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Motivation

<[1]solvent> hello. is it possible to make a single method

that accepts two different classes of argument

<H4ns> [1]solvent: no

...

<Xof> I think it is possible to write methods with OR

specializers

<Xof> With a certain amount of wizardry

<Xof> What I’m working out is how much wizardry

• What’s so special about classes?

• Can we allow expression of algorithms naturally and
maintainability?

• Does the CLOS Metaobject Protocol actually allow this
kind of expressiveness in a controlled and composable way?

• If not, why not?
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Metamotivation

Experiment:

• can we get Common Lispers to agree on anything?

Theme: generate and implement language extensions, with a
minimum of backwards incompatibility, and see if and how they
are used.

• see also: generic sequences

“any useful lisp program is doomed to be made portable.”
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CLOS

Common Lisp Object System: Standardized by ANSI.
(Historical footnote: Common Lisp was the first ANSI-standardized

language with Object Oriented features.)

• Objects are instances of Classes

• Objects may have Slots

• Inheritance is mediated through Classes

• Generic Functions take Object arguments

• Methods implementing behaviour belong to Generic Functions

• Methods are applicable to Arguments

• Methods are combined to form the Effective Method

• ...

• Generic Functions, Classes and Methods are Objects (and so is
everything else)
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CLOS: Metaobject Protocol

CLOS:

• implemented with metacircles;

• base CLOS standardized by ANSI / X3J13; Metaobject
Protocol (MOP) not recommended for standardization.

• we have a book instead: The Art of the Metaobject

Protocol (AMOP).

MOP:

• introspection: generic-function-methods,
method-qualifiers

• intercession: specifying
• which functions are extensible or overrideable
• when functions are called at particular stages in class

realization, generic function call, etc.
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CLOS: Methods

(defmethod foo :after ((x integer) (y (eql ’foo)))

(format *trace-output* "~&~S: ~X~%" x y))

#<STANDARD-METHOD

:GENERIC-FUNCTION #<STANDARD-GENERIC-FUNCTION FOO>

:QUALIFIERS (:AFTER)

:SPECIALIZERS (#<STANDARD-CLASS INTEGER>

#<EQL-SPECIALIZER-OBJECT FOO>)

:FUNCTION #<FUNCTION (LAMBDA (ARGS NEXT-METHODS))>

...>
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CLOS: Generic Functions

Generic functions have a set of methods and a method
combination.
When a generic function is called:

1 All applicable methods are selected;

2 Applicable methods are sorted by precedence;

3 Method combination is applied to the sorted applicable
methods.

CLHS 7.6.6.1
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Desiderata

User-generalizeable specializers

• Usefulness

• Convenience

• Minimize incompatibility with existing standards

• Implementability
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Example

(defgeneric simplify (x)

(:method (x) x))

(defmethod simplify ((x (+ _ 0)))

(simplify (second x)))

(simplify ’(+ (+ 1 0) 0)) ; => 1

(defmethod simplify ((x (* _x 0)))

_x)
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MOP features

1 All applicable methods are selected;

2 Applicable methods are sorted by precedence;

3 Method combination is applied to the sorted applicable methods.

1 Discriminating function (returned by
compute-discriminating-function);

2 compute-applicable-methods (and
compute-applicable-methods-using-classes);

3 compute-effective-method.

Additionally MOP defines a specializer class.
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Example: Class definition

Subclass specializer class:

(defclass pattern-specializer (mop:specializer)

((pattern :initarg pattern :reader pattern)

(%dms :initform nil

:reader mop:specializer-direct-methods)))

Now what? Make a method!

(let ((s (make-instance ’pattern-specializer

:pattern ’(+ _ 0))))

(eval ‘(defmethod simplify ((x ,s))

(simplify (second x)))))
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Example: Method definition

(let ((s (make-instance ’pattern-specializer

:pattern ’(+ _ 0))))

(eval ‘(defmethod simplify ((x ,s))

(simplify (second x)))))

Ugly eval. What’s the alternative?

(let* ((s (make-instance ’pattern-specializer

:pattern ’(+ _ 0)))

(f (lambda (a nm) (simplify (cadar a))))

(m (make-instance ’standard-method

:qualifiers nil

:specializers (list s)

:function f)))

(add-method #’simplify m))
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Example: Generic function

(simplify ’(+ 3 0)) ; => ERROR

Applicability? Ordering? Method combination?

(defclass pattern-gf (standard-generic-function)

())

(defmethod compute-discriminating-function

((gf pattern-gf))

(let ((ms (generic-function-methods gf)))

(interpret-methods ms)))
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Example: Generic function

(defmethod compute-discriminating-function

((gf pattern-gf))

(let ((ms (generic-function-methods gf)))

(interpret-methods ms)))

(defun interpret-methods (methods)

(lambda (&rest args)

(dolist (m methods)

(when (matches m args)

(funcall (method-function m)

args nil)))))
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Usefulness and Convenience

Possible to make and call generic functions with non-standard
specializers. What about easy?
New operators:

• make-method-specializers-form

• parse-specializer-using-class

• unparse-specializer-using-class

Methods on these operators permit the system to behave as
one might desire.

(defgeneric simplify (x)

(:generic-function-class pattern-gf/1))

(defmethod simplify ((y _)) y)

(defmethod simplify ((x (* _ 0))) 0)
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Example: Issues

Skated over many complicated issues in generic function
protocol:

• multiple arguments;

• precedence ordering;

• method combination.

Also not discussed issues for the specializer implementor:

• Implementation of one specializer for general use must
define interaction with standard specializers

• (Implementation of multiple specializer classes intended to
be composed with arbitrary others must define a protocol
for ordering.)
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Incompatibility

No known incompatibility in this with ANSI CL or the
Metaobject Protocol described in AMOP.

Compatibility with Lisp programmers remains to be seen.
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Implementability

This is all implementable! Proof : SBCL 1.0.7 (June 2007).
Other Common Lisp implementations:

• CMUCL, GCL: straightforward port (similar codebase).

• CLISP: no way of getting a non-standard specializer into a
method.

• Allegro: can trick it, but basically unsupported.

• Lispworks: mop:specializer not present.

• OpenMCL: different generic function calling protocol

• ECL, Corman: do not (claim to) support MOP
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Conclusions

Classes are a bit special:

• given an instance, natural ordering for classes.

• (slightly different from issue of CPL ordering in the first
place)

Specializers can usefully be subclassed:

• express some algorithms more straightforwardly

• potentially more efficient than simple, static
implementations.

No-one is developing with extended specializers (yet)

• You can be the first!
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Future Work

• Get specializers used (and implemented for other CL
implementations)

• Feedback from use might suggest suitable protocols for
interoperable specializers
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Summary

Resources:

• SBCL home page: http://www.sbcl.org/

• Manual: http://www.sbcl.org/manual/

• MOP: http://www.lisp.org/mop/

Aiming higher than a late-1980s programming language.

http://www.sbcl.org/
http://www.sbcl.org/manual/
http://www.lisp.org/mop/
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