
Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 1

Lisp Infrastructure Development and Distribution

Christophe Rhodes

Goldsmiths College
University of London



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 2

Outline

● Where am I coming from?

● Making every developer count

● Technical barriers and overcoming them

● Social barriers and suggestions



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 3

Who am I?

● academic (boundary between Physics, Music 
and EEng)

● not primarily using Lisp for work (except if 
attending ECOOP is work)

● fallen into Lisp community “by accident”

● gentleman amateur

– not writing Lisp to survive

– exploring interesting (to me) ideas



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 4

What would I like to achieve?

● There are others like me!

● (e.g. SBCL developers: c. 15 amateurs; 
SLIME developers: c. 40 amateurs + one or 
two pros)

● work on things which interest them (us)

● how to make interesting things work well 
together

– difficult problem

– can it be made interesting?



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 5

Developer community

● Relatively small (~100)

– some names pop up “everywhere”

– (power-law distribution expected)
● Non-uniform culture

– multitude of implementations

– islands of communication (#lisp, info-mcl)

– many people doing their own thing

– NIH syndrome



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 6

● Competition versus coöperation

– Both have their place

– Competition: finding long-term optima
● Improving on interfaces
● no backwards-compatibility to break

– Coöperation: maximizing network effects
● using established protocols or libraries
● saving time and work for difficult or 

interesting things



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 7

(aside: the DFSG)

● Debian Free Software Guidelines

– “What is Free Software”?
● Free Redistribution
● Source Code
● Derived Works
● No Discrimination (People or Endeavour)

– why is this useful?
● I know that I can do interesting things with 

software under a DFSG-compliant licence
● and I know that so can other people



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 8

Maximizing what we have

● Lower barriers to entry

– make it easy to start using/hacking
● package-level: asdf/asdf-install

– missing pieces: updates, parallel installs
● whole-environment level: lispbox

– missing pieces: true integration

– encourage useful hacking
● easy access to version control
● didactic use of source
● reusable protocols



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 9

asdf-install

● Good things

– it basically works
● Bad things

– no support for
● uninstallation
● parallel installs
● installation from CVS (SVN, arch, darcs, ...)
● pre-downloading documentation



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 10

lispbox

● Good things

– it basically works
● Bad things

– doesn't provide
● policy
● integration
● granular updates



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 11

NIH syndrome

● Often easier to reimplement something than 
use someone's package

– particularly in Lisp!
● friendly language
● (often) poor documentation

● Even use of package can cause problems

– SLIME and Maxima both use nregex.lisp
● but both include copies directly

– ... until recently, copies of different versions...



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 12

Libraries

● Is it hard (or possible?) to install two 
versions of one library

– on the same filesystem

– in the same lisp image
● Pros

– “release” branch and “development” branch

– less requirement for large coördination
● Cons

– “release” branch and “development” branch



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 13

Upstream

● For fast-moving (α- or β-software) every 
user of released versions is suboptimal

– better than not using at all, but worse than 
using HEAD

● bug reports outdated
● patches may not apply

– FAIRLY_STABLE compromise
● measures internal stability
● does not capture dependence on state of other 

pieces of software



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 14

Policy (coöperation)

● Decrease complexity of problem space

– remove choice except where genuine need 
for choice exists

– propagate solutions to problems (even if not 
optimal solutions)

– enable integration work by providing stable 
platform

– also known as “Best Practice”



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 15

Summary: technical stuff

● asdf-install enhancements

● documentation extraction and publishing

● lint-like thing to support Best Practices

● better metadata
● identify interesting potential connections



Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 16

Summary: social stuff

● policy / Best Practices

● better documentation

● communication between islands

● work on the “long tail”
● user-developer transition (or Ajax “total 

programming”)


