
Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Extensible specializers and the CLOS

Metaobject Protocol

Implementation and Use

Christophe Rhodes

Goldsmiths, University of London

Monday 30th July



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Outline

1 Introduction
Motivation
Generic Functions

2 Design
Utility
Incompatibility
Implementability

3 Conclusions



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Motivation

<[1]solvent> hello. is it possible to make a single method

that accepts two different classes of argument

<H4ns> [1]solvent: no

...

<Xof> I think it is possible to write methods with OR

specializers

<Xof> With a certain amount of wizardry

<Xof> What I’m working out is how much wizardry

• What’s so special about classes?

• Can we allow expression of algorithms naturally and
maintainability?

• Does the CLOS Metaobject Protocol actually allow this
kind of expressiveness in a controlled and composable way?

• If not, why not?



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Motivation

<[1]solvent> hello. is it possible to make a single method

that accepts two different classes of argument

<H4ns> [1]solvent: no

...

<Xof> I think it is possible to write methods with OR

specializers

<Xof> With a certain amount of wizardry

<Xof> What I’m working out is how much wizardry

• What’s so special about classes?

• Can we allow expression of algorithms naturally and
maintainability?

• Does the CLOS Metaobject Protocol actually allow this
kind of expressiveness in a controlled and composable way?

• If not, why not?



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Motivation

<[1]solvent> hello. is it possible to make a single method

that accepts two different classes of argument

<H4ns> [1]solvent: no

...

<Xof> I think it is possible to write methods with OR

specializers

<Xof> With a certain amount of wizardry

<Xof> What I’m working out is how much wizardry

• What’s so special about classes?

• Can we allow expression of algorithms naturally and
maintainability?

• Does the CLOS Metaobject Protocol actually allow this
kind of expressiveness in a controlled and composable way?

• If not, why not?



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Metamotivation

Experiment:

• can we get Common Lispers to agree on anything?

Theme: generate and implement language extensions, with a
minimum of backwards incompatibility, and see if and how they
are used.

• see also: generic sequences

“any useful lisp program is doomed to be made portable.”



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Metamotivation

Experiment:

• can we get Common Lispers to agree on anything?

Theme: generate and implement language extensions, with a
minimum of backwards incompatibility, and see if and how they
are used.

• see also: generic sequences

“any useful lisp program is doomed to be made portable.”



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Metamotivation

Experiment:

• can we get Common Lispers to agree on anything?

Theme: generate and implement language extensions, with a
minimum of backwards incompatibility, and see if and how they
are used.

• see also: generic sequences

“any useful lisp program is doomed to be made portable.”



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

CLOS

Common Lisp Object System: Standardized by ANSI.
(Historical footnote: Common Lisp was the first ANSI-standardized

language with Object Oriented features.)

• Objects are instances of Classes

• Objects may have Slots

• Inheritance is mediated through Classes

• Generic Functions take Object arguments

• Methods implementing behaviour belong to Generic Functions

• Methods are applicable to Arguments

• Methods are combined to form the Effective Method

• ...

• Generic Functions, Classes and Methods are Objects (and so is
everything else)



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

CLOS

Common Lisp Object System: Standardized by ANSI.
(Historical footnote: Common Lisp was the first ANSI-standardized

language with Object Oriented features.)

• Objects are instances of Classes

• Objects may have Slots

• Inheritance is mediated through Classes

• Generic Functions take Object arguments

• Methods implementing behaviour belong to Generic Functions

• Methods are applicable to Arguments

• Methods are combined to form the Effective Method

• ...

• Generic Functions, Classes and Methods are Objects (and so is
everything else)



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

CLOS

Common Lisp Object System: Standardized by ANSI.
(Historical footnote: Common Lisp was the first ANSI-standardized

language with Object Oriented features.)

• Objects are instances of Classes

• Objects may have Slots

• Inheritance is mediated through Classes

• Generic Functions take Object arguments

• Methods implementing behaviour belong to Generic Functions

• Methods are applicable to Arguments

• Methods are combined to form the Effective Method

• ...

• Generic Functions, Classes and Methods are Objects (and so is
everything else)



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

CLOS: Metaobject Protocol

CLOS:

• implemented with metacircles;

• base CLOS standardized by ANSI / X3J13; Metaobject
Protocol (MOP) not recommended for standardization.

• we have a book instead: The Art of the Metaobject

Protocol (AMOP).

