Creative computing Il: interactive
multimedia

Volume 1: Creative signals and systems

M. Casey with S. Rauchas

2910227

2008

Undergraduate study in
Computing and Related Subjects

The material in this subject guide was prepared for the University of London
External System by:

Michael Casey, Goldsmiths Digital Studios, Goldsmiths, University of London
Sarah Rauchas, Department of Computing, Goldsmiths, University of London.

The guide was produced by Sarah Rauchas, Department of Computing, Goldsmiths,
University of London. Many thanks to Jonathan Barbara, SMIIT, Malta, for
identifying typographical and code inconsistencies.

This is one of a series of subject guides published by the University.

This subject guide is for the use of University of London External System students
registered for programmes in the field of Computing. The programmes currently
available in these subject areas are:

BSc(Honours) in Computing and Information Systems
BSc(Honours) in Creative Computing

Diploma in Computing and Information Systems
Diploma in Creative Computing

Published 2008

Copyright (© University of London Press 2008

Publisher:

The External System
Publications Office
University of London
Stewart House

32 Russell Square
London

WCI1B 5DN

www.londonexternal.ac.uk

All rights reserved. No part of this work may be reproduced in any form, or by any
means, without permission in writing from the publisher. This material is not
licensed for resale.

Contents

Preface

1 Perception
1.1 Introductiono v i i ittt e
1.2 Cognitive and psychological aspects of perception
1.3 Abstraction in perception
1.4 Ambiguity in perception e
1.5 Summary and learning outcomeso
1.6 EXEICISeS. v v v v it ittt e e

2 Creative signals
2.1 IntroduCtion v v v v vt e e e e e e e e e e e e e e
22 Waves e e e
2.3 Signal processing
2.3.1 RADAR e
2.3.2 Audiosignals
2.3.3 Imagesignals e
2.3.4 Visualartandmusic
2.4 Signaldefinition
2.4.1 Independent variables in signals and systems
2.5 Summary and learning outcomes
2.6 EXEICISES. . o v v v v i i e e e e e e e e e e e e e e

3 Signals
3.1 IntroducCtion v v v v i e e e e e e e e e
3.2 OcCtave L e e e e e e e
3.2.1 Installing Octave
3.2.2 Installing for different operating systems
3.23 RunningOctave. i ittt
3.24 Using Octave v v v v it i e e e
3.3 Whataresignals? e
3.3.1 One-dimensionalsignals
3.3.2 Octave representation of discrete-time signals
3.3.3 Theunitimpulse
3.34 Theunitstep it
3.3.5 Theunitdelay
3.3.6 Delay operationsin Octave
3.4 Audiosignals
341 Sampling
342 Frequency it e
343 Amplitude
344 Phase i e e e
3.5 Summary and learning outcomes
3.6 EXercises. e

4 Systems
4.1 IntroducCtion o v v v i e e e e e e e e e
4.2 LTISystems o v i i ittt it e

U1 U1T W N =

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

4.2.1 Linearity. e e 60
4.2.2 Timeinvariance. e 61
4.2.3 ImpulSe TeSPONSE . . « o v v v vt i e e e e e 61
424 Convolution e 62
4.2.5 Unit impulse and unit delay systems 64
4.2.6 Scaleddelay 65
4.2.7 Convolution revisited 65

4.3 Spectralanalysis 67
4.3.1 Complex exponentials 67
4.3.2 Signal multiplication by complex exponentials 71
4.3.3 Spectraofsignalsandsystems. 72
4.3.4 Fast Fourier Transform (FFT) 73
4.3.5 Convolution by spectrum multiplication 81

4.4 Summary and learning outcomes 82
4.5 EXEICISeS. o v v vt e 83
5 Audio and image filtering 85
5.1 Audioeffects 85
511 EQ . ..o 85
5.1.2 FIRfilterdesign. 88
5.1.3 SweepableEQ 90
5.1.4 Subtractivesynthesis 92
5.1.5 Echo e 93
5.1.6 Reverberation., 95
5.1.7 Resampling 96

5.2 Imagefiltering 99
521 MatriCes v i i e e e e e e e e e e 99
5.2.2 Imagerepresentation.o v v . 105
5.2.3 Imageeffects 112

5.3 Summary and learning outcomes 123
5.4 EXercises. e 124

Preface

This subject unit builds and extends on the work you did in Level 1, in developing
and expressing creative ideas using computers. The focus of the subject this year is
on the combination of two things: signals and signal processing; and perception.
The approach taken in this guide is that sound and image, and other kinds of
creative outputs, are at their very basis, signals: signals from light, signals from
vibration, that our senses receive and process. Perception therefore involves
examining how our senses process these signals; how the eyes process light, how the
ears process sound. There is also some discussion of how these processes are
experienced on a higher level, which is cognitive. The subject also includes a basic
look at animation. We can see this, very broadly, as looking at how human beings
process information (i.e. signals). To complete the unit, there is material covering
the processing of data of various kinds using computers.

At the end of this unit you will understand the basics of signal processing, and how
perception works, and be able to use this to create innovative artworks.

The subject guide for Creative Computing 2 is divided into two volumes. The first
volume, which is this one, focuses on signal processing. The second volume contains
material on perception, the processing of digital information and animation. It is
therefore very important that you become familiar with the contents of both this
volume and the second volume of the subject guide.

By the end of this unit, you should be able to implement creative concepts that are
not easily realised using commercial software packages and, therefore, you will be
enabled to demonstrate a high degree of originality in your own creative work.

