
Creative computing II: interactive

multimedia

Volume 1: Creative signals and systems

M. Casey with S. Rauchas

2910227

2008

Undergraduate study in

Computing and Related Subjects

The material in this subject guide was prepared for the University of London
External System by:

Michael Casey, Goldsmiths Digital Studios, Goldsmiths, University of London
Sarah Rauchas, Department of Computing, Goldsmiths, University of London.

The guide was produced by Sarah Rauchas, Department of Computing, Goldsmiths,

University of London. Many thanks to Jonathan Barbara, SMIIT, Malta, for

identifying typographical and code inconsistencies.

This is one of a series of subject guides published by the University.

This subject guide is for the use of University of London External System students

registered for programmes in the field of Computing. The programmes currently

available in these subject areas are:

BSc(Honours) in Computing and Information Systems

BSc(Honours) in Creative Computing
Diploma in Computing and Information Systems

Diploma in Creative Computing

Published 2008

Copyright c© University of London Press 2008

Publisher:
The External System

Publications Office
University of London

Stewart House

32 Russell Square
London

WC1B 5DN

www.londonexternal.ac.uk

All rights reserved. No part of this work may be reproduced in any form, or by any
means, without permission in writing from the publisher. This material is not

licensed for resale.

Contents

Preface iii

1 Perception 1
1.1 Introduction . 1

1.2 Cognitive and psychological aspects of perception 1
1.3 Abstraction in perception . 2

1.4 Ambiguity in perception . 3

1.5 Summary and learning outcomes . 5
1.6 Exercises . 5

2 Creative signals 7
2.1 Introduction . 7
2.2 Waves . 7

2.3 Signal processing . 8
2.3.1 RADAR . 9

2.3.2 Audio signals . 9

2.3.3 Image signals . 10
2.3.4 Visual art and music . 10

2.4 Signal definition . 11

2.4.1 Independent variables in signals and systems 12
2.5 Summary and learning outcomes . 13

2.6 Exercises . 13

3 Signals 15
3.1 Introduction . 15

3.2 Octave . 15
3.2.1 Installing Octave . 16

3.2.2 Installing for different operating systems 16

3.2.3 Running Octave . 16
3.2.4 Using Octave . 17

3.3 What are signals? . 29
3.3.1 One-dimensional signals . 29

3.3.2 Octave representation of discrete-time signals 31

3.3.3 The unit impulse . 36
3.3.4 The unit step . 37

3.3.5 The unit delay . 38

3.3.6 Delay operations in Octave . 41
3.4 Audio signals . 42

3.4.1 Sampling . 42
3.4.2 Frequency . 43

3.4.3 Amplitude . 47

3.4.4 Phase . 49
3.5 Summary and learning outcomes . 55

3.6 Exercises . 55

4 Systems 59
4.1 Introduction . 59

4.2 LTI systems . 60

i

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

4.2.1 Linearity . 60
4.2.2 Time invariance . 61

4.2.3 Impulse response . 61
4.2.4 Convolution . 62

4.2.5 Unit impulse and unit delay systems 64

4.2.6 Scaled delay . 65
4.2.7 Convolution revisited . 65

4.3 Spectral analysis . 67

4.3.1 Complex exponentials . 67
4.3.2 Signal multiplication by complex exponentials 71

4.3.3 Spectra of signals and systems 72
4.3.4 Fast Fourier Transform (FFT) 73

4.3.5 Convolution by spectrum multiplication 81

4.4 Summary and learning outcomes . 82
4.5 Exercises . 83

5 Audio and image filtering 85
5.1 Audio effects . 85

5.1.1 EQ . 85

5.1.2 FIR filter design . 88
5.1.3 Sweepable EQ . 90

5.1.4 Subtractive synthesis . 92

5.1.5 Echo . 93
5.1.6 Reverberation . 95

5.1.7 Resampling . 96

5.2 Image filtering . 99
5.2.1 Matrices . 99

5.2.2 Image representation . 105
5.2.3 Image effects . 112

5.3 Summary and learning outcomes . 123

5.4 Exercises . 124

ii

Preface

This subject unit builds and extends on the work you did in Level 1, in developing

and expressing creative ideas using computers. The focus of the subject this year is
on the combination of two things: signals and signal processing; and perception.

The approach taken in this guide is that sound and image, and other kinds of
creative outputs, are at their very basis, signals: signals from light, signals from

vibration, that our senses receive and process. Perception therefore involves

examining how our senses process these signals; how the eyes process light, how the
ears process sound. There is also some discussion of how these processes are

experienced on a higher level, which is cognitive. The subject also includes a basic

look at animation. We can see this, very broadly, as looking at how human beings
process information (i.e. signals). To complete the unit, there is material covering

the processing of data of various kinds using computers.

At the end of this unit you will understand the basics of signal processing, and how

perception works, and be able to use this to create innovative artworks.

The subject guide for Creative Computing 2 is divided into two volumes. The first

volume, which is this one, focuses on signal processing. The second volume contains
material on perception, the processing of digital information and animation. It is

therefore very important that you become familiar with the contents of both this

volume and the second volume of the subject guide.

