Unportable
(but fun)

Christophe Rhodes
c.rhodes@gold.ac.uk

Goldsmiths, University of London

European Lisp Symposium
28th May 2009



Unportable
(but fun)

Why you should stop worrying and love your implementation:
e there are some neat tools;
e it makes the deliverable possible;
e it's fun.

Also: only through experimenting can we improve on what we
currently have.



Unportable
(but fun)

Why you should stop worrying and love your implementation:
e there are some neat tools;
e it makes the deliverable possible;
e it's fun.

Also: only through experimenting can we improve on what we
currently have.

Plan for this tutorial:

@ developer tools;
® case studies:

@ cryptography and hardware arithmetic;
@ run-time modifiable string-case.



Unportable
(but fun)

Useful in the course of:

e normal development;

e software archaeology

what is the cause of all that allocation?
where is all the time being spent?

what code is live (and what's dead)?
make this code more debuggable!



Unportable
(but fun)

Extensions

Motivation:
e make it easier to enforce package discipline;
e catch errors in refactoring early.

Package lock behaviour:

e modelled after CLHS, section 11.1.2.1.2;
e restrictions on

e modifications of packages themselves;
e actions on symbols in locked packages.



Unportable
(but fun)

Extensions

Modifications of packages:
@ shadowing a symbol in a package;
® importing a symbol to a package;
® uninterning a symbol from a package;
O exporting a symbol from a package;
® unexporting a symbol from a package;
® changing the packages used by a package;
@ renaming a package;

® deleting a package.



Unportable
(but fun)

o Modifications of symbols:
@ binding or modifying its value;

@® defining or binding it or (setf it) as a function;
® defining or binding it as a macro;

O defining it as a type specifier or structure;

® defining it as a declaration,;

® declaring or proclaiming it special;

@ declaring or proclaiming its type or ftype;

® defining a setf expander for it;

© defining it as a method-combination type;

i using it as the class-name argument to setf of
find-class.



Unportable
(but fun)

Extensions

(defpackage "F00"
(:use "CL" "SB-EXT")
(:export "FROB" "FROB-POP" "WITH-FROB-POP")
(:lock t))

(in-package "F00")

(defun frob () ...)



Unportable
(but fun)

Extensions

(defpackage "FOO"
(:export "FROB" "FROB-POP" "WITH-FROB-POP")
(:lock t)
(:implement))

(defpackage "FOO-INT"
(:use "CL" "SB-EXT")
(:implement "FOO" "FOO-INT"))
(in-package "FOO-INT")

(defun frob () ...)



Unportable
(but fun)

Etensions A catch — local redefinitions:
(defmacro with-frob-pop ((&key) &body body)
‘ (macrolet ((frob-pop O ...))
,@body))



Unportable
(but fun)

Extensions

A catch — local redefinitions:

(defmacro with-frob-pop ((&key) &body body)
‘ (macrolet ((frob-pop O ...))
,@body))

Package-lock-friendly version:

(defmacro with-frob-pop ((&key) &body body)
‘(locally (declare (disable-package-locks frob-pop))
(macrolet ((frob-pop () ...))
(locally
(declare (enable-package-locks frob-pop))
,@body))))



Unportable
(but fun)

Extensions

Basic policy symbols as standardized:

e speed, space, safety, debug, compilation-speed;
Finer-grained policies taken from main policies:

e merge-tail-calls;

e preserve-single-use-debug-variables;

e insert-debug-catch;

e ... and more.

Finer-grained policies are overrideable:
(declaim (optimize sb-c::merge-tail-calls))



Unportable
(but fun)

Extensions

restrict-compiler-policy operator:
e intended for interactive use;
e defines minimum values for compiler policies.
Use cases:
e why does this ancient body of code segfault?
e (restrict-compiler-policy ’safety 3)
e why is this (huge) function going wrong?

e (restrict-compiler-policy ’debug 3)
e C-u C-c C-cin SLIME.



Unportable
(but fun)

Contribs Statistical profiler — basic idea:
e periodically interrupt the running program;
e acquire information about the state;
e finally report accumulated information.

Less-known information:
e not just cpu-time: :mode argument:

e :time provides wall-clock timing;
e :alloc provides allocation profiling.

e includes call-counting (lightweight deterministic profiling);

e disassembler integration.



