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e there are some neat tools;
e it makes the deliverable possible;
e it's fun.

Also: only through experimenting can we improve on what we
currently have.
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Why you should stop worrying and love your implementation:
e there are some neat tools;
e it makes the deliverable possible;
e it's fun.

Also: only through experimenting can we improve on what we
currently have.

Plan for this tutorial:

@ developer tools;
® case studies:

@ cryptography and hardware arithmetic;
@ run-time modifiable string-case.
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Useful in the course of:

e normal development;

e software archaeology

what is the cause of all that allocation?
where is all the time being spent?

what code is live (and what's dead)?
make this code more debuggable!
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Extensions

Motivation:
e make it easier to enforce package discipline;
e catch errors in refactoring early.

Package lock behaviour:

e modelled after CLHS, section 11.1.2.1.2;
e restrictions on

e modifications of packages themselves;
e actions on symbols in locked packages.
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Extensions

Modifications of packages:
@ shadowing a symbol in a package;
® importing a symbol to a package;
® uninterning a symbol from a package;
O exporting a symbol from a package;
® unexporting a symbol from a package;
® changing the packages used by a package;
@ renaming a package;

® deleting a package.
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o Modifications of symbols:
@ binding or modifying its value;

@® defining or binding it or (setf it) as a function;
® defining or binding it as a macro;

O defining it as a type specifier or structure;

® defining it as a declaration,;

® declaring or proclaiming it special;

@ declaring or proclaiming its type or ftype;

® defining a setf expander for it;

© defining it as a method-combination type;

i using it as the class-name argument to setf of
find-class.
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Extensions

(defpackage "F00"
(:use "CL" "SB-EXT")
(:export "FROB" "FROB-POP" "WITH-FROB-POP")
(:lock t))

(in-package "F00")

(defun frob () ...)
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Extensions

(defpackage "FOO"
(:export "FROB" "FROB-POP" "WITH-FROB-POP")
(:lock t)
(:implement))

(defpackage "FOO-INT"
(:use "CL" "SB-EXT")
(:implement "FOO" "FOO-INT"))
(in-package "FOO-INT")

(defun frob () ...)
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Etensions A catch — local redefinitions:
(defmacro with-frob-pop ((&key) &body body)
‘ (macrolet ((frob-pop O ...))
,@body))



Unportable
(but fun)

Extensions

A catch — local redefinitions:

(defmacro with-frob-pop ((&key) &body body)
‘ (macrolet ((frob-pop O ...))
,@body))

Package-lock-friendly version:

(defmacro with-frob-pop ((&key) &body body)
‘(locally (declare (disable-package-locks frob-pop))
(macrolet ((frob-pop () ...))
(locally
(declare (enable-package-locks frob-pop))
,@body))))
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Extensions

Basic policy symbols as standardized:

e speed, space, safety, debug, compilation-speed;
Finer-grained policies taken from main policies:

e merge-tail-calls;

e preserve-single-use-debug-variables;

e insert-debug-catch;

e ... and more.

Finer-grained policies are overrideable:
(declaim (optimize sb-c::merge-tail-calls))
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Extensions

restrict-compiler-policy operator:
e intended for interactive use;
e defines minimum values for compiler policies.
Use cases:
e why does this ancient body of code segfault?
e (restrict-compiler-policy ’safety 3)
e why is this (huge) function going wrong?

e (restrict-compiler-policy ’debug 3)
e C-u C-c C-cin SLIME.
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Contribs Statistical profiler — basic idea:
e periodically interrupt the running program;
e acquire information about the state;
e finally report accumulated information.

Less-known information:
e not just cpu-time: :mode argument:

e :time provides wall-clock timing;
e :alloc provides allocation profiling.

e includes call-counting (lightweight deterministic profiling);

e disassembler integration.
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(defun sb-sprof-example-fun (x y)
(declare #+(or) (type fixnum x)
(type (unsigned-byte 16) y))

(dotimes (i y)
;; exercise: see what happens when you replace
;; the quotient with (1+ most-positive-fixnum)
(setf x (mod (+ x x) most-positive-fixnum)))

(sleep 0.01)

(values x (mod x y)))

Contribs

(defun sb-sprof-example (&optional (mode :cpu))
(declare (type (member :time :cpu :alloc) mode))
(sb-sprof:with-profiling