By the end of this unit, you should be able to implement creative concepts that are

not easily realised using commercial software packages and, therefore, you will be
enabled to demonstrate a high degree of originality in your own creative work.

The assessment for this unit comprises four pieces of coursework and an unseen
written examination. The examination questions will be about the background,

techniques and examples (including the figures presented) in Volume 1 and Volume
2 of this subject guide, and the essential reading (see below). While not required,

you should read the items on the recommended reading list where possible to

increase your understanding of the general subject area, and sometimes for an
alternative explanation of important concepts, which you might find helpful. The

items on the additional reading list provide supplementary material that you might

find interesting and relevant. There is an accompanying study booklet on portfolio
creation, which is not examinable. However, developing a portfolio of work will be

an invaluable complement to your degree.

This subject guide is not a complete unit text on its own. It introduces topics and

concepts, and provides some material to help you to study the topics in the unit.
Further reading is very important as you are expected to see an area of study from

an holistic point of view, and not just as a set of limited topics. Doing further reading

will also help you to understand complex concepts more completely.

iii

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Essential reading

Eaton, J.W. GNU Octave Manual. (Bristol: Network Theory, 1996) [ISBN 0954161726].

(This is also available online in HTML form at

http://www.gnu.org/software/octave/doc/interpreter

and in texinfo source format in the Octave source code distribution.)

Recommended reading

Foley, J.D., A. van Dam and others Introduction to Computer Graphics. (Reading, Mass.; Wokingham: Addison Wesley,

1997) [ISBN 0201609215].

Howard, D.M. and J. Angus Acoustics and Psychoacoustics. (Oxford: Focal, 2006) [ISBN 0240519957 (pbk);

9780240519951].

Oppenheim, A.V. and A.S. Willsky with S. Hamid Nawab Signals and Systems. (Upper Saddle River, N.J.; London:

Prentice Hall, 1997) [ISBN 0138147574].

Reas, C. and B. Fry Processing: A Programming Handbook for Visual Designers and Artists. (Cambridge, Mass.;

London: MIT Press, 2007) [ISBN 0262182629].

Reas, C. and B. Fry http://www.processing.org/reference, on-line Processing reference manual.

Additional reading

Feynman, R.P. and others The Feynman Lectures on Physics. (San Francisco; Pearson/Addison Wesley, 2006) [ISBN

0905390464] Vol. 1, Chapters 35 and 36.

Handel, S. Listening: an introduction to the perception of auditory events. (Cambridge, Mass: MIT Press, 1989) [ISBN

0262081792] Chapters 1 to 3.

iv

Chapter 1

Perception

1.1 Introduction

Central to the production and experience of art, be it visual art, music, dance, or any

other kind, is the fact that we as human beings experience it through our senses.
Perception is strongly related to this kind of experience, and having some

understanding of how we perceive things, physically, can give valuable input that
might influence the creation. Understanding how our work will be perceived – by

ourselves and by others – is invaluable to the creative process.

In this chapter we introduce the phenomena of perception and cognitive processes;

these concepts are taken further in Volume 2 of the subject guide, where visual and

audio perception are examined more closely.

How we experience something is not only governed by the physical stimuli of our

senses, by light, or sound waves, or touch. There are aspects of perception that are
related to cognition and psychology: how our brains put together information, and

also what we have experienced in our lives already.

Although we consider these aspects only briefly during this subject, you should be

aware of the connections between this and the more direct aspects of perception,
and should also develop a basic understanding of some of the concepts and issues in

this area.

1.2 Cognitive and psychological aspects of perception

In the Level 1 course in Creative Computing, you saw examples of the Gestalt
principles of similarity, proximity, etc., and how this affects how we perceive visual

images. What is happening here is that there is an image, which we see because of

the light waves that exist in our environment, and because of how our eyes operate
on a physiological level. However our brains, as well as processing the signals from

our eyes, also put together parts of the visual stimuli, to create more abstract entities
than only elements of light or colour. This is what we use to make sense of the visual

stimuli, and this is what relates to perception. For example, amodal perception

(which was not included in the Gestalt descriptions of perception) describes the
ability we have to ‘see’ a cup, when we only have the visual stimulation of part of a

cup. Reification describes the fact that we perceive parts of an image that are not

actually there, if doing so ‘completes’ the image (cognitively) for us.

So, perception relates to how our senses are stimulated, and how we then make

sense of those stimuli that are essentially neurological. As well as the purely physical
aspects, these can be examined from a cognitive standpoint, or from a psychological

standpoint. The Gestalt descriptions are focused mainly on the cognitive aspects –
and also tend to focus on visual perception – whereas more general psychological

1

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

aspects would include things like how our experience in our lives up to the point of
stimulation might influence the perception we then have. Although much of the

Gestalt and subsequent work has been related to visual perception, a good musical
example comes from Christian von Ehrenfels – a member of the original Gestalt

school. Take a 12-note melody, and play it in one key. Now change it to another key

and play it again. There may not be any notes that are the same in the two playings,
yet most people listening are able to recognise that it is the same melody. What

psychologists have tried to figure out for centuries is what it is that makes us know,

somehow, that it is indeed the same tune: is it a property of the melody itself, the
environment in which the melody exists, our own experience and emotions, a

combination of these, or even something else?