Unportable
(but fun)

(defun sb-sprof-example-fun (x y)
(declare #+(or) (type fixnum x)
(type (unsigned-byte 16) y))

(dotimes (i y)
;; exercise: see what happens when you replace
;; the quotient with (1+ most-positive-fixnum)
(setf x (mod (+ x x) most-positive-fixnum)))

(sleep 0.01)

(values x (mod x y)))

Contribs

(defun sb-sprof-example (&optional (mode :cpu))
(declare (type (member :time :cpu :alloc) mode))
(sb-sprof:with-profiling

(:mode mode :report :flat
:loop t :max-samples 1000)
(dotimes (i 200)
(sb-sprof-example-fun 3 #xffff))))



Unportable
(but fun)

Contribs

Output for :cpu mode:

Self Total Cumul

Nr Count % Count % Count % Calls Function

1 334 33.4 334 33.4 334 33.4 - TRUNCATE

2 294 29.4 773 77.3 628 62.8 - SB-SPROF-EXAMPLE-FUN

3 189 18.9 220 22.0 817 81.7 - SB-VM::GENERIC-+

4 99 9.9 120 12.0 916 91.6 - SB-BIGNUM:BIGNUM-TRUNCATE

5 25 2.5 25 2.5 941 94.1 - SB-BIGNUM: : ,NORMALIZE-BIGNUM
6 24 2.4 30 3.0 965 96.5 - SB-KERNE! WO-ARG-<

7 9 0.9 9 0.9 974 97.4 - SB-BIGNUM:BIGNUM-PLUS-P

8 0 0.0 998 99.8 974 97.4 - SB-SPROF-EXAMPLE



Unportable
(but fun)

Contribs

Output for :time mode:

Self Total Cumul

Nr Count % Count % Count % Calls Function
1 83 8.3 83 8.3 83 8.3 - TRUNCATE
2 68 6.8 937 93.7 151 15.1 - SB-SPROF-EXAMPLE-FUN
3 52 5.2 61 6.1 203 20.3 - SB-VM::GENERIC-+
4 25 2.5 26 2.6 228 22.8 - SB-BIGNUM:BIGNUM-TRUNCATE
5 5 0.5 5 0.5 233 23.3 - SB-BIGNUM:BIGNUM-PLUS-P
6 4 0.4 9 0.9 237 23.7 - SB-KERNEL:TWO-ARG-<
7 1 0.1 1 0.1 238 23.8 - SB-BIGNUM: : %NORMALIZE-BIGNUM
8 0 0.0 1000 100.0 238 23.8 - SB-SPROF-EXAMPLE

[...]
38 0 0.0 765 75.5 238 23.8 - SLEEP
762 76.2 elsewhere



Unportable
(but fun)

C.S. Rhodes

Contribs

Output for :alloc mode:

Self Total Cumul
Nr Count % Count % Count % Calls Function
1 886 88.6 886 88.6 886 88.6 - SB-VM::GENERIC-+
2 107 10.7 107 10.7 993 99.3 - TRUNCATE
3 5 0.5 5 0.5 998 99.8 - SB-BIGNUM:BIGNUM-TRUNCATE
4 0 0.0 1000 100.0 998 99.8 - SB-SPROF-EXAMPLE



Unportable
(but fun)

Contribs

Code coverage tool — basic idea:
e associate code with markers;
e insert code to frob marker after executing code;
e interrogate state of coverage data;
e generate pretty html reports.
Particularly useful when:
e writing a test suite;

e investigating code paths for a particular workload.



Unportable
(but fun)

Contribs

(require :sb-cover)

(declaim (optimize sb-cover:store-coverage-data))
(asdf:oos ’asdf:load-op :cl-ppcre-test)
(cl-ppcre-test:test)

(sb-cover:report "/tmp/cl-ppcre/")

Then browse #u"file:///tmp/cl-ppcre/cover-index.html".



Unportable
(but fun)

Design goals of RCb5:
e symmetric block cipher;
e fast, word-oriented;
e adaptable;
e simple;

¢ high security;



Unportable
(but fun)

Qs Close to the metal?

e Lisp integers are unbounded;
e no silent wrongness;
e implemented in software.

o Hardware (usually) supports fixed-width integers
e arithmetic performed in Zy»;
e fast;
e differently correct.



Unportable
(but fun)

Arthmetic How to recover speed and correctness?
e request arithmetic in Zjs2 explicitly;
e (logand expression #xffffffff);

e SBCL automatically translates generic arithmetic in
expression to equivalent modular form;

e modular arithmetic is then compiled to small sequences of
machine instructions.



Unportable
(but fun)

Arithmetic ‘Modular arithmetic'

e recognized and performed automatically;
e speed declarations not necessary
e (unsigned-byte 32) type declarations helpful;
e 64-bit modular arithmetic on x86-64 and alpha.
e signed-arithmetic variant is harder to express

e no non-conditional idiom in portable CL;
e use sb-c::mask-signed-field instead.



Unportable
(but fun)

Bitwise rotation:
e 'C' notation: ((x << y) | (x >> (32-y)));

e three instructions where one will do, even with modular
arithmetic.

