to decide whether a song’s shingles are correlated or
uncorrelated to a given a query sample.

A. PDF of Shingle Distances

Our technique to find related songs is based on short snip-
pets of sound we call shingles. For this analysis, we start with
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the assumption that each element of the song’s feature vector is
from a Gaussian distribution. To calculate the distance between
two shingles, we subtract two Gaussian variables, square the re-
sult, and sum over all dimensions. The magnitude of the dif-
ference between two independent, identically distributed (IID)
Gaussian random vectors is also Gaussian and the probability
density function (pdf) is given by the chi-squared distribu-
tion.

The shape of this distribution depends on the number of in-
dependent dimensions in a shingle. The pdf of distances will be
narrow if each frame of data used to create the shingle is in-
dependent of the other (temporal) frames. The pdf of distances
will be wide if some of the frames used to create the shingle
are duplicates of others. This affects our calculation of the tails
of the distribution, where the nearest neighbors are found, and
motivates the discussion below about the degrees of freedom.

Consider two different extreme cases. First, assume the ele-
ments of the shingles are drawn from completely independent
Gaussian processes with an overall population mean and vari-
ance . Then each of the elements in each shingle is inde-
pendent of all the others in that shingle, and of all the elements
in all other shingles (assuming the shingles are taken with no
overlap). By definition, the squared distance between the shin-
gles are distributed as , where is a random variable
consisting of the sum of squares of Gaussian random vari-
ables with zero mean and unit variance. At the other extreme,
consider a process where all elements of the shingle are a single
identical random variable. Then all of the elements of each
shingle are the same, and the squared distance are distributed
as : one single squared quantity, multiplied by . Note
that both of these distributions have the same mean, but the
distribution is much narrower.

In our case, we form the -element feature vector from
concatenated frames of dimensional PCP or

LFCC features. We expect the distribution of the
squared distances to lie somewhere between the two extreme
distributions above. Not only might some of the frames be
duplicated because the acoustic signal might change slowly,
there are likely to be less than K degrees of freedom in the PCP
of one frame.1 Successive frames are highly correlated, and so
will add few extra degrees of freedom—certainly not as many
as K per frame. Denoting the effective number of degrees of
freedom as , we hypothesize the squared distances between
shingle vectors drawn from unrelated songs are a random
variable of the form .

The pdf for a distribution with independent degrees of
freedom is

(5)

Therefore, the pdf of the squared distance between two -di-
mensional shingles, each with effective degrees of freedom is

(6)

1Perhaps the upper limit will be reached only in completely atonal music. In
simple, harmonic music with a limited chord repertoire, the number of effective
degrees of freedom is smaller thanM .

(7)

where is the variance of the element-by-element distances
and . Here, is a parameter expressing the internal
structure of that space—how correlated different components of
the individual feature vectors are with each other, and with the
components of other feature vectors.

Near , that is, near the minimum possible distance be-
tween two feature vectors, this distribution is approximately a
power law. By expanding the exponential in (7) as a power se-
ries in and taking the limit, keeping only the lowest-order term
in , we approximate the distance pdf with

(8)

The cumulative distribution function (cdf) is the integral
of (8) with respect to , which near is

for (9)

These two expressions give us another approximation for the pdf
and the cdf of the shingle distances for the nearest neighbors, the
left-tail of the distribution, that will allow us to calculate the pdf
of the smallest distance between the query and the shingles
in the database (Section IV-C).

B. Fitting Distributions

In this section, we use the analysis above of the shingle-dis-
tance distribution to fit parameters to observations drawn from
two classes of shingles: 1) drawn from pairs of remixed songs,
and 2) drawn from pairs of unrelated songs.

As the distribution is in the exponential family, we can
rewrite the shingle-distance pdf (7) to make it clear what the
sufficient statistics are—that is, what numbers we can compute
from samples to help us estimate parameters of the distribution.
Thus, we put everything in (7) in terms of an exponential

(10)

which makes it obvious that the likelihood for data points
is

(11)

where and are sufficient statistics
for this distribution—as the expression for the likelihood de-
pends only on the s, and not on how those s are made up.

The maximum-likelihood estimates for and are then
given by solving for a stationary point. We now have
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(12)

(13)

where is the digamma function
.