The assessment for this unit comprises four pieces of coursework and an unseen
written examination. The examination questions will be about the background,
techniques and examples (including the figures presented) in Volume 1 and Volume
2 of this subject guide, and the essential reading (see below). While not required,
you should read the items on the recommended reading list where possible to
increase your understanding of the general subject area, and sometimes for an
alternative explanation of important concepts, which you might find helpful. The
items on the additional reading list provide supplementary material that you might
find interesting and relevant. There is an accompanying study booklet on portfolio
creation, which is not examinable. However, developing a portfolio of work will be
an invaluable complement to your degree.

This subject guide is not a complete unit text on its own. It introduces topics and
concepts, and provides some material to help you to study the topics in the unit.
Further reading is very important as you are expected to see an area of study from
an holistic point of view, and not just as a set of limited topics. Doing further reading
will also help you to understand complex concepts more completely.

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

Essential reading

Eaton, J.W. GNU Octave Manual. (Bristol: Network Theory, 1996) [ISBN 0954161726].
(This is also available online in HTML form at
http://www.gnu.org/software/octave/doc/interpreter

and in texinfo source format in the Octave source code distribution.)

Recommended reading

Foley, J.D., A. van Dam and others Introduction to Computer Graphics. (Reading, Mass.; Wokingham: Addison Wesley,
1997) [ISBN 0201609215].

Howard, D.M. and J. Angus Acoustics and Psychoacoustics. (Oxford: Focal, 2006) [ISBN 0240519957 (pbk);
9780240519951].

Oppenheim, A.V. and A.S. Willsky with S. Hamid Nawab Signals and Systems. (Upper Saddle River, N.J.; London:
Prentice Hall, 1997) [ISBN 0138147574].

Reas, C. and B. Fry Processing: A Programming Handbook for Visual Designers and Artists. (Cambridge, Mass.;
London: MIT Press, 2007) [ISBN 0262182629].

Reas, C. and B. Fry http://www.processing.org/reference, on-line Processing reference manual.

Additional reading

Feynman, R.P. and others The Feynman Lectures on Physics. (San Francisco; Pearson/Addison Wesley, 2006) [ISBN
0905390464] Vol. 1, Chapters 35 and 36.

Handel, S. Listening: an introduction to the perception of auditory events. (Cambridge, Mass: MIT Press, 1989) [ISBN
0262081792] Chapters 1to 3.

Chapter 1

Perception

1.1

1.2

Introduction

Central to the production and experience of art, be it visual art, music, dance, or any
other kind, is the fact that we as human beings experience it through our senses.
Perception is strongly related to this kind of experience, and having some
understanding of how we perceive things, physically, can give valuable input that
might influence the creation. Understanding how our work will be perceived — by
ourselves and by others — is invaluable to the creative process.

In this chapter we introduce the phenomena of perception and cognitive processes;
these concepts are taken further in Volume 2 of the subject guide, where visual and
audio perception are examined more closely.

How we experience something is not only governed by the physical stimuli of our
senses, by light, or sound waves, or touch. There are aspects of perception that are
related to cognition and psychology: how our brains put together information, and
also what we have experienced in our lives already.

Although we consider these aspects only briefly during this subject, you should be
aware of the connections between this and the more direct aspects of perception,
and should also develop a basic understanding of some of the concepts and issues in
this area.

Cognitive and psychological aspects of perception

In the Level 1 course in Creative Computing, you saw examples of the Gestalt
principles of similarity, proximity, etc., and how this affects how we perceive visual
images. What is happening here is that there is an image, which we see because of
the light waves that exist in our environment, and because of how our eyes operate
on a physiological level. However our brains, as well as processing the signals from
our eyes, also put together parts of the visual stimuli, to create more abstract entities
than only elements of light or colour. This is what we use to make sense of the visual
stimuli, and this is what relates to perception. For example, amodal perception
(which was not included in the Gestalt descriptions of perception) describes the
ability we have to ‘see’ a cup, when we only have the visual stimulation of part of a
cup. Reification describes the fact that we perceive parts of an image that are not
actually there, if doing so ‘completes’ the image (cognitively) for us.

So, perception relates to how our senses are stimulated, and how we then make
sense of those stimuli that are essentially neurological. As well as the purely physical
aspects, these can be examined from a cognitive standpoint, or from a psychological
standpoint. The Gestalt descriptions are focused mainly on the cognitive aspects —
and also tend to focus on visual perception — whereas more general psychological

1.3

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

aspects would include things like how our experience in our lives up to the point of
stimulation might influence the perception we then have. Although much of the
Gestalt and subsequent work has been related to visual perception, a good musical
example comes from Christian von Ehrenfels — a member of the original Gestalt
school. Take a 12-note melody, and play it in one key. Now change it to another key
and play it again. There may not be any notes that are the same in the two playings,
yet most people listening are able to recognise that it is the same melody. What
psychologists have tried to figure out for centuries is what it is that makes us know,
somehow, that it is indeed the same tune: is it a property of the melody itself, the
environment in which the melody exists, our own experience and emotions, a
combination of these, or even something else?

It is not straightforward to distinguish between cognition and psychology as they
overlap in various ways. Cognitive studies focus on how we understand and make
sense of things; this might include things like reasoning, argument, logic and
perception. Examination of cognition is usually a part of a more general psychology,
which may also include things like how emotion, experience and intelligence
contribute to our understanding and our responses.

There are a variety of views on how perception works, such as the constructivist
view of Richard Gregory! which argues that perception is an hypothesis that the
brain ‘constructs’, based on prior knowledge and experience, of what is expected
from a stimulus. James Gibson? has argued that Gregory’s approach and the Gestalt
viewpoint ignore the reality of 3-D in visual perception. A century earlier, Hermann
von Helmholtz (1821-1894) is sometimes credited with being the first person to
identify visual perception issues, and also took a constructivist view. Von Helmholtz
also contributed significantly in the beginnings of signal processing, as you will see
later in this subject.