Rotation



Unportable
(but fun)

Bitwise rotation:
e 'C' notation: ((x << y) | (x >> (32-y)));

e three instructions where one will do, even with modular
arithmetic.

Rotation

Make a rotation function known to the compiler:

(sb-vm: :defknown %rotr
((unsigned-byte 32) (unsigned-byte 5))
(unsigned-byte 32)
(sb-c::foldable sb-c::flushable sb-c::movable))



Unportable
(but fun)

Now make the compiler know how to compile %rotr efficiently:

(sb-vm: :define-vop (Yrotr)
Rotation (:policy :fast-safe)
(:translate %rotr)
(:note "inline 32-bit rotation")
(:args (integer :scs (sb-vm::unsigned-reg))
(count :scs (sb-vm::unsigned-reg) :target ecx))
(:arg-types sb-vm::unsigned-num sb-vm::unsigned-num)
:temporary (:sc sb-vm::unsigned-reg :offset sb-vm::ecx-offset)
ecx)
:results (res :scs (sb-vm::unsigned-reg)))
:result-types sb-vm::unsigned-num)
:generator 5
(sb-vm: :move res integer)
(sb-vm: :move ecx count)
(sb-vm: :inst sb-vm::ror res :cl)))

~

~~~



Unportable
(but fun)

A contrived example:
e elements of the MOP:

e because no CL tutorial is complete without mention of the
MOP;
e steering clear of de-facto portable bits.

e portable string pattern-matching...

e backed up by unportable efficiency tweaks.



Unportable
(but fun)

A contrived example:
e elements of the MOP:

e because no CL tutorial is complete without mention of the
MOP;
e steering clear of de-facto portable bits.

e portable string pattern-matching...
e backed up by unportable efficiency tweaks.
Basic idea:
e assume logfile lines of the form " prefixid: rest of line";

e dispatch to particular code based on prefixid



Unportable
(but fun)

(defun frob (prefix rest)

(cond
((string=
((string=
((string=
((string=

prefix
prefix
prefix
prefix

"httpd") ...)
"exim") ...)
"atd") ...)

"ntpd") ...)

(t (warn "unrecognized: “S" prefix))))

Characteristics:

° ugly;

¢ hard to modify;

e inefficient.



Unportable
(but fun)

(defmacro string-case (string-form &body clauses)
(let ((string (gensym "STRING")))
‘(let ((,string ,string-form))

(cond
,0(loop for clause in clauses
if (typep (car clause) ’string)
collect ‘((string= ,string ,(car clause))
,@(cdr clause)))))))

String-Case

Characteristics:
e not so ugly;
¢ hard to modify;

e inefficient.



Unportable
(but fun)

string-case knows the strings it's after at compile time.
e suggests pattern-matching approach;
e build search tree, using O(1) string access;
s e strings are equal if logior of logxor of char-codes is 0;

e tune balance between branches and extra work;

e P.Khuong, Implementing an efficient string= case in
Common Lisp, 2008

Characteristics:
e not so ugly;
¢ hard to modify;

o efficient.



Unportable
(but fun)

Specializers

The final piece: aim to write code like

(defgeneric frob (prefix rest)
(:generic-function-class magic-generic-function))

(defmethod frob ((prefix (string= "httpd")) rest)
ce)
(defmethod frob ((prefix (string= "exim")) rest)
)



Unportable
(but fun)

Specializers

The final piece: aim to write code like

(defgeneric frob (prefix rest)

(:generic-function-class magic-generic-function))

(defmethod frob ((prefix (string= "httpd")) rest)
)

(defmethod frob ((prefix (string= "exim")) rest)
)

while

e preserving the efficiency that has been gained;

e allowing arbitrary addition and removal of methods.



Unportable
(but fun)

Ingredients:
@ new generic function class magic-generic-function;
@ new specializer class string=-specializer;
©® new method on compute-discriminating-function;
O new method on make-method-specializers-form;

Specializers

® bookkeeping methods on add-direct-method and
remove-direct-method;

® (optional) runtime methods to help find-method and
print-object.
Characteristics:
e not ugly at all;
e easy to modify and factor appropriately;

o efficient.



Unportable
(but fun)

Unportability is fun! (and can be productive). And there's
more...

e stepper;

e dynamic-extent declarations;
e compare-and-swap support;
¢ hooking into type derivation;
e generic sequences;

e customizing the FFI;

. and things | don't know about.



Unportable
(but fun)

Thanks

Alexey Dejneka, Paul Khuong, David Lichteblau, Jim Newton,
Nikodemus Siivola, Juho Snellman

The SBCL community



	Introduction
	Developer Tools
	Extensions
	Contribs

	Case study I
	Modular Arithmetic
	Bitwise rotation

	Case study II
	String-Case
	Efficiency
	Specializers

	Conclusions
	Acknowledgments