By setting (13) to zero, we immediately get

(14)

substituting into 12 we get

(15)

and solving for zero to find

(16)

Then defining , and using to repre-
sent the functional inverse of , we find the maximum-like-
lihood estimate for the number of independent parameters in the
data

(17)

C. Order Statistics

When doing these retrieval tasks, we find a shingle’s nearest
neighbors and their corresponding distances. In the “null hy-
pothesis” (unrelated) case, there are a set of distances, one
for each shingle in the database. We wish to find the pdf of these
distances, first assuming that the query is unrelated (i.e., inde-
pendent) to all the other shingles. This is the null hypothesis,
and from this, we can estimate a threshold for when two songs
are related.

Following the derivation in [16, App. 2], is the min-
imum value of a set of values from the distribution with
cdf . We wish to find the probability distribution function
of . Note that for a value to be the minimum value, all

values observed must be greater than or equal to that value,
which occurs with probability .

Assume the pdf has no weight below a lower limit, which we
set without loss of generality to . Further assume that the
cumulative distribution for a variable near the distribution’s
finite lower limit fits a power law in , so that for
close to 0. We are interested in the distribution of the minimum
value from a set of size of IID values drawn from
this distribution.

Consider the following expressions for the cumulative proba-
bility of , the minimum for a given set of shingles, which
is distributed as and is an implicit function of

(18)

(19)

(20)

(21)

In order to derive the distribution of the minimum, let us con-
sider not itself but

(22)

where we will choose a value for the constant later (as a
function of ). The cdf for the scaled minimum statistic
is computed from the cdf of the original data because for

to be the minimum value of (scaled by ), all values
that we have drawn from must be equal to or greater than that
minimum value. This requires that

(23)

With the assumption that the minimum value we are inter-
ested in lies in the power-law range (i.e., is sufficiently close to
the actual minimum of the distribution for ), we replace in
(9) with

(24)

getting

(25)

Now, we exploit our freedom to choose (or equivalently, the
scale of ) to help us. A good choice is

(26)

because this gives us

(27)

In the limit of large tends to , therefore
, or by rearranging and dropping the

subscript .
This gives us the cdf as a function of . The pdf is the deriva-

tive of this cdf with respect to , which is

(28)

The mean of this density is

(29)

and by substituting so

(30)

Similarly, the expectation of is .
We expand these expressions for small with the assumption

that and in the above expressions will turn out to be
small. Here, is half the effective number of degrees of freedom

, which we hope will be reasonably large for sequences of PCP
vectors, but if we estimate a value of that turns out to be small
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(say less than about 6 or so) then the following approximation
is not valid. By a Taylor series

(31)

(32)

where is the Euler–Mascheroni constant .
The variance of is equal to ,

so, ignoring terms smaller than , is simply
.

D. Minimum Distances for Shingles

We compute the minimum value of a large set of values, of
size , by comparing a shingle to all shingles of an unrelated
song. This will be distributed according to (28). Using (22),
(26), and then rewriting (9) using the factors in (24) we con-
clude

(33)

Therefore, the pdf of the minimum of unrelated shingle dis-
tances is

(34)

which (as discussed above) has mean and
variance .

Given the distribution of minimum distances in the database
, we can form an estimate of the distribution’s parameters.

We divide the mean and variance of the pdf in (34) to find

(35)

which we rearrange to find

(36)

This is an estimate for the number of independent dimensions
given the ratio between the mean and the variance of the min-
imum distances between a query and all unrelated shingles. This
is true for large values of . It is important to note that this esti-
mate is based on the tails of the distribution, while (17) is based
on the greater amount of data near the distribution’s peak, and
thus (17) is probably more accurate in practice.

E. Related Song Classifier

We derived the distribution in (34) under the assumption that
we generated the shingles we are comparing from two distinct,
independent processes—that is, the songs from which the shin-
gles are drawn are unrelated. Under this assumption (and all the
modeling assumptions above), the distribution for the minimum
holds. If an empirical distribution with significant differences is
obtained, then we may be able to conclude that one or more of
our modeling assumptions is violated.

In the context of related-song detection, the assumption that
we expect to see violated is that of the independence of the two

songs. If the two songs are related, for example through reuse
of content in a remix, then the processes are likely coupled. The
signature for this is probably a significantly lower mean value
for the minimum.

Most of this modeling aside, the procedure is relatively clear
from the point of view of solving a task: compute a baseline “un-
related” distribution for the minimum, approximated using the
discussion above with measured mean and variance. Then, the
test for “related”ness between two songs is that the mean min-
imum distance over that song is outside whatever confidence
interval we calculate for the mean minimum distance of unre-
lated songs.