In general, the psychological and cognitive aspects of audio perception have received
less attention than the visual ones, and it is argued that Western culture emphasises
the visual over the audio. It is also true that a larger part of the cortex is devoted to
visual processing than to dealing with any other single sensory input.

Haptic technology is introducing tactile perception to various digital applications,
and is a newly emerging area for research and development in perception.

Learning activity

Find out more about the constructivist and ecological views of perception, and contrast them. Use this
research to write an explanation in order to tell a fellow student what the important differences are. Decide
which approach you think is most correct, and back up your choice with reasoned argument and evidence.

Abstraction in perception

Abstraction is a concept you should have come across in other subjects you have
studied. For example, in computing, we often distinguish between the abstract
properties of a data type, and how it actually (concretely) gets implemented in the

1Gregory, R.L. Knowledge in perception and illusion. Philosophical Transactions of the Royal Society of
London. B1997; 352: 1121-1128.
2The Ecological Approach to Visual Perception. (Psychology Press, 1986) [ISBN 978-0898599596].

1.4

Ambiguity in perception

computing machinery.

Here is an example in perception: imagine a chair. When we look at the chair, we do
not usually perceive it as being an object made of wood, metal and leather. We
perceive it as a chair. It is also the case that if we see the chair from the opposite side
of a table, we still see it as a chair, even though what we actually see might only be
the top part of it. It is possible to perceive it as a couple of pieces of wood, covered
in leather and held together by bits of metal. It is possible to perceive it as the top
part of a chair-back. But usually, we perceive it as an abstract entity, which we call a
chair. Philosophical views on abstraction are not new; many philosophers have
discussed and argued about these kinds of ideas, as far back as Plato.

On a physiological level, what we actually see are those particles, or molecules, that
make up the physical part of the object, that are in a space in the room where the
light rays that bounce off it come into our eyes. Signals bounce around the room,
and our senses (in this case, the sense of vision) receive the signals and process
them. While it is essential that this does happen, and it is important to understand
these mechanisms on a physical and physiological basis, it is also the case that how
these signals then get put together, by our brains, contributes to how we perceive the
objects (or in some cases, the results of signals, such as in the audio domain).

In the next volume of this subject guide, you will look in much more detail at the
physical aspects of visual and audio perception. At this point though, what is
important for you to understand is that what we are looking at is physical signals in
the real world, and how they impact on our senses, and how they combine in various
ways to make that impact.

Learning activity
Find out what you can about the following:

m depth perception
= colour perception
= amodal perception.

Discuss how they relate to the material in the above sections.

Discuss the relationship between perception and perspective, especially in the context of the work you did
in Level 1.

The description of abstraction above focused on a visual example. Try to construct an example that
illustrates the concept in the sound domain.

Ambiguity in perception

A direct example of ambiguity is demonstrated by the Gestalt property of
multistability, which is illustrated in Figure 1.1. This is visual ambiguity, where it is
possible to see one of two images, and to alternate between them.

More generally, ambiguity is the property of allowing, or admitting, more than one
interpretation. It plays an important role in the spoken and the visual domains, and

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

Figure 1.1: Two multistable images.

has historically been studied by philosophers. It is important to note that there is a
distinction between ambiguity and vagueness, where vagueness refers to a
description (or even an image or sound) that is ill-defined or unclear. Some people
use the word ambiguity synonymously with vagueness; this is not strictly correct.

In language, ambiguity is often seen as problematic. All of the following sentences
can be interpreted in more than one way:

1. Sam dropped the book with the picture.
2. The duchess can’t bear children.

3. Children make nutritious snacks.

While ambiguity has often been seen as a phenomenon that causes difficulties — for
centuries, philosophers have argued about linguistic ambiguity, and more recently in
computational linguistics, creating computer systems that can distinguish
semantically between different meanings of the same phrase or sentence is a current
challenge - it also affords a lot of creative potential.

At the most explicit level, visual images such as the multistable ones, can be used to
create interesting artworks. Also, playing around with perspective can include
ambiguity for creative impact. In the audio domain, different sounds can be heard in
different ways.

The work of Dutch artist M.C. Escher made a lot of use of ambiguity in the creation
of extremely interesting visual artworks. One such example is called ‘Relativity’.
Escher also used other visual and perceptive techniques to create specific effects, and
he enjoyed making images that would be physically impossible, yet were visually
appealing and stimulating, such as his famous ‘Drawing Hands’. You can see
examples of Escher’s work at http://www.mcescher.com/.

At a more abstract and psychological level, it is possible to create provocative pieces
through the use of linguistic ambiguity in an art context. One of the most famous
examples is the one you saw in the Level 1 Creative Computing guide, of the
Magritte work ‘The Treachery of Images’. Magritte used the ambiguity between the
sentence referring to a picture of a pipe and referring to a pipe itself to make a social
comment. Many people since then have used this work as the basis for further
creative pieces.

Exercises

1.5 Summary and learning outcomes

This introductory chapter focused on perception: what it is and different views on
how perception works at a cognitive level. We also looked at the role that perception
has in the creation of artworks.

With a knowledge of the contents of this chapter and its directed reading and
activities, you should be able to:

m describe some of the issues regarding how physical stimuli and perceived

entities connect

m discuss different views on how perception works

m explain what is meant by ambiguity, and give examples of ambiguity in visual

and linguistic contexts

m discuss the role of abstraction in how we perceive entities in the world.

1.6 Exercises

1.

2.

What is cognition? What is cognitive science? What is artificial intelligence?
How do these areas relate to each other and to psychology?

In linguistics, ambiguity can occur in different places. Give examples of each of:
m lexical ambiguity
m syntactic ambiguity
m structural ambiguity
® semantic ambiguity.

