
Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Unportable (but fun)
Using SBCL Internals

Christophe Rhodes
c.rhodes@gold.ac.uk

Goldsmiths, University of London

European Lisp Symposium
28th May 2009



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Introduction

Why you should stop worrying and love your implementation:

• there are some neat tools;

• it makes the deliverable possible;

• it’s fun.

Also: only through experimenting can we improve on what we
currently have.

Plan for this tutorial:

1 developer tools;

2 case studies:

1 cryptography and hardware arithmetic;
2 run-time modifiable string-case.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Introduction

Why you should stop worrying and love your implementation:

• there are some neat tools;

• it makes the deliverable possible;

• it’s fun.

Also: only through experimenting can we improve on what we
currently have.

Plan for this tutorial:

1 developer tools;

2 case studies:

1 cryptography and hardware arithmetic;
2 run-time modifiable string-case.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Developer Tools
Extensions and Contribs

Useful in the course of:

• normal development;

• software archaeology
• what is the cause of all that allocation?
• where is all the time being spent?
• what code is live (and what’s dead)?
• make this code more debuggable!



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Extensions
Package Locks

Motivation:

• make it easier to enforce package discipline;

• catch errors in refactoring early.

Package lock behaviour:

• modelled after CLHS, section 11.1.2.1.2;

• restrictions on
• modifications of packages themselves;
• actions on symbols in locked packages.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Extensions
Package Locks

Modifications of packages:

1 shadowing a symbol in a package;

2 importing a symbol to a package;

3 uninterning a symbol from a package;

4 exporting a symbol from a package;

5 unexporting a symbol from a package;

6 changing the packages used by a package;

7 renaming a package;

8 deleting a package.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Extensions
Package Locks

Modifications of symbols:

1 binding or modifying its value;

2 defining or binding it or (setf it) as a function;

3 defining or binding it as a macro;

4 defining it as a type specifier or structure;

5 defining it as a declaration;

6 declaring or proclaiming it special;

7 declaring or proclaiming its type or ftype;

8 defining a setf expander for it;

9 defining it as a method-combination type;

10 using it as the class-name argument to setf of
find-class.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Extensions
Package Locks

(defpackage "FOO"

(:use "CL" "SB-EXT")

(:export "FROB" "FROB-POP" "WITH-FROB-POP")

(:lock t))

(in-package "FOO")

(defun frob () ...)



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Extensions
Package Locks

(defpackage "FOO"

(:export "FROB" "FROB-POP" "WITH-FROB-POP")

(:lock t)

(:implement))

(defpackage "FOO-INT"

(:use "CL" "SB-EXT")

(:implement "FOO" "FOO-INT"))

(in-package "FOO-INT")

(defun frob () ...)



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Extensions
Package Locks

A catch – local redefinitions:

(defmacro with-frob-pop ((&key) &body body)

‘(macrolet ((frob-pop () ...))

,@body))

Package-lock-friendly version:

(defmacro with-frob-pop ((&key) &body body)

‘(locally (declare (disable-package-locks frob-pop))

(macrolet ((frob-pop () ...))

(locally

(declare (enable-package-locks frob-pop))

,@body))))



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Extensions
Package Locks

A catch – local redefinitions:

(defmacro with-frob-pop ((&key) &body body)

‘(macrolet ((frob-pop () ...))

,@body))

Package-lock-friendly version:

(defmacro with-frob-pop ((&key) &body body)

‘(locally (declare (disable-package-locks frob-pop))

(macrolet ((frob-pop () ...))

(locally

(declare (enable-package-locks frob-pop))

,@body))))



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Extensions
Compiler Policy

Basic policy symbols as standardized:

• speed, space, safety, debug, compilation-speed;

Finer-grained policies taken from main policies:

• merge-tail-calls;

• preserve-single-use-debug-variables;

• insert-debug-catch;

• ... and more.