MOP:

• introspection: generic-function-methods,
method-qualifiers

• intercession: specifying
• which functions are extensible or overrideable
• when functions are called at particular stages in class

realization, generic function call, etc.



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

CLOS: Metaobject Protocol

CLOS:

• implemented with metacircles;

• base CLOS standardized by ANSI / X3J13; Metaobject
Protocol (MOP) not recommended for standardization.

• we have a book instead: The Art of the Metaobject

Protocol (AMOP).

MOP:

• introspection: generic-function-methods,
method-qualifiers

• intercession: specifying
• which functions are extensible or overrideable
• when functions are called at particular stages in class

realization, generic function call, etc.



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

CLOS: Methods

(defmethod foo :after ((x integer) (y (eql ’foo)))

(format *trace-output* "~&~S: ~X~%" x y))

#<STANDARD-METHOD

:GENERIC-FUNCTION #<STANDARD-GENERIC-FUNCTION FOO>

:QUALIFIERS (:AFTER)

:SPECIALIZERS (#<STANDARD-CLASS INTEGER>

#<EQL-SPECIALIZER-OBJECT FOO>)

:FUNCTION #<FUNCTION (LAMBDA (ARGS NEXT-METHODS))>

...>



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

CLOS: Methods

(defmethod foo :after ((x integer) (y (eql ’foo)))

(format *trace-output* "~&~S: ~X~%" x y))

#<STANDARD-METHOD

:GENERIC-FUNCTION #<STANDARD-GENERIC-FUNCTION FOO>

:QUALIFIERS (:AFTER)

:SPECIALIZERS (#<STANDARD-CLASS INTEGER>

#<EQL-SPECIALIZER-OBJECT FOO>)

:FUNCTION #<FUNCTION (LAMBDA (ARGS NEXT-METHODS))>

...>



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

CLOS: Generic Functions

Generic functions have a set of methods and a method
combination.
When a generic function is called:

1 All applicable methods are selected;

2 Applicable methods are sorted by precedence;

3 Method combination is applied to the sorted applicable
methods.

CLHS 7.6.6.1



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Outline

1 Introduction
Motivation
Generic Functions

2 Design
Utility
Incompatibility
Implementability

3 Conclusions



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Desiderata

User-generalizeable specializers

• Usefulness

• Convenience

• Minimize incompatibility with existing standards

• Implementability



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Example

(defgeneric simplify (x)

(:method (x) x))

(defmethod simplify ((x (+ _ 0)))

(simplify (second x)))

(simplify ’(+ (+ 1 0) 0)) ; => 1

(defmethod simplify ((x (* _x 0)))

_x)



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Example

(defgeneric simplify (x)

(:method (x) x))

(defmethod simplify ((x (+ _ 0)))

(simplify (second x)))

(simplify ’(+ (+ 1 0) 0)) ; => 1

(defmethod simplify ((x (* _x 0)))

_x)



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

MOP features

1 All applicable methods are selected;

2 Applicable methods are sorted by precedence;

3 Method combination is applied to the sorted applicable methods.

1 Discriminating function (returned by
compute-discriminating-function);

2 compute-applicable-methods (and
compute-applicable-methods-using-classes);

3 compute-effective-method.

Additionally MOP defines a specializer class.



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Example: Class definition

Subclass specializer class:

(defclass pattern-specializer (mop:specializer)

((pattern :initarg pattern :reader pattern)

(%dms :initform nil

:reader mop:specializer-direct-methods)))

Now what? Make a method!

(let ((s (make-instance ’pattern-specializer

:pattern ’(+ _ 0))))

(eval ‘(defmethod simplify ((x ,s))

(simplify (second x)))))



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Example: Class definition

Subclass specializer class:

(defclass pattern-specializer (mop:specializer)

((pattern :initarg pattern :reader pattern)

(%dms :initform nil

:reader mop:specializer-direct-methods)))

Now what? Make a method!

(let ((s (make-instance ’pattern-specializer

:pattern ’(+ _ 0))))

(eval ‘(defmethod simplify ((x ,s))

(simplify (second x)))))



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Example: Method definition

(let ((s (make-instance ’pattern-specializer

:pattern ’(+ _ 0))))

(eval ‘(defmethod simplify ((x ,s))

(simplify (second x)))))

Ugly eval. What’s the alternative?