It is not straightforward to distinguish between cognition and psychology as they

overlap in various ways. Cognitive studies focus on how we understand and make
sense of things; this might include things like reasoning, argument, logic and

perception. Examination of cognition is usually a part of a more general psychology,

which may also include things like how emotion, experience and intelligence
contribute to our understanding and our responses.

There are a variety of views on how perception works, such as the constructivist
view of Richard Gregory1 which argues that perception is an hypothesis that the

brain ‘constructs’, based on prior knowledge and experience, of what is expected
from a stimulus. James Gibson2 has argued that Gregory’s approach and the Gestalt

viewpoint ignore the reality of 3-D in visual perception. A century earlier, Hermann

von Helmholtz (1821–1894) is sometimes credited with being the first person to
identify visual perception issues, and also took a constructivist view. Von Helmholtz

also contributed significantly in the beginnings of signal processing, as you will see

later in this subject.

In general, the psychological and cognitive aspects of audio perception have received

less attention than the visual ones, and it is argued that Western culture emphasises
the visual over the audio. It is also true that a larger part of the cortex is devoted to

visual processing than to dealing with any other single sensory input.

Haptic technology is introducing tactile perception to various digital applications,

and is a newly emerging area for research and development in perception.

Learning activity

Find out more about the constructivist and ecological views of perception, and contrast them. Use this

research to write an explanation in order to tell a fellow student what the important differences are. Decide

which approach you think is most correct, and back up your choice with reasoned argument and evidence.

1.3 Abstraction in perception

Abstraction is a concept you should have come across in other subjects you have

studied. For example, in computing, we often distinguish between the abstract
properties of a data type, and how it actually (concretely) gets implemented in the

1Gregory, R.L. Knowledge in perception and illusion. Philosophical Transactions of the Royal Society of
London. B1997; 352: 1121-1128.

2The Ecological Approach to Visual Perception. (Psychology Press, 1986) [ISBN 978-0898599596].

2

Ambiguity in perception

computing machinery.

Here is an example in perception: imagine a chair. When we look at the chair, we do

not usually perceive it as being an object made of wood, metal and leather. We
perceive it as a chair. It is also the case that if we see the chair from the opposite side

of a table, we still see it as a chair, even though what we actually see might only be
the top part of it. It is possible to perceive it as a couple of pieces of wood, covered

in leather and held together by bits of metal. It is possible to perceive it as the top

part of a chair-back. But usually, we perceive it as an abstract entity, which we call a
chair. Philosophical views on abstraction are not new; many philosophers have

discussed and argued about these kinds of ideas, as far back as Plato.

On a physiological level, what we actually see are those particles, or molecules, that

make up the physical part of the object, that are in a space in the room where the
light rays that bounce off it come into our eyes. Signals bounce around the room,

and our senses (in this case, the sense of vision) receive the signals and process

them. While it is essential that this does happen, and it is important to understand
these mechanisms on a physical and physiological basis, it is also the case that how

these signals then get put together, by our brains, contributes to how we perceive the

objects (or in some cases, the results of signals, such as in the audio domain).

In the next volume of this subject guide, you will look in much more detail at the

physical aspects of visual and audio perception. At this point though, what is
important for you to understand is that what we are looking at is physical signals in

the real world, and how they impact on our senses, and how they combine in various
ways to make that impact.

Learning activity

Find out what you can about the following:

depth perception

colour perception

amodal perception.

Discuss how they relate to the material in the above sections.

Discuss the relationship between perception and perspective, especially in the context of the work you did

in Level 1.

The description of abstraction above focused on a visual example. Try to construct an example that

illustrates the concept in the sound domain.

1.4 Ambiguity in perception

A direct example of ambiguity is demonstrated by the Gestalt property of
multistability, which is illustrated in Figure 1.1. This is visual ambiguity, where it is

possible to see one of two images, and to alternate between them.

More generally, ambiguity is the property of allowing, or admitting, more than one

interpretation. It plays an important role in the spoken and the visual domains, and

3

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Figure 1.1: Two multistable images.

has historically been studied by philosophers. It is important to note that there is a

distinction between ambiguity and vagueness, where vagueness refers to a

description (or even an image or sound) that is ill-defined or unclear. Some people
use the word ambiguity synonymously with vagueness; this is not strictly correct.

In language, ambiguity is often seen as problematic. All of the following sentences
can be interpreted in more than one way:

1. Sam dropped the book with the picture.

2. The duchess can’t bear children.

3. Children make nutritious snacks.

While ambiguity has often been seen as a phenomenon that causes difficulties – for
centuries, philosophers have argued about linguistic ambiguity, and more recently in

computational linguistics, creating computer systems that can distinguish
semantically between different meanings of the same phrase or sentence is a current

challenge – it also affords a lot of creative potential.

At the most explicit level, visual images such as the multistable ones, can be used to

create interesting artworks. Also, playing around with perspective can include

ambiguity for creative impact. In the audio domain, different sounds can be heard in
different ways.

