
Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 1

Package Locks

Christophe Rhodes
Goldsmiths College

University of London

Marking Abstraction Boundaries

Nikodemus Siivola
Helsinki University of Technology

Helsinki, Finland

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 2

Outline

● ANSI CL 11.1.2.1.2

– “Thou shalt not”
● Implementation constraints

– “We shall not allow”

– “We will not claim to prevent”
● Conclusions

– “Demo”

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 3

ANSI CL 11.1.2.1.2

● Thou shalt not cause an external symbol of CL

● to be bound (lexically or dynamically)
● to be bound as a function
● to be bound as a macro or compiler-macro
● to name a type specifier
● to name a structure
● to be a declaration
● to be a symbol macro
● to alter its home package
● to be traced

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 4

11.1.2.1.2 (cont...)

● ...
● to be declared or proclaimed special
● to have type or ftype declared or proclaimed
● to be removed from the CL package
● to have a setf expander defined
● to undefine or bind a setf function name
● to name a method combination
● to be passed to (setf find-class)
● to be bound as a restart name or catch tag
● (methods with d.i.s on generic functions)

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 5

11.1.2.1.2 rationale

● Can cause catastrophic problems for
implementation

– assumptions of static base
● Violations non-local

– almost all software uses CL package

– colliding functionality

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 6

SBCL philosophy

● Prevent users from writing accidentally
unportable programs

– or: annoy users as much as possible

– should be able to alert user to portability
problems

● but in any case, depend critically on some of
11.1.2.1.2 not to be violated

– e.g. STRING (Maxima special variable)

– leads to package lock concept

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 7

package locks

● Design criteria

– Protect the user as much as possible from
unintentional violations of 11.1.2.1.2

– Allow conforming code to run unmodified

– Negligible performance penalty for
conforming code

– Straightforward debugger interface for
manipulation of violations

– Generalize to packages other than CL where
sensible

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 8

User protection

● protect user from unintentional violations of
ANSI CL 11.1.2.1.2

– formally unportable code

– leads to bugs that can be difficult to diagnose
● special STRING leads to compiler failure

● two forms of violations

– operations on symbols

– operations on packages

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 9

Conforming code

● Correct, conforming code should be
unaffected

– default state of non-implementation packages
is unlocked

– (state of implementation-specific packages
can be locked)

– exception: CL package is locked against
interning, where (intern “FOO” “CL”) is
formally conforming

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 10

Performance

● Correct code should not have worse
performance

– compile-time checking (where possible)

– lock consistency requirement
● “undefined” if compile-time locks not the same

as run-time locks
● get-out-of-jail-free clause
● no load-time errors for interning symbols into

packages unlocked at compile-time

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 11

Debugger interface

● One condition per locked package per
operation

(defclass foo:point ()

 ((x :accessor bar:x)

 (y :accessor bar:y)))
● if FOO and BAR are locked, leads to exactly

two lock violation conditions

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 12

Generalization to other packages

● DEFPACKAGE :lock keyword

● declarations disable-package-locks and
enable-package-locks

(defmacro with-foo (&body body)

 `(locally (declare (disable-package-locks foo))

 (flet ((foo (x) x))

 (declare (enable-package-locks foo))

 ,@body)))

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 13

Similar concepts

● Allegro CL

● CLISP

● Others?

Christophe Rhodes <c.rhodes@gold.ac.uk> Slide 14

Conclusions

● Value in decreasing free-for-all

– implementation assumptions

– prevent library / application collisions
● Implementation virtues

– does everything we asked for

– no complaints!
● “Demo”...

