
Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Steel Bank Common Lisp

A Sanely-Bootstrappable Common Lisp

Christophe Rhodes

Goldsmiths, University of London

Thursday 15th May



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Common Lisp

• Draws together the best bits of 1980s-era Lisps;

• ANSI-standardized language;

• Multiply implemented (11 counted in a recent survey);

• A programmable programming langauge;

• Quite good really.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Steel Bank Common Lisp
History

• early 1980s: SPICE Lisp, DARPA “Research on Parallel
Computing” contract (CMU);

• 1994: After contract (and funding) ended, CMUCL
supported by volunteers (including Rob MacLachlan);

• early 1999: Cadabra (later GoTo.com) hires Bill
Newman for CMUCL consulting;

• December 1999: Steel Bank Common Lisp announced;

• September 2000: uploaded to SourceForge.net

• March 2002: first extra committer;

• June 2002: first build under unrelated host Lisp;

• May 2003: first build from C (using CLISP).



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Steel Bank Common Lisp
Features

• native code compiler;

• efficient hardware arithmetic;

• SMP-capable threading (on some platforms);

• generational (but stop-the-world) garbage collection;

• Full CLOS and full MOP (with documented exceptions);

• Language Extensions:
• practically-oriented: event handling, OS bindings;
• more theoretical: extensible sequence protocol,

extensible specializers.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Self-sustainability
Better Go Programs?

Bill Newman’s particular interest:

• hard problem: strategy and tactics;

• large search space: 3361
∼ 10172 board configurations;

• no cries of victory yet.

Lisp as alternative to C++:

• We would like to write our programs in Lisp...

• ... including our Lisp compilers, interpreters and
runtimes.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Self-sustainability
So what, then?

Software that modifies itself:

• Fun to develop;

• Rapid development;

• Rapid feature inclusion.

User and developer communities:

• Future-proof (“bus-proof”);

• Provide confidence to users;

• Train users to become developers;

• Control over one’s own destiny.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Overall Philosopy

Building a new thing from a blueprint

versus

Clone, mutate, and do transplant surgery
(but keep the patient alive!)



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Building the system

• Install a (sufficiently reasonable) Common Lisp;
• Supported: ABCL, CMUCL, OpenMCL (ClozureCL),

SBCL, XCL;
• Sometimes works: CLISP;
• Unsupported: Allegro, Corman CL, Lispworks, Lisp500,

GCL;

• sh ./make.sh ’<lisp> arg1 arg2’;

• Wait (but not too long):
• compile the sources in the host lisp: builds an SBCL

cross-compiler;
• compile the sources using the cross-compiler;
• ‘genesis’: build a memory image from the cross-compiled

sources;
• finish up the build.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

An example problem
defstruct metacircularity

(defstruct defstruct-defscription

(name (missing-arg) :type symbol :read-only t)

(doc nil :type (or string null))

(slots () :type list)

...)

December 2002 (SBCL 0.7.10.9):

New slot in defstruct-description, to handle aliasing of
accessors by subclasses.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

An example problem
defstruct metacircularity

(defstruct defstruct-defscription

(name (missing-arg) :type symbol :read-only t)

(doc nil :type (or string null))

(slots () :type list)

...)

Self-modifying system (traditional Lisps):
• Place new slot at the end of defstruct-description

structure;

• Build once, accepting modification of existing structure;

• Now write code that uses new slot;

• Build again.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

An example problem
defstruct metacircularity

(defstruct defstruct-defscription

(name (missing-arg) :type symbol :read-only t)

(doc nil :type (or string null))

(slots () :type list)

...)

SBCL:
• Place new slot anywhere in defstruct-description

structure;

• Write code that uses new slot;

• Build and enjoy.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Hacking on the system
Convenience

Self-sustaining code:

• most of the system sources can be live-edited and
patched directly;

• SLIME makes this convenient; special logic to help
package translation work;

• there are some exceptions to live patching;

• changes don’t trigger recompilation of dependents:
• macros;
• code generation templates.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Hacking on the system
Reliability

Self-sustaining community:

• build results predictable;

• no dependencies of the result on the build environment.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Future Work

• Address architectural issues:
• CLOS (PCL) in the cross-compile;
• allow clearer expression of compiler algorithms.

• Support other Common Lisp implementations:
• CLISP, ECL

• Building SBCL stresses many parts of a CL
implementation;

• Good for finding bugs!
• (Both in SBCL and elsewhere)

• Make SBCL a better Common Lisp:
• well-designed extensions;
• good support for libraries;
• helpful developer tools;
• grow user and developer community.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Conclusions

• Self-sustaining systems are fun to work on;

• Growing a maintainer community is hard;

• Software and its developer community as the whole
system.



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Thanks!

• Bill Newman;

• Dan Barlow;

• Alexey Dejneka, Kevin Rosenberg, Rudi Schlatte, Patrik
Nordebo, Nikodemus Siivola, Andreas Fuchs, Nathan
Froyd, Juho Snellman, Brian Mastenbrook, Brian
Downing, Gábor Melis, Paul F. Dietz, Thiemo Seufer,
Cyrus Harmon, Teemu Kalvas, NIIMI Saitoshi, Alastair
Bridgewater, Paul Khuong, Miles Egan, Dave Roberts

• ... and that’s just the ‘committers’ ! 100 or so other
contributors, too;

• CMUCL: Raymond Toy, Pierre Mai, Eric Marsden, Gerd
Möllmann;



Steel Bank

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Mechanics

For users

For developers

Conclusions

Acknowledgments

Thanks!

• Bill Newman;

• Dan Barlow;

• Alexey Dejneka, Kevin Rosenberg, Rudi Schlatte, Patrik
Nordebo, Nikodemus Siivola, Andreas Fuchs, Nathan
Froyd, Juho Snellman, Brian Mastenbrook, Brian
Downing, Gábor Melis, Paul F. Dietz, Thiemo Seufer,
Cyrus Harmon, Teemu Kalvas, NIIMI Saitoshi, Alastair
Bridgewater, Paul Khuong, Miles Egan, Dave Roberts

• ... and that’s just the ‘committers’ ! 100 or so other
contributors, too;

• CMUCL: Raymond Toy, Pierre Mai, Eric Marsden, Gerd
Möllmann;


	Introduction
	Motivation
	Mechanics
	For users
	For developers

	Conclusions
	Acknowledgments