The work of Dutch artist M.C. Escher made a lot of use of ambiguity in the creation
of extremely interesting visual artworks. One such example is called ‘Relativity’.

Escher also used other visual and perceptive techniques to create specific effects, and

he enjoyed making images that would be physically impossible, yet were visually
appealing and stimulating, such as his famous ‘Drawing Hands’. You can see

examples of Escher’s work at http://www.mcescher.com/.

At a more abstract and psychological level, it is possible to create provocative pieces

through the use of linguistic ambiguity in an art context. One of the most famous
examples is the one you saw in the Level 1 Creative Computing guide, of the

Magritte work ‘The Treachery of Images’. Magritte used the ambiguity between the

sentence referring to a picture of a pipe and referring to a pipe itself to make a social
comment. Many people since then have used this work as the basis for further

creative pieces.

4

Exercises

1.5 Summary and learning outcomes

This introductory chapter focused on perception: what it is and different views on

how perception works at a cognitive level. We also looked at the role that perception
has in the creation of artworks.

With a knowledge of the contents of this chapter and its directed reading and
activities, you should be able to:

describe some of the issues regarding how physical stimuli and perceived

entities connect

discuss different views on how perception works

explain what is meant by ambiguity, and give examples of ambiguity in visual

and linguistic contexts

discuss the role of abstraction in how we perceive entities in the world.

1.6 Exercises

1. What is cognition? What is cognitive science? What is artificial intelligence?

How do these areas relate to each other and to psychology?

2. In linguistics, ambiguity can occur in different places. Give examples of each of:

lexical ambiguity

syntactic ambiguity

structural ambiguity

semantic ambiguity.

3. What is musical ambiguity? Find some examples of this.

4. What is abstraction? What role does abstraction have in how we understand
language? What role does abstraction have in how we experience visual art, or

music?

5. There is an excellent article on the use of Gestalt principles in user interface
design, at http://www.interaction-design.org/encyclopedia/

gestalt principles of form perception.html.

Read the article and then develop a visual image, such as a book cover, a web
page, an advertisement, or some other media item, that incorporates one or

more of the Gestalt principles or other principles of perception. You need not

restrict yourself only to principles mentioned in the article. Write a short essay
that describes which principles you have used and in what way, in your image.

6. Find out more about the work of Escher. Create a piece of digital art or music

that connects in some way with one or more of Escher’s artworks. Write a brief
accompanying description and critique of your work. You may use any software

you like for this.

7. Earlier in this chapter, we noted that Western culture emphasises the visual.
Discuss this claim, and present evidence that either backs it up or challenges it.

5

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

6

Chapter 2

Creative signals

Supplementary reading

Foley, J.D., A. van Dam and others Introduction to Computer Graphics. (Reading, Mass.; Wokingham: Addison Wesley,

1997) [ISBN 0201609215].

Oppenheim, A.V. and A.S. Willsky with S. Hamid Nawab Signals and Systems. (Upper Saddle River, N.J.; London:

Prentice Hall, 1997) [ISBN 0138147574]. Introductory parts of Chapters 1 and 2.

2.1 Introduction

This subject takes signals as the fundamental mechanism for the creation of art, and
we look first at the basic sources of signals – with a focus on sound and images. We

look primarily at signals in the form of waves and patterns. Once we have

understood the fundamentals of waves, and the mathematical ways that are used to
describe them, we will look at ways to manipulate them and ways to analyse

different waveforms, thereby creating new waves and hence new signals.

What is a signal? It can be viewed from many perspectives, including being:

a medium or entity through which communication happens

a physical or biological stimulus

a (mathematical) function

a cultural entity

a subtle message

a wave, or waveform, that is emitted.

2.2 Waves

Both light (which is what enables us to see) and sound (which is what enables us to
hear) are periodic waveforms. Light also has a particle representation, which carries

information too, but we focus on the wave aspect of light in this subject.

We will see in later chapters that any periodic waveform can ultimately be

represented by a combination of sine waves,1 so it is important that you understand
what a sine wave is, what properties it has, and how it is described mathematically.

We’ll also see, in volume 2 of this guide, details of the way that these two kinds of

waveforms interact with our ears and our eyes.

1This discovery is due to Joseph Fourier, a French mathematician of the 18th century.

7

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Figure 2.1 shows a sinusoidal waveform; all sinusoids have a similar shape, and the
values of frequency, wavelength, amplitude and phase may change. There are two

interactive tutorials to be found, at
http://hermes.eee.nott.ac.uk/teaching/cal/h61sig/sig0001.html and

http://www.music.sc.edu/fs/bain/atmi02/wt/sine/index.html, which will

help you understand some of the properties of sinusoids. The latter also has a facility
that allows you to hear what a sinusoidal waveform sounds like.

Sinusoids can be represented mathematically in the form of a function; most
commonly the function describes amplitude with respect to angle, and it is this that

is related to the periodicity. The period is the length (usually of time) of one cycle; in

terms of the signals we are looking at, this might be the cycling through all the
angles of one full rotation of a circle. The angle may vary from 0◦ to 360◦, or 0

radians to 2π radians. Commonly, the frequency of a sinusoidal waveform is taken to
be the number of oscillations or cycles per second.