F. Estimating the Optimal Search Radius

Our motivation for the analysis above was automatic opti-
mization of the search radius for retrieval using LSH
algorithms. Here, we show how we use the above analysis to
achieve this. First, we rearrange (33) to solve for and solve
for the factor using the cdf form of the pdf given in (34),
giving

cdf (37)

We then perform a reverse lookup on the cdf at the point
cdf that achieves the required proportion of retrieved
nonrelevant shingles (false positives). In our experiments, we
set yielding an expected proportion of 1% false posi-
tives per track. This value is chosen so that the proportion is far
below the expected proportion of retrieved shingles for similar
tracks. The value of is then obtained using

(38)

Finally, given and , we find by rearranging (33)

(39)

In our previous work, [10]–[12], we established that LSH al-
gorithms solve music sequence similarity retrieval efficiently,
and with the same precision as exact solutions, if the radius is
set near the optimum value. The method given in this section
provides a solution to the optimum radius given a distribution
of distances for nonrelevant data.

In the following section, we present the results of three ex-
periments designed to test the robustness and generality of the
solution on a wide range of music-retrieval tasks with different
specificities, data sets, and audio features.

V. RESULTS

We conducted three experiments to test our approach for
music similarity, how well our models fit the data, and the accu-
racy of the optimum-radius solution. The first experiment was
fingerprint identification, for which the task was retrieval of the
original sources of 49 suspected falsely attributed commercial
recordings from a database of 2741 recordings, consisting of
4.5 millions audio shingles spanning 125 h of audio. The second
experiment was cover-song retrieval, for which the task was
retrieval of the different performances of the work contained
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in the query performance, the cover song, against a 2741-track
database of many different works performed by many different
artists. The final experiment was remix retrieval; here, the task
was to retrieve remixed versions of 82 query tracks from a
database of 2018 tracks consisting of 220 h of audio. Remixes
contain a small snippet of the original track’s audio, typically a
vocal sample, and place it in an entirely new acoustic context
so that there is only a small region of similarity between the
original and remixed track. These properties make the remix
task difficult for automated retrieval.

To solve these tasks with large databases, we need to solve
them using a LSH algorithm which requires us to specify hash
functions for a given retrieval radius . The LSH algorithm
returns only those shingles that fall with the given radius of the
query shingle. To find similar songs, we count the number of
collisions between songs. A collision occurs when the distance
between pairs of shingles in different tracks falls below the spec-
ified minimum distance . A maximum of one collision is
recorded per query shingle for each track in the database. Thus,
the maximum collision count is the number of shingles in the
query track.

The optimal radius is both data and task dependent.
We show this by using the same system on the same data to
perform two different tasks in Experiments 1 and 2 at different
specificities. Similarity for these tasks is entirely defined by the
nonsimilar training data, so the methods generalize to any task
for which a distance distribution of nonsimilar features can be
constructed.

Each of the three tasks—fingerprint, cover song, and remix
retrieval—require sensitivity to different musical and acoustic
styles. Table I lists the invariance properties required for each
of the three tasks. As described below, we chose features for
each task that are invariant to the listed properties.

A. Fingerprint

As reported in the classical music press [13], [14], there are
49 commercial recordings of the Chopin Mazurkas by concert
pianist Eugen Indjic that were copied, modified, and falsely at-
tributed to pianist Joyce Hatto under the Concert Artists record
label. Since each of the 49 recordings by Hatto is a modified
recording of a different artists’ performance, the goal of the first
experiment was to robustly identify the misattributed recordings
against the complete set of recordings by 125 artists of all 49
Mazurkas, giving a database of 2741 tracks.

The specificity of this task is similar to that of audio finger-
printing. We would like to establish whether two recordings are
acoustically identical, but for some degree of signal transforma-
tion and distortion such as filtering or time compression/expan-
sion.

1) Features: There are between 31 and 62 recordings of
each of the Mazurkas in the database, with a mean of 44
recordings for each Mazurka. For each performance, the chord
sequences are identical. However, there are variations in the
acoustic environment, expressive content such as tempo and
dynamics, structure (which repeats are taken and how many
times repeated), recording equipment, storage medium, and

TABLE I
INVARIANCE PROPERTIES FOR THE FINGERPRINT,

COVER SONG, AND REMIX TASKS

Fig. 3. Distribution of nonrelevant distances for the fingerprint task and their
� fit. The estimated value of x is 0.095 for the LFCC shingles. This is
used as the search radius for near neighbor retrieval algorithms.

playback device prior to digitization. Table I shows a list of
acoustic and musical invariance properties needed to perform
the task.