What is musical ambiguity? Find some examples of this.

4. What is abstraction? What role does abstraction have in how we understand

language? What role does abstraction have in how we experience visual art, or
music?

. There is an excellent article on the use of Gestalt principles in user interface

design, at http://www.interaction-design.org/encyclopedia/
gestalt_principles_of _form_perception.html.

Read the article and then develop a visual image, such as a book cover, a web
page, an advertisement, or some other media item, that incorporates one or
more of the Gestalt principles or other principles of perception. You need not
restrict yourself only to principles mentioned in the article. Write a short essay
that describes which principles you have used and in what way, in your image.

. Find out more about the work of Escher. Create a piece of digital art or music

that connects in some way with one or more of Escher’s artworks. Write a brief
accompanying description and critique of your work. You may use any software
you like for this.

Earlier in this chapter, we noted that Western culture emphasises the visual.
Discuss this claim, and present evidence that either backs it up or challenges it.

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

Chapter 2

Creative signals

2.1

2.2

Supplementary reading

Foley, J.D., A. van Dam and others Introduction to Computer Graphics. (Reading, Mass.; Wokingham: Addison Wesley,
1997) [ISBN 0201609215].

Oppenheim, A.V. and A.S. Willsky with S. Hamid Nawab Signals and Systems. (Upper Saddle River, N.J.; London:
Prentice Hall, 1997) [ISBN 0138147574]. Introductory parts of Chapters 1 and 2.

Introduction

This subject takes signals as the fundamental mechanism for the creation of art, and
we look first at the basic sources of signals — with a focus on sound and images. We
look primarily at signals in the form of waves and patterns. Once we have
understood the fundamentals of waves, and the mathematical ways that are used to
describe them, we will look at ways to manipulate them and ways to analyse
different waveforms, thereby creating new waves and hence new signals.

What is a signal? It can be viewed from many perspectives, including being:

= a medium or entity through which communication happens
m a physical or biological stimulus

m a (mathematical) function

m a cultural entity

m a subtle message

m a wave, or waveform, that is emitted.

Waves

Both light (which is what enables us to see) and sound (which is what enables us to
hear) are periodic waveforms. Light also has a particle representation, which carries
information too, but we focus on the wave aspect of light in this subject.

We will see in later chapters that any periodic waveform can ultimately be
represented by a combination of sine waves,! so it is important that you understand
what a sine wave is, what properties it has, and how it is described mathematically.
We'll also see, in volume 2 of this guide, details of the way that these two kinds of
waveforms interact with our ears and our eyes.

IThis discovery is due to Joseph Fourier, a French mathematician of the 18th century.

23

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

Figure 2.1 shows a sinusoidal waveform; all sinusoids have a similar shape, and the
values of frequency, wavelength, amplitude and phase may change. There are two
interactive tutorials to be found, at
http://hermes.eee.nott.ac.uk/teaching/cal/h61sig/sig0001.html and
http://www.music.sc.edu/fs/bain/atmi02/wt/sine/index.html, which will
help you understand some of the properties of sinusoids. The latter also has a facility
that allows you to hear what a sinusoidal waveform sounds like.

Sinusoids can be represented mathematically in the form of a function; most
commonly the function describes amplitude with respect to angle, and it is this that
is related to the periodicity. The period is the length (usually of time) of one cycle; in
terms of the signals we are looking at, this might be the cycling through all the
angles of one full rotation of a circle. The angle may vary from 0° to 360°, or 0
radians to 27 radians. Commonly, the frequency of a sinusoidal waveform is taken to
be the number of oscillations or cycles per second.

1 1 1 T 1
g= =0° 1BEI° 27o® E‘:EEI" degrees

o mf Ty 3x? 2x radians

Figure 2.1: Sine wave showing degrees and radians.

Learning activity
What is a radian? What is the relationship between radians and degrees?

Construct a diagram that shows the equivalence between radians and degrees. Use Processing to turn
your diagram into something visually interesting.

Signal processing

Signal processing involves the manipulation of signals, and usually takes signals to
be in the form of waves. In the rest of this subject guide, we will look in much more
detail at the various parts of this signalling arrangement. Although signal processing
applies to analogue as well as to digital signals, we focus in this subject on the
digital. Signal processing can be used as the basis of a wide range of applications,
from scientific and engineering through to sound and visual art.

2.3.1

23.2

Signal processing

RADAR

RADAR was one of the earliest applications of signal processing theory. RADAR
stands for radio detection and ranging — radio waves were used to detect both the
presence of and distance away from an object. The radio waves are signals that are
sent out in a particular direction. They have properties, including the fact that if they
encounter an object they will change their shape and the direction in which they are
moving. Also, they take a certain amount of time to travel through the air. So, many
things can be measured and many things can be calculated. It was this
understanding that led to the ability to use signal processing for detecting the
presence of objects, without being able to actually ‘see’ them.

Here is one example of how it works, in a very simplified fashion: electromagnetic
radiation is sent out. This radiation is modelled by waves, so we can think of the
radiation as being waves. The waves encounter objects in their path, and some of
the radiation bounces back. The RADAR system detects this radiation that has been
bounced back. Because waves travel at a known speed through air, it is possible to
tell how far away from the RADAR system the object that caused the bouncing is.
Many other measurements can be made to determine factors other than the presence
of an object, and its distance from the emitter. However, the earliest RADAR systems
were developed for just this purpose: being able to silently detect the presence of
enemy planes in the air.

Audio signals

An early use of audio signal processing was in radio, which was in the analogue
domain for a long time. The development of digital radio is relatively recent.

Learning activity

How does analogue radio work? What do the terms AM, FM, SW and LW mean, and what do they refer to
in terms of the radio signal?