Figure 2.1: Sine wave showing degrees and radians.

Learning activity

What is a radian? What is the relationship between radians and degrees?

Construct a diagram that shows the equivalence between radians and degrees. Use Processing to turn

your diagram into something visually interesting.

2.3 Signal processing

Signal processing involves the manipulation of signals, and usually takes signals to

be in the form of waves. In the rest of this subject guide, we will look in much more
detail at the various parts of this signalling arrangement. Although signal processing

applies to analogue as well as to digital signals, we focus in this subject on the

digital. Signal processing can be used as the basis of a wide range of applications,
from scientific and engineering through to sound and visual art.

8

Signal processing

2.3.1 RADAR

RADAR was one of the earliest applications of signal processing theory. RADAR

stands for radio detection and ranging – radio waves were used to detect both the
presence of and distance away from an object. The radio waves are signals that are

sent out in a particular direction. They have properties, including the fact that if they
encounter an object they will change their shape and the direction in which they are

moving. Also, they take a certain amount of time to travel through the air. So, many

things can be measured and many things can be calculated. It was this
understanding that led to the ability to use signal processing for detecting the

presence of objects, without being able to actually ‘see’ them.

Here is one example of how it works, in a very simplified fashion: electromagnetic

radiation is sent out. This radiation is modelled by waves, so we can think of the
radiation as being waves. The waves encounter objects in their path, and some of

the radiation bounces back. The RADAR system detects this radiation that has been

bounced back. Because waves travel at a known speed through air, it is possible to
tell how far away from the RADAR system the object that caused the bouncing is.

Many other measurements can be made to determine factors other than the presence

of an object, and its distance from the emitter. However, the earliest RADAR systems
were developed for just this purpose: being able to silently detect the presence of

enemy planes in the air.

2.3.2 Audio signals

An early use of audio signal processing was in radio, which was in the analogue

domain for a long time. The development of digital radio is relatively recent.

Learning activity

How does analogue radio work? What do the terms AM, FM, SW and LW mean, and what do they refer to

in terms of the radio signal?

How does digital radio differ from analogue radio?

Speech and sound signal processing has been of interest in the digital world since
the 1960s. An example of an audio signal is shown in Figure 2.2; sound signals can

be visualised in a number of ways, which include the use of colour and light

intensity, and the more traditional use of waveforms as indicated in the bottom
section of the figure.

Audio signal processing covers music, speech, and other sound, and areas of interest
include digital processing, manipulation of music and audio recordings, speech

recognition, and speech generation. More recently, signal processing has been
applied to the recognition and identification of music.

Learning activity

Find out what you can about Hermann von Helmholz. In particular, find out what his contributions have

been to audio processing. What is a Helmholz resonator?

9

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Figure 2.2: Speech signals.

2.3.3 Image signals

One form of image processing is the application of signal processing to images, and

it can be considered especially within digital image processing. Simply taking a

colour image and turning it into a black and white image is a type of signal
processing. In this case, the signals for the image are the colour and light signals at

each pixel, and the processing involves processing each of these to produce the
desired output. There is a wide range of operations that can be applied to image

signals to produce desired outputs and effects, from resizing to blurring. You saw

some of these in Processing in Level 1. The focus in Level 2 is on signals and what
can be done to them.

2.3.4 Visual art and music

Evolutionary and generative art can be viewed as an application of signal processing.
In the Level 1 subject guide, you saw examples of image transformations using

things like rotation and scaling, as well as texture mapping. Signal processing

techniques can be applied to create interesting and novel images, and images that
move and grow, as in the work of Karl Sims, who was an early exponent in this field.

William Latham is an artist who used digital techniques to model evolutionary

processes, thereby creating distinctive artworks, as well as biologically relevant

10

Signal definition

images, as demonstrated in Figure 2.3.

Figure 2.3: Image from William Latham’s Mutator.

Figure 2.4 shows a screen of a digital music interface. Processing music as a digital

signal allows us to analyse music from a different perspective, that examines the
much smaller elements that then contribute to the overall whole. In Volume 2 of this

guide, you’ll see systems (soundspotter and videospotter), which apply a signal

processing approach to the retrieval of specific information from a large bank of
data.

As well as analysing music, the application of signal processing allows the creation
and generation of novel music, such as in the work of John Cage.

Learning activity

Find more examples of musicians and artists who make use of signal processing explicitly in their work.

Describe how they do this, and what is unique and interesting about it.

2.4 Signal definition

Signals are functions of independent variables that carry information.

For example:

electrical signals – voltages and currents in a circuit

acoustic signals – audio or speech signals (analogue or digital)

video signals – intensity variations in an image (e.g. a CAT scan)

biological signals – sequence of bases in a gene.

You’ll see more on signals in the context of sound and image analysis, and sound and
image creation, in the rest of this subject. However, it is important to appreciate that

there is theory about signals that cuts across a number of different subject areas, and

11

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Figure 2.4: Output screen from an audio application.

much progress in research and discovery has been made through utilising those
connections.

Learning activity

Write a short comparison that discusses the similarities and differences between the signal types listed

above (electrical, acoustic, etc.).