From Table I, we discern that, for the fingerprint task, our
chosen features must be sensitive to the specific details of a per-
formance while being robust to possible effects processing such
as filtering, time compress/expand, and artificial reverberation.
Given the specificity of the task, we chose LFCC as the features.

2) Method: We used (7), (38), and (37) to fit a sample dis-
tribution of nonrelevant inter-track shingle distances and ob-
tain an estimate of the minimum distance for rejecting
samples as nonsimilar. For an exact evaluation of our derived
threshold, all distances were computed by exhaustive evalua-
tion using (2). Tracks were ordered using (4), which counts the
number of query shingles that are close to any of the track shin-
gles for each track using the indicator function of (3).

Fig. 3 shows the distribution of distances and the fit. The
estimate of the minimum search radius was derived from
(38) and (39), using the estimated and parameters for the

distribution, estimated cdf factor and a false alarm rate of
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TABLE II
ESTIMATED � PARAMETERS FOR FINGERPRINT TASK

1%. Table II shows the values estimated from the nonrelevant
data set for each of the parameters.

The estimate of the degrees of freedom value in Table II tells
us that out of 360 dimensions in our shingles, 34 of them are in-
dependent and determine the properties. For uniform signals,
over the 30-frame shingle window, the maximum value would
be 20, one for each of the LFCC dimensions. A value higher
than this informs us that the temporal concatenation of LFCC
features is informative for this task.

3) Retrieval: We first constructed a suspect query list con-
sisting of known misattributed recordings. The goal of the task
was to order the recordings by similarity and for the original
track to be at the top of the result list.

The task is difficult because all of the remaining recordings
for each work contain the same sequence of notes in the same
key, as well as many other consistencies, due to established
performance practice over the repertoire. Since, for the 49
Mazurkas, we know which recordings were copied to create
the suspect queries, this set was used as a ground-truth. If any
of the remaining performances are sufficiently close to the
ground-truth, confusion is manifest between the ground-truth
and similar tracks given the suspect query.

We counted all shingles in the database that fell on or below
the minimum radius from the query shingles. This op-
eration can be performed either by visiting all shingles in the
database and computing the squared distance between them, or
by constructing LSH functions using the minimum-radius esti-
mate. The two methods produce near-identical results for op-
timal values of , [11], but the LSH method is several or-
ders of magnitude faster when the radius is set close to the op-
timal value.

For each query shingle, the distances to all shingles in
each database track were measured, and if any fell below
the minimum distance , then the retrieved count was
incremented for that track. This was repeated for all 2741
tracks in the database. The tracks were ordered by the number
of matched query shingles, thus constituting a one-to-many
mapping between query shingles and track shingles.

4) Fingerprint Results: The results of this first experiment
were surprising. All 49 misattributed recordings were retrieved
first in the ordered result list, using the radius-search method
and the estimated . In the first instance, we retrieved the
correct recording for each suspect recording from the remaining
performances of the same work only. We then repeated the ex-
periment using the entire collection of 2741 recordings as inter-
ference for each retrieval trial, and the result remained perfect.
We also tried repeating the experiment using a different method
of ordering, the average distance of the ten nearest returned
shingles [11], [12]; with this method of ordering, the score de-
creased. Some of the target recordings were retrieved further

Fig. 4. Histogram of retrieved shingle counts for the fingerprint task. The x axis
indicates how many query shingles matched the database shingles for relevant
and nonrelevant tracks, and the y axis shows how often this level of similarity
occurs. The upper graph shows the counts for relevant data and the lower shows
counts for nonrelevant data. Note that the scales are different on the two graphs.
Performance in the task is related to the degree of separation between these
graphs.

down the result list than for our proposed retrieved-shingle-
count method.

Fig. 4 shows the distribution of retrieved-shingle counts for
relevant and nonrelevant tracks, respectively. In this figure, we
can see that the two distributions do not overlap; hence, the per-
fect result is due to the high degree of separation between the
number of retrieved shingles, between the relevant and non-rel-
evant classes. The comparison with the 10-nearest-neighbor or-
dering method suggests that the task is not trivial and that our
chosen method is robust for this task.