How does digital radio differ from analogue radio?

Speech and sound signal processing has been of interest in the digital world since
the 1960s. An example of an audio signal is shown in Figure 2.2; sound signals can
be visualised in a number of ways, which include the use of colour and light
intensity, and the more traditional use of waveforms as indicated in the bottom
section of the figure.

Audio signal processing covers music, speech, and other sound, and areas of interest
include digital processing, manipulation of music and audio recordings, speech
recognition, and speech generation. More recently, signal processing has been
applied to the recognition and identification of music.

Learning activity

Find out what you can about Hermann von Helmholz. In particular, find out what his contributions have
been to audio processing. What is a Helmholz resonator?

233

234

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

10

S000

4000

[N}
=
=

Fraruency (He)

=i

Figure 2.2: Speech signals.

Image signals

One form of image processing is the application of signal processing to images, and
it can be considered especially within digital image processing. Simply taking a
colour image and turning it into a black and white image is a type of signal
processing. In this case, the signals for the image are the colour and light signals at
each pixel, and the processing involves processing each of these to produce the
desired output. There is a wide range of operations that can be applied to image
signals to produce desired outputs and effects, from resizing to blurring. You saw
some of these in Processing in Level 1. The focus in Level 2 is on signals and what
can be done to them.

Visual art and music

Evolutionary and generative art can be viewed as an application of signal processing.
In the Level 1 subject guide, you saw examples of image transformations using
things like rotation and scaling, as well as texture mapping. Signal processing
techniques can be applied to create interesting and novel images, and images that
move and grow, as in the work of Karl Sims, who was an early exponent in this field.

William Latham is an artist who used digital techniques to model evolutionary
processes, thereby creating distinctive artworks, as well as biologically relevant

2.4

Signal definition

images, as demonstrated in Figure 2.3.

Figure 2.3: Image from William Latham’s Mutator.

Figure 2.4 shows a screen of a digital music interface. Processing music as a digital
signal allows us to analyse music from a different perspective, that examines the
much smaller elements that then contribute to the overall whole. In Volume 2 of this
guide, you’ll see systems (soundspotter and videospotter), which apply a signal
processing approach to the retrieval of specific information from a large bank of
data.

As well as analysing music, the application of signal processing allows the creation
and generation of novel music, such as in the work of John Cage.

Learning activity

Find more examples of musicians and artists who make use of signal processing explicitly in their work.
Describe how they do this, and what is unique and interesting about it.

Signal definition

Signals are functions of independent variables that carry information.
For example:

m electrical signals — voltages and currents in a circuit
m acoustic signals — audio or speech signals (analogue or digital)
= video signals — intensity variations in an image (e.g. a CAT scan)

= biological signals — sequence of bases in a gene.

You'll see more on signals in the context of sound and image analysis, and sound and
image creation, in the rest of this subject. However, it is important to appreciate that
there is theory about signals that cuts across a number of different subject areas, and

1

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

L ih Sonic Visualiser: afte

File Edit View Pane Layer Transform Help

B 2 I T L B b x av i@|[§ & f
1:|54 1:|55 1:|56 1:|57 11‘5 2:‘00 2:‘01 2:‘02 2:‘03 2:‘04 2:"i|]:| 1 | ul g‘r;p. §|
st S
'wml' 'W" h' I‘ ‘l ll |m L: Plugin Parameters [=) |51 %]
1:59.418 |5266368
i l l i I il o I i i

|
8 1:589

-DS5SI Real-Time Plugin . Ia il
MName: Library Sample Player
Maker: Chris Cannam

Copyright: GPL

~Plugin Parameters - o |
Program [piano - |
Tuned [on/off) (%]

Base Pitch (MIDI) (tl |s0.0000 :
Tuning of & (Hz) f\ [440.0000 |2

Sustain (on/off)

oK | cancel

Show © Play @ [t &) (7 |
(el || - = -

PRI F"'TI[I“I"‘[I'Hll‘nllquulr'—wu_q11l|\'|w1rr|||||l|m_
- B) 4o

Visible: 1:54,334 to 2:05,028 (duration 10,693)

Figure 2.4: Output screen from an audio application.

much progress in research and discovery has been made through utilising those
connections.

Learning activity

Write a short comparison that discusses the similarities and differences between the signal types listed
above (electrical, acoustic, etc.).

Identify any other kinds of signals if you can, and include these in your comparison.

2.4.1 Independent variables in signals and systems

The independent variables in a signal or a system are those variables that can be
manipulated directly, having an effect on the other variables in the system.

Signals (and the variables in them) can be continuous, such as the trajectory of a
space shuttle, or mass density in a cross-section of a brain. They can be discrete, as
in a DNA base sequence or in digital image pixels.

Variables, signals and systems can be 1-D, 2-D, ..., N-D. An important 1-D
independent variable, that you will see a lot of in the rest of this guide, is time.

12

2.5

2.6

Exercises

We distinguish between:

= Continuous-Time (CT) signals: x(t), ¢ —continuous values

m Discrete-Time (DT) signals: z[n], n —integer values only.

Discretisation involves taking a continuous time signal and turning it into a discrete
time signal.

Learning activity

How would you go about discretising a continuous signal? What is quantisation? How would you go about
quantising a signal?

Learning activity
For the signals in Section 2.4 above, which are the independent variables?

What is a dependent variable? Give some examples of dependent variables in relation to the first part of
this learning activity.

Summary and learning outcomes

In this chapter we saw that sound and image, among many other things, can be
viewed as signals. This is the approach taken in the rest of the volume, and this
chapter has formed an introduction to the approach. In subsequent chapters, you
will learn in more detail about different aspects of signals and signal processing, and
how to apply these.