(let* ((s (make-instance ’pattern-specializer

:pattern ’(+ _ 0)))

(f (lambda (a nm) (simplify (cadar a))))

(m (make-instance ’standard-method

:qualifiers nil

:specializers (list s)

:function f)))

(add-method #’simplify m))



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Example: Method definition

(let ((s (make-instance ’pattern-specializer

:pattern ’(+ _ 0))))

(eval ‘(defmethod simplify ((x ,s))

(simplify (second x)))))

Ugly eval. What’s the alternative?

(let* ((s (make-instance ’pattern-specializer

:pattern ’(+ _ 0)))

(f (lambda (a nm) (simplify (cadar a))))

(m (make-instance ’standard-method

:qualifiers nil

:specializers (list s)

:function f)))

(add-method #’simplify m))



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Example: Generic function

(simplify ’(+ 3 0)) ; => ERROR

Applicability? Ordering? Method combination?

(defclass pattern-gf (standard-generic-function)

())

(defmethod compute-discriminating-function

((gf pattern-gf))

(let ((ms (generic-function-methods gf)))

(interpret-methods ms)))



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Example: Generic function

(defmethod compute-discriminating-function

((gf pattern-gf))

(let ((ms (generic-function-methods gf)))

(interpret-methods ms)))

(defun interpret-methods (methods)

(lambda (&rest args)

(dolist (m methods)

(when (matches m args)

(funcall (method-function m)

args nil)))))



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Usefulness and Convenience

Possible to make and call generic functions with non-standard
specializers. What about easy?
New operators:

• make-method-specializers-form

• parse-specializer-using-class

• unparse-specializer-using-class

Methods on these operators permit the system to behave as
one might desire.

(defgeneric simplify (x)

(:generic-function-class pattern-gf/1))

(defmethod simplify ((y _)) y)

(defmethod simplify ((x (* _ 0))) 0)



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Example: Issues

Skated over many complicated issues in generic function
protocol:

• multiple arguments;

• precedence ordering;

• method combination.

Also not discussed issues for the specializer implementor:

• Implementation of one specializer for general use must
define interaction with standard specializers

• (Implementation of multiple specializer classes intended to
be composed with arbitrary others must define a protocol
for ordering.)



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Incompatibility

No known incompatibility in this with ANSI CL or the
Metaobject Protocol described in AMOP.

Compatibility with Lisp programmers remains to be seen.



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Incompatibility

No known incompatibility in this with ANSI CL or the
Metaobject Protocol described in AMOP.

Compatibility with Lisp programmers remains to be seen.



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Implementability

This is all implementable! Proof : SBCL 1.0.7 (June 2007).
Other Common Lisp implementations:

• CMUCL, GCL: straightforward port (similar codebase).

• CLISP: no way of getting a non-standard specializer into a
method.

• Allegro: can trick it, but basically unsupported.

• Lispworks: mop:specializer not present.

• OpenMCL: different generic function calling protocol

• ECL, Corman: do not (claim to) support MOP



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Implementability

This is all implementable! Proof : SBCL 1.0.7 (June 2007).
Other Common Lisp implementations:

• CMUCL, GCL: straightforward port (similar codebase).

• CLISP: no way of getting a non-standard specializer into a
method.

• Allegro: can trick it, but basically unsupported.

• Lispworks: mop:specializer not present.

• OpenMCL: different generic function calling protocol

• ECL, Corman: do not (claim to) support MOP



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Outline

1 Introduction
Motivation
Generic Functions

2 Design
Utility
Incompatibility
Implementability

3 Conclusions



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Conclusions

Classes are a bit special:

• given an instance, natural ordering for classes.

• (slightly different from issue of CPL ordering in the first
place)

Specializers can usefully be subclassed:

• express some algorithms more straightforwardly

• potentially more efficient than simple, static
implementations.

No-one is developing with extended specializers (yet)

• You can be the first!



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Future Work

• Get specializers used (and implemented for other CL
implementations)

• Feedback from use might suggest suitable protocols for
interoperable specializers



Extensible

specializers

and the CLOS

Metaobject

Protocol

Christophe

Rhodes

Introduction

Motivation

Generic
Functions

Design

Utility

Incompatibility

Implementability

Conclusions

Summary

Summary

Resources:

• SBCL home page: http://www.sbcl.org/

• Manual: http://www.sbcl.org/manual/

• MOP: http://www.lisp.org/mop/

Aiming higher than a late-1980s programming language.

http://www.sbcl.org/
http://www.sbcl.org/manual/
http://www.lisp.org/mop/

	Introduction
	Motivation
	Generic Functions

	Design
	Utility
	Incompatibility
	Implementability

	Conclusions
	Summary