Identify any other kinds of signals if you can, and include these in your comparison.

2.4.1 Independent variables in signals and systems

The independent variables in a signal or a system are those variables that can be

manipulated directly, having an effect on the other variables in the system.

Signals (and the variables in them) can be continuous, such as the trajectory of a

space shuttle, or mass density in a cross-section of a brain. They can be discrete, as
in a DNA base sequence or in digital image pixels.

Variables, signals and systems can be 1-D, 2-D, . . . , N-D. An important 1-D
independent variable, that you will see a lot of in the rest of this guide, is time.

12

Exercises

We distinguish between:

Continuous-Time (CT) signals: x(t), t →continuous values

Discrete-Time (DT) signals: x[n], n →integer values only.

Discretisation involves taking a continuous time signal and turning it into a discrete

time signal.

Learning activity

How would you go about discretising a continuous signal? What is quantisation? How would you go about

quantising a signal?

Learning activity

For the signals in Section 2.4 above, which are the independent variables?

What is a dependent variable? Give some examples of dependent variables in relation to the first part of

this learning activity.

2.5 Summary and learning outcomes

In this chapter we saw that sound and image, among many other things, can be

viewed as signals. This is the approach taken in the rest of the volume, and this

chapter has formed an introduction to the approach. In subsequent chapters, you
will learn in more detail about different aspects of signals and signal processing, and

how to apply these.

With a knowledge of the contents of this chapter and its directed reading and

activities, you should be able to:

discuss different types of signals

describe the importance of waves in signal processing

distinguish between discrete and continuous signals

convert between angles in degrees and radians; and discuss how sine and cosine

waves can be represented over time

give examples of the application of signal processing in the making of artworks.

2.6 Exercises

1. For each of the different views of signals listed at the very start of this chapter,
give a short paragraph explaining what is meant by that entity being a signal.

Include examples in your response.

2. Cosine waves and sine waves are both examples of sinusoidal waveforms. What
is the relationship between sine and cosine waves?

13

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

3. What is the independent variable in a sinusoidal waveform?

4. What do the functions cos(x) and sin(x) do? What is x in these functions?

5. What is the relationship between frequency and periodicity?

6. Find at least three different examples of displaying of audio signals. Describe

how each of them works, and compare them in terms of their effectiveness and
the advantages and disadvantages of the approach taken.

14

Chapter 3

Signals

Essential reading

Eaton, J.W. GNU Octave Manual. (Bristol: Network Theory, 1996) [ISBN 0954161726]. (This is also

available online in HTML form at

http://www.gnu.org/software/octave/doc/interpreter and in texinfo source format in

the Octave source code distribution.)

Recommended reading

Oppenheim, A.V. and A.S. Willsky with S. Hamid Nawab Signals and Systems. (Upper Saddle River, N.J.; London:

Prentice Hall, 1997) [ISBN 0138147574] Chapter 1.

3.1 Introduction

In this chapter you will learn about the fundamental concepts of signals as they are
understood by the engineering profession. To assist in the understanding of signals,

and in the next chapter, ‘Systems’, it is useful to get some direct experience of

constructing and manipulating them.

Digital multimedia systems are built upon a class of signal and system building
blocks called discrete-time signal processing, or digital signal processing (DSP). DSP

is a branch of engineering that is concerned with the analysis and design of signals

and systems for everyday applications, such as: radar, satellite communication,
seismic monitoring, rocket guidance systems and, the subject of this guide, digital

multimedia.

Signals are built out of fundamental units that are combined to make more

complicated signals using basic mathematical operations. Therefore, this chapter

introduces the fundamental building blocks of DSP and methods to construct and
manipulate signals.

3.2 Octave

Octave is an open-source mathematics and engineering tool that was written by

John Eaton and it is maintained as part of the free software foundation’s GNU
project; as such, it will be available to use for free well into the future. Octave is

useful for the construction, manipulation and visual display of signals. It can also be

used for displaying images, audio and video, that are manipulated using DSP
techniques. In later chapters you will learn how to perform signal manipulations in

15

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Octave; in the current chapter you will learn how to install and run Octave, and how
to start constructing signals out of fundamental DSP units.

3.2.1 Installing Octave

You will first need to obtain the latest version of Octave. As an open-source project,
Octave is freely available on the Internet. If your operating system has a package

manager (such as fink on Mac OSX or Synaptic Package Manager in Ubuntu Linux)
then you should use the package manager to install the latest version of Octave.

Otherwise you can download Octave directly from:

http://www.gnu.org/software/octave/

At the time of writing, the latest version of Octave is 3.0.1; you should download or
install at least this version or a later (stable) release if available.

In addition to Octave you will need to install GnuPlot and ImageMagick for plotting
and image graphics. Again, if you have a package manager it is likely that the

additional packages were automatically installed when installing Octave. However, if

you do not have a package manager you can obtain both of these packages freely
from the Internet:

http://www.gnuplot.info

http://www.imagemagick.org

3.2.2 Installing for different operating systems

Octave’s primary support is for the Linux operating system, so if you are using that,

it is likely that your installation will be straightforward.