With a knowledge of the contents of this chapter and its directed reading and
activities, you should be able to:

m discuss different types of signals
m describe the importance of waves in signal processing
m distinguish between discrete and continuous signals

m convert between angles in degrees and radians; and discuss how sine and cosine
waves can be represented over time

m give examples of the application of signal processing in the making of artworks.

Exercises

1. For each of the different views of signals listed at the very start of this chapter,
give a short paragraph explaining what is meant by that entity being a signal.
Include examples in your response.

2. Cosine waves and sine waves are both examples of sinusoidal waveforms. What
is the relationship between sine and cosine waves?

13

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

14

A

What is the independent variable in a sinusoidal waveform?
What do the functions cos(x) and sin(z) do? What is z in these functions?
What is the relationship between frequency and periodicity?

Find at least three different examples of displaying of audio signals. Describe
how each of them works, and compare them in terms of their effectiveness and
the advantages and disadvantages of the approach taken.

Chapter 3

Signals

3.1

3.2

Essential reading

Eaton, J.W. GNU Octave Manual. (Bristol: Network Theory, 1996) [ISBN 0954161726). (This is also
available online in HTML form at
http://www.gnu.org/software/octave/doc/interpreter and in texinfo source formatin
the Octave source code distribution.)

Recommended reading

Oppenheim, A.V. and A.S. Willsky with S. Hamid Nawab Signals and Systems. (Upper Saddle River, N.J.; London:
Prentice Hall, 1997) [ISBN 0138147574] Chapter 1.

Introduction

In this chapter you will learn about the fundamental concepts of signals as they are
understood by the engineering profession. To assist in the understanding of signals,
and in the next chapter, ‘Systems’, it is useful to get some direct experience of
constructing and manipulating them.

Digital multimedia systems are built upon a class of signal and system building
blocks called discrete-time signal processing, or digital signal processing (DSP). DSP
is a branch of engineering that is concerned with the analysis and design of signals
and systems for everyday applications, such as: radar, satellite communication,
seismic monitoring, rocket guidance systems and, the subject of this guide, digital
multimedia.

Signals are built out of fundamental units that are combined to make more
complicated signals using basic mathematical operations. Therefore, this chapter
introduces the fundamental building blocks of DSP and methods to construct and
manipulate signals.

Octave

Octave is an open-source mathematics and engineering tool that was written by
John Eaton and it is maintained as part of the free software foundation’s GNU
project; as such, it will be available to use for free well into the future. Octave is
useful for the construction, manipulation and visual display of signals. It can also be
used for displaying images, audio and video, that are manipulated using DSP
techniques. In later chapters you will learn how to perform signal manipulations in

15

3.2.1

3.2.2

3.2.3

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

16

Octave; in the current chapter you will learn how to install and run Octave, and how
to start constructing signals out of fundamental DSP units.

Installing Octave

You will first need to obtain the latest version of Octave. As an open-source project,
Octave is freely available on the Internet. If your operating system has a package
manager (such as fink on Mac OSX or Synaptic Package Manager in Ubuntu Linux)
then you should use the package manager to install the latest version of Octave.
Otherwise you can download Octave directly from:

http://www.gnu.org/software/octave/

At the time of writing, the latest version of Octave is 3.0.1; you should download or
install at least this version or a later (stable) release if available.

In addition to Octave you will need to install GnuPlot and ImageMagick for plotting
and image graphics. Again, if you have a package manager it is likely that the
additional packages were automatically installed when installing Octave. However, if
you do not have a package manager you can obtain both of these packages freely
from the Internet:

http://www.gnuplot.info
http://www.imagemagick.org

Installing for different operating systems

Octave’s primary support is for the Linux operating system, so if you are using that,
it is likely that your installation will be straightforward.

Some versions of Windows present problems for Octave, in which case you are
recommended to download Cygwin — -a version of Linux that runs on Windows
systems — -and run Octave within that.

For students using Mac, you are advised to go to http://pdb.finkproject.org if you
encounter any problems with your installation.

Please also note that the plotting examples might look different from the ones in this
guide, depending on which version of Octave you are using. What is important is
that your plots illustrate to you the concepts, and that you become competent in
using Octave to test them out.

Running Octave

Once you have installed Octave you can test it by opening a terminal window and
typing the Octave command.

shelll,1>octave

Octave will start up and will print some information about the version and the
copyrights of the software. For example, you might get the following message:

3.2.4

Octave

GNU Octave, version 3.0.1 (i486-pc-linux-gnu) .

Copyright (C) 2006 John W. Eaton.

This is free software; see the source code for copying conditioms.
There is ABSOLUTELY NO WARRANTY; not even for MERCHANTIBILITY or
FITNESS FOR A PARTICULAR PURPOSE. For details, type ‘warranty’.
Additional information about Octave is available at
http://www.octave.org.

Please contribute if you find this software useful.

For more information, visit http://www.octave.org/help-wanted.html
Report bugs to <bug@octave.org> (but first, please read
http://www.octave.org/bugs.html to learn how to write a helpful
report)

You are now presented with Octave’s interactive shell which allows you to enter
commands and display the results of mathematical operations. The interactive
nature of Octave is an advantage over languages that require compilation, such as
Java, because the response to entering your code is immediate.

Using Octave

Octave can manipulate numbers that are organised into convenient containers called
vectors and matrices. In Octave, all numbers are actually matrices, but the user
doesn’t know this until they need to use matrices.