Finer-grained policies are overrideable:
(declaim (optimize sb-c::merge-tail-calls))



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Extensions
Compiler Policy

restrict-compiler-policy operator:

• intended for interactive use;

• defines minimum values for compiler policies.

Use cases:

• why does this ancient body of code segfault?
• (restrict-compiler-policy ’safety 3)

• why is this (huge) function going wrong?
• (restrict-compiler-policy ’debug 3)

• C-u C-c C-c in SLIME.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Contribs
sb-sprof

Statistical profiler – basic idea:

• periodically interrupt the running program;

• acquire information about the state;

• finally report accumulated information.

Less-known information:

• not just cpu-time: :mode argument:
• :time provides wall-clock timing;
• :alloc provides allocation profiling.

• includes call-counting (lightweight deterministic profiling);

• disassembler integration.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Contribs
sb-sprof

(defun sb-sprof-example-fun (x y)

(declare #+(or) (type fixnum x)

(type (unsigned-byte 16) y))

(dotimes (i y)

;; exercise: see what happens when you replace

;; the quotient with (1+ most-positive-fixnum)

(setf x (mod (+ x x) most-positive-fixnum)))

(sleep 0.01)

(values x (mod x y)))

(defun sb-sprof-example (&optional (mode :cpu))

(declare (type (member :time :cpu :alloc) mode))

(sb-sprof:with-profiling

(:mode mode :report :flat

:loop t :max-samples 1000)

(dotimes (i 200)

(sb-sprof-example-fun 3 #xffff))))



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Contribs
sb-sprof

Output for :cpu mode:

Self Total Cumul

Nr Count % Count % Count % Calls Function

------------------------------------------------------------------------

1 334 33.4 334 33.4 334 33.4 - TRUNCATE

2 294 29.4 773 77.3 628 62.8 - SB-SPROF-EXAMPLE-FUN

3 189 18.9 220 22.0 817 81.7 - SB-VM::GENERIC-+

4 99 9.9 120 12.0 916 91.6 - SB-BIGNUM:BIGNUM-TRUNCATE

5 25 2.5 25 2.5 941 94.1 - SB-BIGNUM::%NORMALIZE-BIGNUM

6 24 2.4 30 3.0 965 96.5 - SB-KERNEL:TWO-ARG-<

7 9 0.9 9 0.9 974 97.4 - SB-BIGNUM:BIGNUM-PLUS-P

8 0 0.0 998 99.8 974 97.4 - SB-SPROF-EXAMPLE



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Contribs
sb-sprof

Output for :time mode:

Self Total Cumul

Nr Count % Count % Count % Calls Function

------------------------------------------------------------------------

1 83 8.3 83 8.3 83 8.3 - TRUNCATE

2 68 6.8 937 93.7 151 15.1 - SB-SPROF-EXAMPLE-FUN

3 52 5.2 61 6.1 203 20.3 - SB-VM::GENERIC-+

4 25 2.5 26 2.6 228 22.8 - SB-BIGNUM:BIGNUM-TRUNCATE

5 5 0.5 5 0.5 233 23.3 - SB-BIGNUM:BIGNUM-PLUS-P

6 4 0.4 9 0.9 237 23.7 - SB-KERNEL:TWO-ARG-<

7 1 0.1 1 0.1 238 23.8 - SB-BIGNUM::%NORMALIZE-BIGNUM

8 0 0.0 1000 100.0 238 23.8 - SB-SPROF-EXAMPLE

[...]

38 0 0.0 755 75.5 238 23.8 - SLEEP

------------------------------------------------------------------------

762 76.2 elsewhere



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Contribs
sb-sprof

Output for :alloc mode:

Self Total Cumul

Nr Count % Count % Count % Calls Function

------------------------------------------------------------------------

1 886 88.6 886 88.6 886 88.6 - SB-VM::GENERIC-+

2 107 10.7 107 10.7 993 99.3 - TRUNCATE

3 5 0.5 5 0.5 998 99.8 - SB-BIGNUM:BIGNUM-TRUNCATE

4 0 0.0 1000 100.0 998 99.8 - SB-SPROF-EXAMPLE



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Contribs
sb-cover

Code coverage tool – basic idea:

• associate code with markers;

• insert code to frob marker after executing code;

• interrogate state of coverage data;

• generate pretty html reports.