Some versions of Windows present problems for Octave, in which case you are

recommended to download Cygwin – -a version of Linux that runs on Windows

systems – -and run Octave within that.

For students using Mac, you are advised to go to http://pdb.finkproject.org if you

encounter any problems with your installation.

Please also note that the plotting examples might look different from the ones in this

guide, depending on which version of Octave you are using. What is important is
that your plots illustrate to you the concepts, and that you become competent in

using Octave to test them out.

3.2.3 Running Octave

Once you have installed Octave you can test it by opening a terminal window and

typing the Octave command.

shell%1>octave

Octave will start up and will print some information about the version and the

copyrights of the software. For example, you might get the following message:

16

Octave

GNU Octave, version 3.0.1 (i486-pc-linux-gnu).

Copyright (C) 2006 John W. Eaton.

This is free software; see the source code for copying conditions.

There is ABSOLUTELY NO WARRANTY; not even for MERCHANTIBILITY or

FITNESS FOR A PARTICULAR PURPOSE. For details, type ‘warranty’.

Additional information about Octave is available at

http://www.octave.org.

Please contribute if you find this software useful.

For more information, visit http://www.octave.org/help-wanted.html

Report bugs to <bug@octave.org> (but first, please read

http://www.octave.org/bugs.html to learn how to write a helpful

report)

You are now presented with Octave’s interactive shell which allows you to enter
commands and display the results of mathematical operations. The interactive

nature of Octave is an advantage over languages that require compilation, such as

Java, because the response to entering your code is immediate.

3.2.4 Using Octave

Octave can manipulate numbers that are organised into convenient containers called

vectors and matrices. In Octave, all numbers are actually matrices, but the user
doesn’t know this until they need to use matrices.

Scalars

A scalar is a single numeric quantity, such as the numbers 3, −6.3 and the irrational

pi. When you type these values at the Octave prompt, they will be evaluated as
expressions and their values returned as answers:

octave:> 3

ans = 3

octave:> -6

ans = -6

octave:> pi

pi = 3.1416

Note that the last of these three inputs evaluated a pre-defined constant: pi. Just as

in the other programming languages that you have used in your studies, we can
define a variable to contain a value. Octave is not a typed system, so variables do not

have to be declared and assigned types explicitly; we can simply define a variable by

assigning it a value:

octave:> a = -100

a = -100

octave:> b = pi

b = 3.1416

octave:> aLongVariableName = 10

aLongVariableName = 10

17

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Scalar operations

The same mathematical operations that you have used in Java and other

programming languages are also available in Octave. There common operations of
addition, subtraction, multiplication and division can be entered directly at the

command prompt and Octave will evaluate them:

octave:> 4.5 + 9.6 * 2

ans = 23.7

octave:> (4.5 + 9.6) * 2

ans = 28.2

octave:> (4.5 + 9.6) / 2

ans = 7.05

octave:> (4.5 + 9.6) ^ 2 / 2

ans = 99.405

The order of precedence of operators is similar to that of Java, with multiplication

taking precedence over addition, and division taking precedence over multiplication.
The order of operation is altered with the use of parentheses as in the above

examples. In the last example the ^ operator was used to perform exponentiation;

raising the expression in the parentheses to the power 2 thus taking its square.

Mathematical operations can also be performed on variables in the same manner. In
the following examples the variables defined above are used in mathematical

expressions:

octave:> (a*a + b ^3) / aLongVariableName

ans = 1003.1

octave:> 2*pi

ans = 6.2832

octave:> pi/2

ans = 1.5708

Mathematical functions

Octave provides a comprehensive set of mathematical functions such as sin(),
cos(), tan(), exp(), asin(), acos(), atan(), min(), max(), mean().

Functions are expressions that return a value given one or more input arguments.
The following examples illustrate some of the more common functions:

octave:> cos(0)

ans = 1

octave:> sin(pi)

ans = 1.2246e-16

octave:> sin(pi/2)

ans = 1

octave:> exp(1)

ans = 2.7183

octave:> tan(pi/2)

ans = 1.6332e+16

The functions cos(), sin() and tan() are the familiar trigonometric functions that

18

Octave

you may have used either in Java or on a calculator. They accept a scalar argument
in the range [0 . . .2π] and return the value of the function for the given argument.

Note that the values for sin(pi) and tan(pi/2) are not exact: the mathematically
correct values of these functions for the given arguments are 0 and Infinity (or ∞)

respectively. Here, as with all mathematical operations, Octave reports the value of

the function to within the floating-point numerical accuracy of the host system. The
values are not exact because of finite floating-point precision; the same is true in the

Java programming language.

The exp() function is the exponential function which raises the natural exponent e,

often called the Euler number, to its argument. Thus, exp(1) returns the identity of

the natural exponent, to a fixed number of decimal places, in this case 4 decimal
places (2.7183). To see more of the decimal places of this irrational number use the

format long command:

octave:> format long

octave:> exp(1)

ans = 2.71828182845905

To return to the default short format use the command format short.