(:mode mode :report :flat
:loop t :max-samples 1000)
(dotimes (i 200)
(sb-sprof-example-fun 3 #xffff))))
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Contribs

Output for :cpu mode:

Self Total Cumul

Nr Count % Count % Count % Calls Function

1 334 33.4 334 33.4 334 33.4 - TRUNCATE

2 294 29.4 773 77.3 628 62.8 - SB-SPROF-EXAMPLE-FUN

3 189 18.9 220 22.0 817 81.7 - SB-VM::GENERIC-+

4 99 9.9 120 12.0 916 91.6 - SB-BIGNUM:BIGNUM-TRUNCATE

5 25 2.5 25 2.5 941 94.1 - SB-BIGNUM: : ,NORMALIZE-BIGNUM
6 24 2.4 30 3.0 965 96.5 - SB-KERNE! WO-ARG-<

7 9 0.9 9 0.9 974 97.4 - SB-BIGNUM:BIGNUM-PLUS-P

8 0 0.0 998 99.8 974 97.4 - SB-SPROF-EXAMPLE
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Contribs

Output for :time mode:

Self Total Cumul

Nr Count % Count % Count % Calls Function
1 83 8.3 83 8.3 83 8.3 - TRUNCATE
2 68 6.8 937 93.7 151 15.1 - SB-SPROF-EXAMPLE-FUN
3 52 5.2 61 6.1 203 20.3 - SB-VM::GENERIC-+
4 25 2.5 26 2.6 228 22.8 - SB-BIGNUM:BIGNUM-TRUNCATE
5 5 0.5 5 0.5 233 23.3 - SB-BIGNUM:BIGNUM-PLUS-P
6 4 0.4 9 0.9 237 23.7 - SB-KERNEL:TWO-ARG-<
7 1 0.1 1 0.1 238 23.8 - SB-BIGNUM: : %NORMALIZE-BIGNUM
8 0 0.0 1000 100.0 238 23.8 - SB-SPROF-EXAMPLE

[...]
38 0 0.0 765 75.5 238 23.8 - SLEEP
762 76.2 elsewhere
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C.S. Rhodes

Contribs

Output for :alloc mode:

Self Total Cumul
Nr Count % Count % Count % Calls Function
1 886 88.6 886 88.6 886 88.6 - SB-VM::GENERIC-+
2 107 10.7 107 10.7 993 99.3 - TRUNCATE
3 5 0.5 5 0.5 998 99.8 - SB-BIGNUM:BIGNUM-TRUNCATE
4 0 0.0 1000 100.0 998 99.8 - SB-SPROF-EXAMPLE
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Contribs

Code coverage tool — basic idea:
e associate code with markers;
e insert code to frob marker after executing code;
e interrogate state of coverage data;
e generate pretty html reports.
Particularly useful when:
e writing a test suite;

e investigating code paths for a particular workload.
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Contribs

(require :sb-cover)

(declaim (optimize sb-cover:store-coverage-data))
(asdf:oos ’asdf:load-op :cl-ppcre-test)
(cl-ppcre-test:test)

(sb-cover:report "/tmp/cl-ppcre/")

Then browse #u"file:///tmp/cl-ppcre/cover-index.html".
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Design goals of RCb5:
e symmetric block cipher;
e fast, word-oriented;
e adaptable;
e simple;

¢ high security;
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Qs Close to the metal?

e Lisp integers are unbounded;
e no silent wrongness;
e implemented in software.

o Hardware (usually) supports fixed-width integers
e arithmetic performed in Zy»;
e fast;
e differently correct.
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Arthmetic How to recover speed and correctness?
e request arithmetic in Zjs2 explicitly;
e (logand expression #xffffffff);

e SBCL automatically translates generic arithmetic in
expression to equivalent modular form;

e modular arithmetic is then compiled to small sequences of
machine instructions.
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Arithmetic ‘Modular arithmetic'

e recognized and performed automatically;
e speed declarations not necessary
e (unsigned-byte 32) type declarations helpful;
e 64-bit modular arithmetic on x86-64 and alpha.
e signed-arithmetic variant is harder to express

e no non-conditional idiom in portable CL;
e use sb-c::mask-signed-field instead.
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Bitwise rotation:
e 'C' notation: ((x << y) | (x >> (32-y)));

e three instructions where one will do, even with modular
arithmetic.

