Statistical Modelling of Music

Christophe Rhodes

Introduction

Motivation

Modelling Chords Structure

Future

Summary

Statistical Modelling of Music

Christophe Rhodes

Goldsmiths, University of London

Tuesday 3rd April

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ロト ・ 一下・ ・ ヨト

3

Sac

Statistical Modelling of Music

Christophe Rhodes

Introduction

- Motivation
- Modelling
- Chords
- Structure
- Future
- Summary

Music: a set of complicated interactions between

- composer
- arranger
- producer
- performer
- listener
- years of enculturation

・ロト ・ 一下・ ・ ヨト

3

990

Statistical Modelling of Music

Christophe Rhodes

Introduction

- Motivation
- Modelling
- Chords
- Structur
- Future
- Summary

Music: a set of complicated interactions between

- composer
- arranger
- producer
- performer
- listener
- years of enculturation

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Statistical Modelling of Music

Christophe Rhodes

Introduction

- Motivation
- Modelling
- Chords
- -
- Summary

Music: a set of complicated interactions between

- composer
- arranger
- producer
- performer
- listener
- years of enculturation

・ロト ・ 一下 ・ ト ・ 日 ・

= nac

Statistical Modelling of Music

Christophe Rhodes

Introduction

- Motivation
- Modelling
- Chords
- Future
- Summary

Music: a set of complicated interactions between

- composer
- arranger
- producer
- performer
- listener
- years of enculturation

・ロト ・ 一下・ ・ ヨト

3

Sac

Statistical Modelling of Music

Christophe Rhodes

Introduction

Motivation

Modelling Chords Structure

Future

Summary

Two reasons:

• to build tools to achieve specific tasks;

• to increase our understanding of musical processes.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Sac

Statistical Modelling of Music

Christophe Rhodes

Introduction

Motivation

Modelling Chords Structure

Future

Summary

Two reasons:

• to build tools to achieve specific tasks;

• to increase our understanding of musical processes.

・ロト ・ 一下・ ・ 三ト ・ 三ト ・

= 900

Statistical Modelling of Music

Christophe Rhodes

Introduction

Motivation

Modelling Chords Structure

Future

Summary

Two reasons:

- to build tools to achieve specific tasks;
- to increase our understanding of musical processes.

・ロト ・ 一下 ・ ト ・ 日 ・

= 900

Statistical Modelling of Music

Christophe Rhodes

Introduction

Motivation

Modelling Chords Structure

Future

Summary

Two reasons:

- to build tools to achieve specific tasks;
- to increase our understanding of musical processes.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Sac

Modelling of Music Christophe

Statistical

Rhodes

Introduction

Motivation

Modelling

Chords Structure

Future

Summary

The task: identifying chords and assigning labels in music

- currently to MIDI transcriptions of performances;
- could be applied to audio directly (given suitable processing).

- generating fake books, guitar chords
- feeding into models of music cognition, melodic memory

Sac

Christophe Rhodes

Statistical

Modelling of Music

Motivation

Modelling

Chords Structure

Future

Summary

The task: identifying chords and assigning labels in music

- currently to MIDI transcriptions of performances;
- could be applied to audio directly (given suitable processing).

- generating fake books, guitar chords
- feeding into models of music cognition, melodic memory

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくぐ

Modelling of Music Christophe

Statistical

Rhodes

Introduction

Motivation

Modelling

Chords Structure

Future

Summary

The task: identifying chords and assigning labels in music

- currently to MIDI transcriptions of performances;
- could be applied to audio directly (given suitable processing).

- generating fake books, guitar chords
- feeding into models of music cognition, melodic memory

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくぐ

Statistical Modelling of Music Christophe

Rhodes

Introduction

Motivation

Modelling

Chords Structure

Future

Summary

The task: identifying chords and assigning labels in music

- currently to MIDI transcriptions of performances;
- could be applied to audio directly (given suitable processing).

- generating fake books, guitar chords
- feeding into models of music cognition, melodic memory

The chord model

ヘロト ヘロト ヘヨト

3

Sac

Christophe Rhodes

Statistical

Modelling of Music

.