Particularly useful when:

• writing a test suite;

• investigating code paths for a particular workload.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Contribs
sb-cover

(require :sb-cover)

(declaim (optimize sb-cover:store-coverage-data))

(asdf:oos ’asdf:load-op :cl-ppcre-test)

(cl-ppcre-test:test)

(sb-cover:report "/tmp/cl-ppcre/")

Then browse #u"file:///tmp/cl-ppcre/cover-index.html".



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study I: RC5 Encryption
(Rivest, 1997)

Design goals of RC5:

• symmetric block cipher;

• fast, word-oriented;

• adaptable;

• simple;

• high security;



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study I: RC5 Encryption
Modular Arithmetic

Close to the metal?

• Lisp integers are unbounded;
• no silent wrongness;
• implemented in software.

• Hardware (usually) supports fixed-width integers
• arithmetic performed in Z232 ;
• fast;
• differently correct.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study I: RC5 Encryption
Modular Arithmetic

How to recover speed and correctness?

• request arithmetic in Z232 explicitly;

• (logand expression #xffffffff);

• SBCL automatically translates generic arithmetic in
expression to equivalent modular form;

• modular arithmetic is then compiled to small sequences of
machine instructions.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study I: RC5 Encryption
Modular Arithmetic

‘Modular arithmetic’

• recognized and performed automatically;

• speed declarations not necessary
• (unsigned-byte 32) type declarations helpful;
• 64-bit modular arithmetic on x86-64 and alpha.

• signed-arithmetic variant is harder to express
• no non-conditional idiom in portable CL;
• use sb-c::mask-signed-field instead.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study I: RC5 Encryption
Bitwise rotation and compiler support

Bitwise rotation:

• ‘C’ notation: ((x << y) | (x >> (32-y)));

• three instructions where one will do, even with modular
arithmetic.

Make a rotation function known to the compiler:

(sb-vm::defknown %rotr

((unsigned-byte 32) (unsigned-byte 5))

(unsigned-byte 32)

(sb-c::foldable sb-c::flushable sb-c::movable))



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study I: RC5 Encryption
Bitwise rotation and compiler support

Bitwise rotation:

• ‘C’ notation: ((x << y) | (x >> (32-y)));

• three instructions where one will do, even with modular
arithmetic.

Make a rotation function known to the compiler:

(sb-vm::defknown %rotr

((unsigned-byte 32) (unsigned-byte 5))

(unsigned-byte 32)

(sb-c::foldable sb-c::flushable sb-c::movable))



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study I: RC5 Encryption
Bitwise rotation and compiler support

Now make the compiler know how to compile %rotr efficiently:

(sb-vm::define-vop (%rotr)

(:policy :fast-safe)

(:translate %rotr)

(:note "inline 32-bit rotation")

(:args (integer :scs (sb-vm::unsigned-reg))

(count :scs (sb-vm::unsigned-reg) :target ecx))

(:arg-types sb-vm::unsigned-num sb-vm::unsigned-num)

(:temporary (:sc sb-vm::unsigned-reg :offset sb-vm::ecx-offset)

ecx)

(:results (res :scs (sb-vm::unsigned-reg)))

(:result-types sb-vm::unsigned-num)

(:generator 5

(sb-vm::move res integer)

(sb-vm::move ecx count)

(sb-vm::inst sb-vm::ror res :cl)))



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study II: modifiable string-case
A contrived example

A contrived example:

• elements of the MOP:
• because no CL tutorial is complete without mention of the

MOP;
• steering clear of de-facto portable bits.