Rotation
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Bitwise rotation:
e 'C' notation: ((x << y) | (x >> (32-y)));

e three instructions where one will do, even with modular
arithmetic.

Rotation

Make a rotation function known to the compiler:

(sb-vm: :defknown %rotr
((unsigned-byte 32) (unsigned-byte 5))
(unsigned-byte 32)
(sb-c::foldable sb-c::flushable sb-c::movable))
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Now make the compiler know how to compile %rotr efficiently:

(sb-vm: :define-vop (Yrotr)
Rotation (:policy :fast-safe)
(:translate %rotr)
(:note "inline 32-bit rotation")
(:args (integer :scs (sb-vm::unsigned-reg))
(count :scs (sb-vm::unsigned-reg) :target ecx))
(:arg-types sb-vm::unsigned-num sb-vm::unsigned-num)
:temporary (:sc sb-vm::unsigned-reg :offset sb-vm::ecx-offset)
ecx)
:results (res :scs (sb-vm::unsigned-reg)))
:result-types sb-vm::unsigned-num)
:generator 5
(sb-vm: :move res integer)
(sb-vm: :move ecx count)
(sb-vm: :inst sb-vm::ror res :cl)))

~

~~~
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A contrived example:
e elements of the MOP:

e because no CL tutorial is complete without mention of the
MOP;
e steering clear of de-facto portable bits.

e portable string pattern-matching...

e backed up by unportable efficiency tweaks.
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A contrived example:
e elements of the MOP:

e because no CL tutorial is complete without mention of the
MOP;
e steering clear of de-facto portable bits.

e portable string pattern-matching...
e backed up by unportable efficiency tweaks.
Basic idea:
e assume logfile lines of the form " prefixid: rest of line";

e dispatch to particular code based on prefixid
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(defun frob (prefix rest)

(cond
((string=
((string=
((string=
((string=

prefix
prefix
prefix
prefix

"httpd") ...)
"exim") ...)
"atd") ...)

"ntpd") ...)

(t (warn "unrecognized: “S" prefix))))

Characteristics:

° ugly;

¢ hard to modify;

e inefficient.
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(defmacro string-case (string-form &body clauses)
(let ((string (gensym "STRING")))
‘(let ((,string ,string-form))

(cond
,0(loop for clause in clauses
if (typep (car clause) ’string)
collect ‘((string= ,string ,(car clause))
,@(cdr clause)))))))

String-Case

Characteristics:
e not so ugly;
¢ hard to modify;

e inefficient.
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string-case knows the strings it's after at compile time.
e suggests pattern-matching approach;
e build search tree, using O(1) string access;
s e strings are equal if logior of logxor of char-codes is 0;

e tune balance between branches and extra work;

e P.Khuong, Implementing an efficient string= case in
Common Lisp, 2008

Characteristics:
e not so ugly;
¢ hard to modify;

o efficient.
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Specializers

The final piece: aim to write code like

(defgeneric frob (prefix rest)
(:generic-function-class magic-generic-function))

(defmethod frob ((prefix (string= "httpd")) rest)
ce)
(defmethod frob ((prefix (string= "exim")) rest)
)
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Specializers

The final piece: aim to write code like

(defgeneric frob (prefix rest)

(:generic-function-class magic-generic-function))

(defmethod frob ((prefix (string= "httpd")) rest)
)

(defmethod frob ((prefix (string= "exim")) rest)
)

while

e preserving the efficiency that has been gained;

e allowing arbitrary addition and removal of methods.
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Ingredients:
@ new generic function class magic-generic-function;
@ new specializer class string=-specializer;
©® new method on compute-discriminating-function;
O new method on make-method-specializers-form;

Specializers

® bookkeeping methods on add-direct-method and
remove-direct-method;

® (optional) runtime methods to help find-method and
print-object.
Characteristics:
e not ugly at all;
e easy to modify and factor appropriately;

o efficient.
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Unportability is fun! (and can be productive). And there's
more...

e stepper;

e dynamic-extent declarations;
e compare-and-swap support;
¢ hooking into type derivation;
e generic sequences;

e customizing the FFI;

. and things | don't know about.
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