Modelling

Chords

Future

Summary

 $p(\mathbf{x}|c;\Omega) = p_{\mathcal{D}}(t\overline{t}|c;\Omega)p_{\mathcal{D}}(rmd|c;\Omega)$ $p_{\mathcal{D}}(\mathbf{x}|\alpha_{c}) = \frac{1}{B(\alpha)} \prod_{i} x_{i}^{\alpha_{i}-1} \qquad (\sum_{i} x_{i} = 1)$ $p(c|\mathbf{x}\Omega) = \frac{p(\mathbf{x}|c\Omega)p(c\Omega)}{\sum_{c} p(\mathbf{x}|c\Omega)p(c\Omega)}$

The chord model

Rhodes

Statistical

Modelling of Music Christophe

Motivation

Modelling

Chords

Futuro

Summary

$$p(\mathbf{x}|c;\Omega) = p_{\mathcal{D}}(t\overline{t}|c;\Omega)p_{\mathcal{D}}(rmd|c;\Omega)$$
$$p_{\mathcal{D}}(\mathbf{x}|\alpha_{c}) = \frac{1}{B(\alpha)} \prod_{i} x_{i}^{\alpha_{i}-1} \qquad (\sum_{i} x_{i}=1)$$
$$p(c|\mathbf{x}\Omega) = \frac{p(\mathbf{x}|c\Omega)p(c\Omega)}{\sum_{c} p(\mathbf{x}|c\Omega)p(c\Omega)}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Rhodes

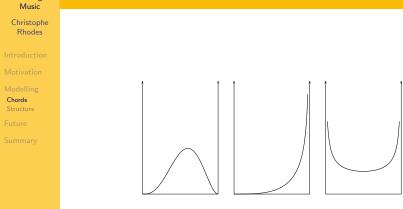
Statistical

Modelling of Music Christophe

Motivation

Modelling

Chords


Structur

Future

Summary

$$p(\mathbf{x}|c;\Omega) = p_{\mathcal{D}}(t\overline{t}|c;\Omega)p_{\mathcal{D}}(rmd|c;\Omega)$$
$$p_{\mathcal{D}}(\mathbf{x}|\alpha_{c}) = \frac{1}{B(\alpha)} \prod_{i} x_{i}^{\alpha_{i}-1} \qquad (\sum_{i} x_{i}=1)$$
$$p(c|\mathbf{x}\Omega) = \frac{p(\mathbf{x}|c\Omega)p(c\Omega)}{\sum_{c} p(\mathbf{x}|c\Omega)p(c\Omega)}$$

Dirichlet distributions

Statistical

Modelling of

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Choosing a region

Sac

Statistical Modelling of Music

Christophe Rhodes

Introduction

Motivation

Modelling

Chords Structure

Future

Summary

When does one chord end and another begin? Assumptions:

- bar as fundamental unit;
- new chords only on beats.

Our MIDI transcriptions are clear enough

Models: all possible beatwise divisions of a bar. Choose using Bayesian model selection.

$$p(\omega|\mathbf{x}\Omega') \propto \sum_{c} p(\mathbf{x}|c\omega\Omega')p(c\omega\Omega')$$

Current investigation: how much do experts' opinions on this task differ?

Choosing a region

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくぐ

Statistical Modelling of Music

Christophe Rhodes

Introduction

Motivation

Modelling

Chords Structure

Future

Summary

When does one chord end and another begin? Assumptions:

- bar as fundamental unit;
- new chords only on beats.

Our MIDI transcriptions are clear enough Models: all possible beatwise divisions of a bar. Choose using Bayesian model selection.

$$p(\omega|\mathbf{x}\Omega') \propto \sum_{c} p(\mathbf{x}|c\omega\Omega')p(c\omega\Omega')$$

Current investigation: how much do experts' opinions on this task differ?