B. Experiment 2: Cover Song Retrieval

Our second experiment used the same audio data as Experi-
ment 1, but we made the task substantially harder by decreasing
the specificity. The cover-song retrieval task is defined as
follows: given a query performance of one of the Chopin
Mazurkas, retrieve all the performances of the same work given
the entire 2741 track database. The task is difficult because
performances are by different artists, with different expressive
interpretations. Furthermore, each performance has different
structuring, due to choices over performing repeats and how
many times to play them. The required invariance properties
for this task are listed in Table I, and we used the PCP features
for this test.

1) Method: The method for retrieval was the same as Exper-
iment 1. We formed a database of audio shingles consisting of
all 2741 performances of the Chopin Mazurkas by 125 different
artists. Given a single performance of each Mazurka, the goal
was to retrieve the remaining performances of the same cover
song.

To fit the nonrelevant distance distribution for the task, we
collected a sample of 10-s segments drawn from 40 nonrelated
performances, i.e., different versions of the song performed by
different artists. The squared distances of these samples were
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Fig. 5. Distribution of distances for the cover song task and corresponding �

fit. The estimation for the minimum distance yielded x = 0:01 for the
given background data using smoothed 12-chroma PCP shingles.

TABLE III
ESTIMATED � PARAMETERS FOR COVER SONG TASK

computed, rejecting intra-track distances, and we fit the distance
distribution using the estimation methods. Fig. 5 shows the
distribution of nonrelevant shingle distances for the task, as well
as the fit and estimate. Table III shows the parame-
ters estimated from the nonrelevant distance distribution for the
cover-song task. The false-alarm rate was set to 1%, as in the
previous task, so the only differences in the method were the
features used and the set of nonrelevant data used to fit the dis-
tribution.

The degrees-of-freedom estimate for the data in this task is
substantially lower than for the fingerprint task. This makes
sense because we have designed the features to be more tolerant
of differences between recordings, thus reducing the amount of
variability between them.

2) Cover Song Results: The precision-recall graph for the
cover-song-retrieval task are shown in Fig. 6. Overall, the pre-
cision was very high for recall rates below 90%. For most of
the 49 Mazurkas, there were two to three outliers in our data-
base. On inspection, these were typically early recordings that
were transferred from 78 RPM shallac discs and therefore con-
tained surface noise and spectral distortion due to the early pe-
riod recording process. Additionally, the cutoff frequency for
these tracks was typically much lower than the remaining tracks.
These results suggest that a near-perfect score can be obtained
for cover song retrieval if outlying recordings are first removed
or preprocessed to make them compatible with the system.

Fig. 6. Precision-recall evaluation plot for the cover song retrieval task.

Fig. 7. Distribution of retrieved shingle counts for the Opus. See Fig. 4 for
more details.

Fig. 7 shows the distribution of the number of retrieved shin-
gles over all query tracks for relevant and nonrelevant tracks.
The precision-recall graph suggests that the distributions of
counts do not overlap on a per-query basis. In other words,
when a query track produces a relatively high number of hits
in nonrelevant tracks, the relevant tracks get a proportionally
higher number of hits, thereby preserving the correct ordering.
This makes the count method a robust classifier.

We computed the false positive rate for retrieved minimum-
distance shingles. The total number of query shingles was 2209
of which 2129 minimum distance shingles were retrieved from
relevant tracks in the database and 80 were retrieved from non-
relevant tracks. Therefore, the experiment yielded a false pos-
itive rate of 3.62%. This rate compares favorably with the 1%
false positive rate used to estimate the radius threshold for re-
trieved shingles.
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Fig. 8. Distribution of distances for the Remix task and � fit. The estimation
for the minimum distance yielded x = 0:004 for a false alarm rate of 1%.

TABLE IV
ESTIMATED � PARAMETERS FOR REMIX TASK

C. Experiment 3: Remix Retrieval

To test the method on a different data set, consisting of pop
music and jazz recordings, we devised a third experiment with
specificities falling between Experiments 1 and 2. The goal in
this task is to retrieve remixed versions of a query track from
the database of 2018 recordings consisting of popular and jazz
recordings [12].

This task required a high degree of robustness to many dif-
ferent acoustic and musical properties. To meet the invariance
criteria, we used 12-dimensional PCP features that were not
smoothed because we wanted to retain sensitivity to any spe-
cific audio content from an original track that was used for a
remix.

1) Method: A background of nonrelevant distances was
sampled from 40 unrelated tracks, 10 s of shingles from each,
forming a total of 400 s of distance data. The distances between
all the background vectors were calculated using convolution,
which implements Euclidean distance in the case of unit vec-
tors.