• portable string pattern-matching...

• backed up by unportable efficiency tweaks.

Basic idea:

• assume logfile lines of the form "prefixid:rest of line";

• dispatch to particular code based on prefixid



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study II: modifiable string-case
A contrived example

A contrived example:

• elements of the MOP:
• because no CL tutorial is complete without mention of the

MOP;
• steering clear of de-facto portable bits.

• portable string pattern-matching...

• backed up by unportable efficiency tweaks.

Basic idea:

• assume logfile lines of the form "prefixid:rest of line";

• dispatch to particular code based on prefixid



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study II: modifiable string-case
A contrived example

(defun frob (prefix rest)

(cond

((string= prefix "httpd") ...)

((string= prefix "exim") ...)

((string= prefix "atd") ...)

((string= prefix "ntpd") ...)

(t (warn "unrecognized: ~S" prefix))))

Characteristics:

• ugly;

• hard to modify;

• inefficient.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study II: modifiable string-case
string-case itself

(defmacro string-case (string-form &body clauses)

(let ((string (gensym "STRING")))

‘(let ((,string ,string-form))

(cond

,@(loop for clause in clauses

if (typep (car clause) ’string)

collect ‘((string= ,string ,(car clause))

,@(cdr clause)))))))

Characteristics:

• not so ugly;

• hard to modify;

• inefficient.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study II: modifiable string-case
Efficient string-case

string-case knows the strings it’s after at compile time.

• suggests pattern-matching approach;

• build search tree, using O(1) string access;

• strings are equal if logior of logxor of char-codes is 0;

• tune balance between branches and extra work;

• P.Khuong, Implementing an efficient string= case in

Common Lisp, 2008

Characteristics:

• not so ugly;

• hard to modify;

• efficient.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study II: modifiable string-case
string-case and generic functions

The final piece: aim to write code like

(defgeneric frob (prefix rest)

(:generic-function-class magic-generic-function))

(defmethod frob ((prefix (string= "httpd")) rest)

...)

(defmethod frob ((prefix (string= "exim")) rest)

...)

while

• preserving the efficiency that has been gained;

• allowing arbitrary addition and removal of methods.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study II: modifiable string-case
string-case and generic functions

The final piece: aim to write code like

(defgeneric frob (prefix rest)

(:generic-function-class magic-generic-function))

(defmethod frob ((prefix (string= "httpd")) rest)

...)

(defmethod frob ((prefix (string= "exim")) rest)

...)

while

• preserving the efficiency that has been gained;

• allowing arbitrary addition and removal of methods.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Case study II: modifiable string-case
string-case and generic-functions

Ingredients:

1 new generic function class magic-generic-function;

2 new specializer class string=-specializer;

3 new method on compute-discriminating-function;

4 new method on make-method-specializers-form;

5 bookkeeping methods on add-direct-method and
remove-direct-method;

6 (optional) runtime methods to help find-method and
print-object.

Characteristics:

• not ugly at all;

• easy to modify and factor appropriately;

• efficient.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Conclusions

Unportability is fun! (and can be productive). And there’s
more...

• stepper;

• dynamic-extent declarations;

• compare-and-swap support;

• hooking into type derivation;

• generic sequences;

• customizing the FFI;

• ... and things I don’t know about.



Unportable
(but fun)

C.S. Rhodes

Introduction

Tools

Extensions

Contribs

Case study I

Arithmetic

Rotation

Case study II

String-Case

Efficiency

Specializers

Conclusions

Thanks

Acknowledgments

Alexey Dejneka, Paul Khuong, David Lichteblau, Jim Newton,
Nikodemus Siivola, Juho Snellman

The SBCL community


	Introduction
	Developer Tools
	Extensions
	Contribs

	Case study I
	Modular Arithmetic
	Bitwise rotation

	Case study II
	String-Case
	Efficiency
	Specializers

	Conclusions
	Acknowledgments