Scalars

A scalar is a single numeric quantity, such as the numbers 3, —6.3 and the irrational
pi. When you type these values at the Octave prompt, they will be evaluated as
expressions and their values returned as answers:

octave:> 3
ans = 3
octave:> -6
ans = -6
octave:> pi
pi = 3.1416

Note that the last of these three inputs evaluated a pre-defined constant: pi. Just as
in the other programming languages that you have used in your studies, we can
define a variable to contain a value. Octave is not a typed system, so variables do not
have to be declared and assigned types explicitly; we can simply define a variable by
assigning it a value:

octave:> a = -100
a = -100

octave:> b = pi
b = 3.1416

octave:> alongVariableName = 10
alLongVariableName = 10

17

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

18

Scalar operations

The same mathematical operations that you have used in Java and other
programming languages are also available in Octave. There common operations of
addition, subtraction, multiplication and division can be entered directly at the
command prompt and Octave will evaluate them:

octave:> 4.5 + 9.6 *x 2

ans = 23.7

octave:> (4.5 + 9.6) *x 2

ans = 28.2

octave:> (4.5 + 9.6) / 2

ans = 7.05

octave:> (4.5+ 9.6) ~ 2/ 2
ans = 99.405

The order of precedence of operators is similar to that of Java, with multiplication
taking precedence over addition, and division taking precedence over multiplication.
The order of operation is altered with the use of parentheses as in the above
examples. In the last example the ~ operator was used to perform exponentiation;
raising the expression in the parentheses to the power 2 thus taking its square.

Mathematical operations can also be performed on variables in the same manner. In
the following examples the variables defined above are used in mathematical
expressions:

octave:> (a*a + b "3) / aLongVariableName

ans = 1003.1
octave:> 2xpi
ans = 6.2832
octave:> pi/2
ans = 1.5708

Mathematical functions

Octave provides a comprehensive set of mathematical functions such as sin(),
cos(), tan(), exp(), asin(), acos(), atan(), min(), max(), mean().
Functions are expressions that return a value given one or more input arguments.
The following examples illustrate some of the more common functions:

octave:> cos(0)
ans = 1

octave:> sin(pi)
ans = 1.2246e-16
octave:> sin(pi/2)

ans = 1
octave:> exp(1)
ans = 2.7183

octave:> tan(pi/2)
ans = 1.6332e+16

The functions cos(), sin() and tan() are the familiar trigonometric functions that

Octave

you may have used either in Java or on a calculator. They accept a scalar argument
in the range [0...27] and return the value of the function for the given argument.
Note that the values for sin(pi) and tan(pi/2) are not exact: the mathematically
correct values of these functions for the given arguments are 0 and Infinity (or oc)
respectively. Here, as with all mathematical operations, Octave reports the value of
the function to within the floating-point numerical accuracy of the host system. The
values are not exact because of finite floating-point precision; the same is true in the
Java programming language.

The exp () function is the exponential function which raises the natural exponent e,
often called the Euler number, to its argument. Thus, exp (1) returns the identity of
the natural exponent, to a fixed number of decimal places, in this case 4 decimal
places (2.7183). To see more of the decimal places of this irrational number use the
format long command:

octave:> format long
octave:> exp(1)
ans = 2.71828182845905

To return to the default short format use the command format short.

All of the functions in octave have built-in help available. To access the help use
‘help functionname’, for example:

octave:>help sin

Relational and conditional operators

Just like Java, Octave also has basic programming constructs such as relational
(<,>,<=,>=,==,), conditional (if(...) endif; switch..case) and control
operations (for(...) endfor; while(...) endwhile;. We may use Octave by
writing a script, storing it in a file, and calling the script by name to access its
functionality.

Learning activity
Type the following into your text editor; for example gedit, wordpad or emacs:

for k = 10:-1:0
if (k>0)
100/k
else
printf (’What will happen if we divide by zero?’)
100/k
endif
endfor

Do not worry about the syntax for now; but most of this code should look familiar to you. It is very similar to
Java except it does not use braces ‘{ }’ to delimit code blocks. Instead, blocks of code are delimited by
keywords suchas for (...) endforandif ...endif asin many Unix-style scripting
languages.

19

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

20

Now save the file using the name myscript .min a CC227 working directory, say, /CC227/octave.
The symbol ~ means your HOME directory. The extension .m is used by Octave to locate script and
function files.

You will first need to make a directory to store your scripts. Do this either from the desktop of your operating
system, from a terminal or even in Octave:

octave:> mkdir(’~/foo/bar’)
ans = -1

Only one directory at a time can be created; here, since /£ oo did not exist an error is returned (—1) when
trying to make the bar directory within it.

Instead, we must create each new directory separately:

octave:> mkdir(’~ /CC227°)

ans = 0
octave:> mkdir(’~ /CC227/octave’)
ans = 0

The return value, 0, indicates that all is well with the new directories. When you have saved myscript.m
you will need to tell Octave where to find it so that you can use it. To do this, use the addpath command:

octave:>addpath(’~ /CC227/octave’)

Octave’s path command will display all the directories that Octave will look in to find scripts and data files
that you might request at the command prompt.

octave:>path
Octave’s search path contains the following directories:
~/CC227/octave

/usr/lib/octave/2.1.73/site/oct/i486-pc-linux-gnu//
/usr/lib/octave/site/oct/api-v13/i486-pc-linux-gnu//
/usr/lib/octave/site/oct/i486-pc-linux-gnu//
/usr/share/octave/2.1.73/site/m//
/usr/share/octave/site/api-v13/m//
/usr/share/octave/site/m//
/usr/lib/octave/2.1.73/oct/i486-pc-linux-gnu//
/usr/share/octave/2.1.73/m//
/usr/local/share/octave/site-m//

Do not worry about the long list of directories, you are most interested in the ones at the top. The single “.”
refers to the current working directory which can be displayed using the command pwd:

octave:> pwd

/home/mkc/CC227/octave

If all has gone well, you should now be able to execute your script from the command line:

octave:>myscript
ans = 10

ans

ans =

ans
ans

ans =
ans =
ans =
ans =

ans

What will happen if we divide by zero?

warning: division by zero

ans

What happened at the end of the script?
Is the last value a numeric?

