UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B. Sc. Examination Sample

CREATIVE COMPUTING

IS52020A (CC227) Creative Computing 2

Duration: 3 hours

Date and time:

There are six questions in this paper; you should answer no more than FOUR questions. Full marks will be awarded for complete answers to a total of FOUR questions. Each question carries 25 marks; the marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

This is a practical exam; each answer requiring code should be saved in a Processing sketch named by question number, part and sub-part: for example, Q5_b_2.pde for part (b) sub-part (ii) of question 5. Save your answer to the exam submission folder. You are responsible for ensuring that your answers have been saved in the correct location.

1

Sample

Question 1 Computers and Images

(a)	(i)	How are images represented in <i>Processing</i> ?	[2]
	(ii)	Take the accompanying image and, using <i>Processing</i> , produce	
		i. the image reflected through a horizontal line;	[2]
		ii. the image from part a(ii)i, with opacity 50%, overlaid on the original image;	[2]
		iii. the image created from averaging the original image with your image from part a(ii)i;	[2]
		iv. the image resulting from the convolution with the matrix	
		$\left(\begin{array}{rrrr} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{array}\right)$	

[3]

(iii)	What operation	does the	$\operatorname{convolution}$	with t	the matrix in	a part $a(ii)iv$	perform?	[1]
-------	----------------	----------	------------------------------	--------	---------------	------------------	----------	-----

(b) Describe the effect of computers and the Internet on the processing and publishing of photographs. [13]

2

Question 2 3D Animation

(a) For this question, there are two kinds of object: spheres and cubes. Cubes are immobile, while spheres are attracted towards cubes: the acceleration of a sphere towards a cube is given by the distance between the centre of the sphere and the centre of the cube divided by 100.

(i)	Write down the update equations for the positions x, y in terms of the velocities	
	vx and vy, and the velocities vx and vy in terms of the positions x and y.	[4]

- (ii) Create a static scene with a cube of side 10 centred at (0,0,0), and a sphere of diameter 10 with center at (40,0,0). Place the camera on the z-axis, such that both of these objects are clearly visible and distinguishable.
- (iii) Now animate this scene, such that the initial velocity of the sphere is given by vx = 0, vy = 4.
- (iv) Add the ability to pan the camera, moving it in the x-y plane without changing its orientation in response to cursor keys. [5]
- (v) Finally, add a second cube of side 10 centered at (80,0,0); its influence on the sphere will need to be added to the first. [6]

3

Sample

TURN OVER

[4]

[6]

Question 3 Hearing and Sound

•		
(a)	Describe the mechanisms involved in hearing. Include a discussion on how the ear amplifies the effect of an incident pressure wave.	[6]
(b)	Intensity of sound is perceived approximately logarithmically.	
	(i) Explain what is meant by this statement.	[3]
	(ii) Describe how to measure the difference between sound pressures in decibels on a suitable scale.	[3]
	(iii) 2×10^{-5} Pa is the sound pressure for the auditory threshold at 2kHz; this can be the reference point for the loudness scale. Compute the loudness in decibels for a sound pressure of 3×10^{-3} Pa and for 6×10^{-1} Pa.	[6]
	(iv) Explain why 190dB is a limiting point for loudness on Earth.	[2]
(c)	Describe the sensitivity of human hearing to frequency.	[5]

4

Question 4 Colour

- (a) Describe the RGB and HSB colour spaces, and how it is possible to convert from a point in RGB to a point in HSB. (You do not need to include the full mathematical treatment, but at least a clear diagrammatic representation is necessary.)
- (b) Assuming that the RGB space is Euclidean, with (0,0,0) representing black and (1,1,1) representing white, write a function RGBDist() to compute the distance between points in that RGB space, and use it to compute the distance between
 - (i) black and white;
 - (ii) red and cyan;
 - (iii) red and magenta;
 - (iv) red and green.

[7]

[6]

- (c) The HSB space can be represented as a cone, with base radius 1 and height $\frac{\sqrt{3}}{2}$, such that white is at the centre of the base and black at the apex, while the hues are distributed around the circle. Implement a function HSBDist(), and use it to compute the distances between
 - (i) black and white;
 - (ii) red and cyan;
 - (iii) red and magenta;
 - (iv) red and green.

[8]

(d) Comment on the differences between parts b and c. [4]

5

Question 5 Compression and Perception

- (a) Discuss how perceptual effects allow compression of musical audio streams without degrading the perceived quality of listening to a great extent. (Include detail about particular kinds of data that are removed, and typical compression factors).
- (b) An image is being transmitted to a viewer who is red-green colourblind; for the purposes of this question, assume that the perception is as if both the red and green channels are perceived as being the minimum intensity of the two. Suggest a way of compressing the image for this viewer, and implement your idea in functions compressImage() and decompressImage().
- (c) Test your implementation on the provided image. By how much is space usage reduced? [5]

 $\mathbf{6}$

Question 6 Feature detection

- (a) Given that a point with coordinate (x, y) lies within an axis-aligned rectangle filled with a non-white colour (on a white background), write a function to identify the top-left and bottom-right corners of the rectangle. (You may wish to draw a diagram to accompany your solution).
- (b) Given that a point with coordinate (x, y) lies within a circle filled with a non-white colour (on a white background), write a function to identify the centre point and radius of the circle. (You may wish to draw a diagram to accompany your solution).
- (c) If a given non-white pixel is within either a circle or an axis-aligned rectangle, suggest a way of determining which of the cases holds, and implement a function to do so. [10]
- (d) Use your function to count the number of rectangles and circles within the provided image file. [3]

Sample

[5]

[7]