Choosing regions, continued

Sac

Statistical Modelling of Music

Christophe Rhodes

Introduction

Motivation

Modelling Chords Structure

Future

Summary

Segmentation of musical audio. Applications:

- Chorus-finding: summary generation
- Structural annotation
- Query-by-content systems

Pop music: timbre / the way it sounds

Simple clustering leads to fragmentation:

- HMM states have exponential duration prior
- one-frame segments

Choosing regions, continued

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくぐ

Statistical Modelling of Music

Christophe Rhodes

Introduction

Motivation

Modelling Chords Structure

Future

Summary

Segmentation of musical audio. Applications:

- Chorus-finding: summary generation
- Structural annotation
- Query-by-content systems

Pop music: timbre / the way it sounds

Simple clustering leads to fragmentation:

- HMM states have exponential duration prior
- one-frame segments

Choosing regions, continued

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくぐ

Statistical Modelling of Music

Christophe Rhodes

Introduction

Motivation

Modelling Chords Structure

Future

Summary

Segmentation of musical audio. Applications:

- Chorus-finding: summary generation
- Structural annotation
- Query-by-content systems

Pop music: timbre / the way it sounds

Simple clustering leads to fragmentation:

- HMM states have exponential duration prior
- one-frame segments

Segment durations

・ロト ・ 一下 ・ ト ・ 日 ・

3

590

Music Christophe Rhodes

Statistical

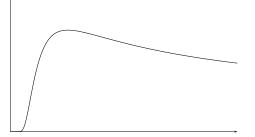
Modelling of

Introduction

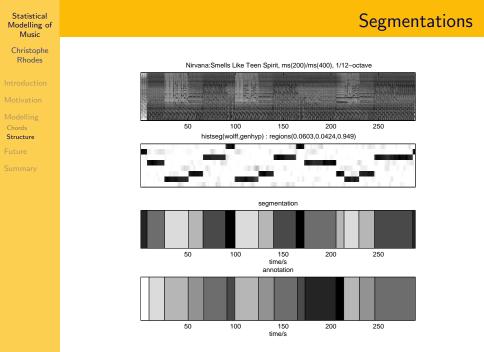
Motivation

Modellin

Chords


Structure

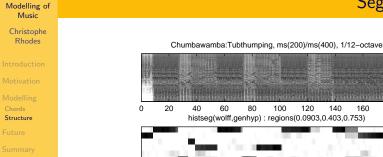
Future


Summary

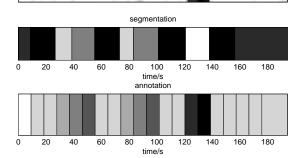
Introduce a duration prior.

$$\varepsilon_{\mathcal{H}}(x,\nu,\gamma) = \frac{1}{|\nu|} x^{-\nu} + (\gamma+1) \log x$$

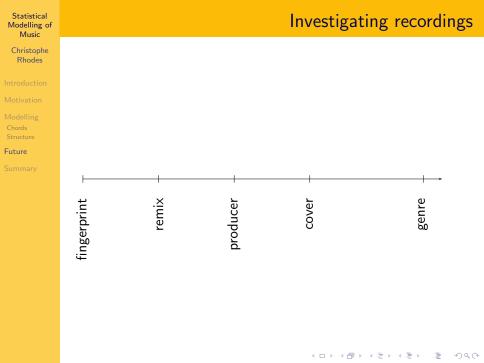
Anneal over candidate segmentations, using modified Wolff algorithm.



 $\mathcal{O} \mathcal{Q} \mathcal{O}$



160


180

Statistical

SAC ₹

Investigating Culture

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Sac

Rhodes

Statistical

Modelling of Music Christophe

Motivation

Modelling Chords Structure

Future

Summary

Musicologists make testable hypotheses, too!

- Tristan Chord (Ernst Knuth)
- Secret Chromatic Art (Edward E. Lowinsky)

Investigating Culture

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Sac

Music Christophe Rhodes

Statistical

Modelling of

Introduction

Motivation

Modelling Chords Structure

Future

Summary

Musicologists make testable hypotheses, too!

- Tristan Chord (Ernst Knuth)
- Secret Chromatic Art (Edward E. Lowinsky)

Investigating Culture

・ロト ・ 一下 ・ ト ・ 日 ・

= 900

Rhodes

Statistical

Modelling of Music Christophe

- Motivation
- Modelling Chords Structure
- Future
- Summary

Musicologists make testable hypotheses, too!

- Tristan Chord (Ernst Knuth)
- Secret Chromatic Art (Edward E. Lowinsky)

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくぐ

Music:

- complex activity;
- interactions between creators, performers, listeners, overall culture;
- people play multiple roles.

Statistical modelling:

- building intelligent tools;
- begin to understand the interactions involved

e

Summary

Statistical

Modelling of Music Christophe Rhodes