=11.111
12.500
= 14.286
= 16.667
20

25
33.333
50

= 100

= Inf

Octave

Octave supports scripts, as in the example above, which accept no arguments and do not return a value. A

script can output a value to the screen, such as in your example above.

To support input arguments and return values Octave also allows user-defined functions. Functions are,
essentially, scripts with an extra keyword to define a function, and they are able to accept and return

arguments.

Make a new text file in your Octave directory called myfunction.m:

function y = myfunction(n)
for k = n:-1:0

if (k>0)

y = 100/k

else

printf (’What will happen if we divide by zero?’)
y = 100/k

endif

endfor
endfunction

The Octave path was already set above; so you may now type the following at the command line:

octave:>myReturnValue

y
y
y
y =

y =

What will happen if we divide by zero?
in /home/mkc/src/octave/myfunction.m near line 7, column 8:
division by zero

warning:
warning:

y =

myReturnValue

Explain why the number contained in myReturnValue is the last value computed by myfunction.m.

20

25
33.333
50

100

Inf

myfunction(5)

21

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

22

Vectors

So far, the scalar operations that you have executed in Octave have been very similar
to the numerical computations that you have used in other programming languages.
The power of Octave comes in combining many scalar values into ordered lists,
called vectors and matrices. Octave’s operations upon vectors and matrices make
programming for signals and systems much easier than it would be in languages
such as Java.

A vector is simply a list of scalar values such as [2 4 6 8 10] and [exp(1) 23.7 42
-pil. A vector is defined with the use of the square brackets [and]. The following
are examples defining vectors in Octave:

octave:> [exp(1l) 23.7 42 -pi]

ans =

2.7183 23.70 42.00 -3.1416

octave:> [pi pi/2 pi/3 pi/4 pi/5 pi/6 pi/7 pi/8 pi/9]

ans =

Columns 1 through 8:

3.14159 1.57080 1.04720 0.78540 0.62832 0.52360 0.44880 0.39270
Column 9:

0.34907

In the first example, a vector was constructed using both scalar literals and
functions. The functions are evaluated and the results inserted into the vector. The
vector is then a fixed set of numbers. In the second example, the pre-defined
constant pi was used to construct every element of the vector. The result is a vector
of nine elements with values that spill over two lines. When this happens, during
printing to the screen, Octave informs the user which columns appear on each line.

The term column refers to the number of elements that the vector contains if it is
oriented as a row vector as in the examples above. Vectors have either one row and
multiple columns of values, or one column and multiple rows. The orientation of a
vector determines whether its values are organised in rows or columns.

To find out whether a vector is a row or a column vector you can use Octave’s
size () command:

octave:> size([-1 01 2 3 4 5])
ans =
17

The size command returns the number of rows and columns in a vector. In this
example, the command has resulted in a response of 1 7 for row and column
respectively, indicating that the resulting vector is a row vector.

To make a column vector you can enter the values one row at a time:

octave:> [

V V V V V V VvV
> W N = O

Octave

ans =
-1

O W N O

Notice that the resulting values are now listed as a single column.

Conveniently, Octave keeps the last computed value in an automatic variable called
ans; in this case a column vector. The size function can be called with ans as an
argument to find out the number of rows and columns of the last computed vector:

octave:> size(ans)
ans =
71

Now Octave reports that there are 7 rows and 1 column; so this is a column vector.

The orientation of a vector is very important. The process of changing orientation is
a fundamental operation in Octave called transposition; transposition of a vector is
obtained with a special operator “ * ”.

In the following examples we transpose a row vector into a column vector, and a
column vector into a row vector. Just as with scalars, you can assign vectors to
variables. There is nothing special that needs to be done; Octave treats scalars and
vectors in the same manner for variable assignment:

octave:> a [-1 01234 5]

-1 0 1 2 3 4 5

octave:> b [F-1 0123 45]
b =

D WwWN R, O -

5
octave:> aSize = size(a)
aSize =

17
octave:> bSize

size(b)

bSize =
7 1

Notice how the number of rows and columns is exchanged with the use of the ’
operator.

Another special operator enables vectors to be defined as sequences of numeric

23

Creative computing II: interactive multimedia — Volume 1: Creative signals and systems

24

values, without having to list the entire sequence. The colon operator : was used
above in the myfunction.m function; it is an iterator that generates a list of values
between a start value and an end value:

octave:>[1:10]

ans =

123456789 10

octave:> [10.5:20.4]

ans =

10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5

In the above two examples, the start and end values are traversed in order in step
sizes of 1.0, the default increment for colon operator iteration.

Learning activity

In the second example above, the value 20.4 is not reached. Can you see why?

To change the step size of the iteration Octave has a syntax using two colon
operators:

octave:> [10.5:.9:20.4]

ans =

Columns 1 through 10:

10.5 11.4 12.3 13.2 14.1 15.0 15.9 16.8 17.7 18.6
Columns 11 and 12:

19.5 20.4

Learning activity

Here the value 20.4 is reached. Can you see why?

In this example, the direction of the iterator is reversed by the use of a negative
increment:

octave:> myVector = [10:-1:1]°
myVector =
10

=N WP oo N 00O

The increment argument to the colon operator can have any real numeric value. In
this example the resulting vector was transposed to a column vector using the
transpose operator ’.

Octave

Learning activity

Try reversing the positions of 10 and 1 in the above example. Explain the output that you see.

Vector arithmetic operations

The same mathematical operations are available for vectors as for scalars. First, we
can apply the basic operations of