The minimum-radius threshold was computed using (38) and
(39), see Fig. 8. The estimated parameters are shown in Table IV
for the distribution of nonrelevant distances.

A set of queries was selected consisting of 82 tracks with
three to ten remixes each; this formed the ground-truth set.
These 82 tracks included all the remixes, such that the base set
was 20 tracks with remix versions expanding this set to 82. A
further 2000 tracks, both similar and contrasting in genres, were
added as interference, including 226 tracks by similar artists as

Fig. 9. Precision-recall evaluation of the Remix task.

Fig. 10. Distribution of retrieved shingle counts for the remix task. See Fig. 4
for more details.

the 82 remix tracks. Each query shingle was compared against
the shingles in each database track. If the query shingle resulted
in a match, with distance below , then the count
of minimum-value matches for the track was incremented. The
counts were used to order the tracks with the track having the
highest minimum-value counts placed first.

2) Results: Fig. 9 shows the precision-recall graph for the
remix retrieval task. The performance is satisfactory given the
difficulty of the task, with precision at 50% for 100% recall and
substantially higher for lower recall rates. The break-even point
in precision-recall for this task was somewhere around 75% for
the given features. Setting the search radius to a higher value
did not improve the result and substantially slows down retrieval
when using LSH.

Fig. 10 shows the distribution of minimum-distance counts
for the relevant and nonrelevant tracks, respectively. The top
graph shows the distribution of the number of relevant shingles
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retrieved over all remixed tracks. The bottom graph shows the
distribution of number of shingles retrieved for all nonrelevant
tracks. The distributions of counts overlap substantially more
than the previous two experiments indicating that the task is
more difficult.

D. Discussion

The results from our three experiments demonstrate that we
were able to correctly order the tracks by relevance to the queries
by rejecting the hypothesis that they were nonrelevant. This
method has two main advantages over other methods such as
those based on averaging the retrieved distances per track. First,
hypothesis testing improves performance without requiring ex-
tensive empirical evaluation of parameters, such as in the

-NN method. Second, and more importantly for our purposes,
the minimum value, is a distance which is interpreted
as an absolute threshold on the distances of shingles to retrieve.
This property means that it can be used to estimate the threshold
for implementing our retrieval algorithm using LSH, which we
have shown in our previous work to perform with the same
accuracy as the exact methods employed here, but more effi-
ciently—approximately two orders of magnitude faster to re-
trieve relevant tracks from a 4.5 million shingle database.

Furthermore, the results indicate that our analysis of distance
distributions is both correct and appropriate to the tasks we set
out to solve. We believe that this analysis will lead to greater
understanding of how retrieval systems perform for music tasks
and may lead to new and improved algorithms for retrieval.

VI. CONCLUSION

This paper describes the statistical basis of nearest neigh-
bors in a music-retrieval task. We assume that high-dimensional
features are distributed as Gaussian random variables and de-
rived expressions for the distance to a query’s nearest neighbors.
This allows us to derive analytical expressions for the correct
threshold to use when deciding whether the nearest neighbor is
musically similar to the original query. We derive an algorithm
that determines the statistical properties of real data, and we use
this to estimate the degree of independence in real data. While
our problem is motivated with a musical example, the analysis
is general and applies to any similar high-dimensional database
which can be modeled with Gaussian statistics.

We show that a similarity measure between songs using only
small parts of the song can be used effectively to identify songs
that are related as remixes. We use the distributions of inter-song
shingle distances and show that separation of the two distribu-
tions can be achieved by choosing a suitable threshold on the
distances, and that this threshold could be estimated from ex-
amples using a distributions. With a suitable kernel space,
we show that a threshold classifier can be used for robust audio
matching for mid-specificity problems such as fingerprint, cover
song, and remix recognition.

We evaluate our analysis and demonstrate that we can apply
the results to real data using three tasks of varying specificity.
The fingerprint task allows us to find recordings that are at-
tributed to the wrong artist—the most specific question. The
cover-song task requires that we find different recordings of the

same musical piece. Finally, in the remix task, we find record-
ings based on the same musical piece, but rearranged in some
manner to make them different. In each case, we describe the
multidimensional feature vector, analyze its statistical proper-
ties and determine a true measure of its independence, derive a
threshold for our decision process, and then show excellent re-
sults on the task.

In future work, we hope to use more robust features to see if
the degree of separation between distributions can be improved;
this will lead to increased performance and a greater degree of
generalization of our results.
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