All of the functions in octave have built-in help available. To access the help use

‘help functionname’, for example:

octave:>help sin

Relational and conditional operators

Just like Java, Octave also has basic programming constructs such as relational

(<,>,<=,>=,==,), conditional (if(...) endif; switch..case) and control

operations (for(...) endfor; while(...) endwhile;. We may use Octave by

writing a script, storing it in a file, and calling the script by name to access its
functionality.

Learning activity

Type the following into your text editor; for example gedit, wordpad or emacs:

for k = 10:-1:0

if(k>0)

100/k

else

printf(’What will happen if we divide by zero?’)

100/k

endif

endfor

Do not worry about the syntax for now; but most of this code should look familiar to you. It is very similar to

Java except it does not use braces ‘{}’ to delimit code blocks. Instead, blocks of code are delimited by
keywords such as for (...) endfor and if ...endif as in many Unix-style scripting

languages.

19

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Now save the file using the name myscript.m in a CC227 working directory, say, ~/CC227/octave.

The symbol ~ means your HOME directory. The extension .m is used by Octave to locate script and

function files.

You will first need to make a directory to store your scripts. Do this either from the desktop of your operating

system, from a terminal or even in Octave:

octave:> mkdir(’~/foo/bar’)

ans = -1

Only one directory at a time can be created; here, since ~/foo did not exist an error is returned (−1) when
trying to make the bar directory within it.

Instead, we must create each new directory separately:

octave:> mkdir(’~ /CC227’)

ans = 0

octave:> mkdir(’~ /CC227/octave’)

ans = 0

The return value, 0, indicates that all is well with the new directories. When you have saved myscript.m

you will need to tell Octave where to find it so that you can use it. To do this, use the addpath command:

octave:>addpath(’~ /CC227/octave’)

Octave’s path command will display all the directories that Octave will look in to find scripts and data files

that you might request at the command prompt.

octave:>path

Octave’s search path contains the following directories:

~/CC227/octave

.

/usr/lib/octave/2.1.73/site/oct/i486-pc-linux-gnu//

/usr/lib/octave/site/oct/api-v13/i486-pc-linux-gnu//

/usr/lib/octave/site/oct/i486-pc-linux-gnu//

/usr/share/octave/2.1.73/site/m//

/usr/share/octave/site/api-v13/m//

/usr/share/octave/site/m//

/usr/lib/octave/2.1.73/oct/i486-pc-linux-gnu//

/usr/share/octave/2.1.73/m//

/usr/local/share/octave/site-m//

Do not worry about the long list of directories, you are most interested in the ones at the top. The single “.”

refers to the current working directory which can be displayed using the command pwd:

octave:> pwd

/home/mkc/CC227/octave

If all has gone well, you should now be able to execute your script from the command line:

octave:>myscript

ans = 10

20

Octave

ans = 11.111

ans = 12.500

ans = 14.286

ans = 16.667

ans = 20

ans = 25

ans = 33.333

ans = 50

ans = 100

What will happen if we divide by zero?

warning: division by zero

ans = Inf

What happened at the end of the script?

Is the last value a numeric?

Octave supports scripts, as in the example above, which accept no arguments and do not return a value. A

script can output a value to the screen, such as in your example above.

To support input arguments and return values Octave also allows user-defined functions. Functions are,

essentially, scripts with an extra keyword to define a function, and they are able to accept and return

arguments.

Make a new text file in your Octave directory called myfunction.m:

function y = myfunction(n)

for k = n:-1:0

if(k>0)

y = 100/k

else

printf(’What will happen if we divide by zero?’)

y = 100/k

endif

endfor

endfunction

The Octave path was already set above; so you may now type the following at the command line:

octave:>myReturnValue = myfunction(5)

y = 20

y = 25

y = 33.333

y = 50

y = 100

What will happen if we divide by zero?

warning: in /home/mkc/src/octave/myfunction.m near line 7, column 8:

warning: division by zero

y = Inf

myReturnValue = Inf

Explain why the number contained in myReturnValue is the last value computed by myfunction.m.

21

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Vectors

So far, the scalar operations that you have executed in Octave have been very similar

to the numerical computations that you have used in other programming languages.
The power of Octave comes in combining many scalar values into ordered lists,

called vectors and matrices. Octave’s operations upon vectors and matrices make
programming for signals and systems much easier than it would be in languages

such as Java.

A vector is simply a list of scalar values such as [2 4 6 8 10] and [exp(1) 23.7 42

-pi]. A vector is defined with the use of the square brackets [and]. The following

are examples defining vectors in Octave:

octave:> [exp(1) 23.7 42 -pi]

ans =

2.7183 23.70 42.00 -3.1416

octave:> [pi pi/2 pi/3 pi/4 pi/5 pi/6 pi/7 pi/8 pi/9]

ans =

Columns 1 through 8:

3.14159 1.57080 1.04720 0.78540 0.62832 0.52360 0.44880 0.39270

Column 9:

0.34907

In the first example, a vector was constructed using both scalar literals and

functions. The functions are evaluated and the results inserted into the vector. The

vector is then a fixed set of numbers. In the second example, the pre-defined
constant pi was used to construct every element of the vector. The result is a vector

of nine elements with values that spill over two lines. When this happens, during
printing to the screen, Octave informs the user which columns appear on each line.

The term column refers to the number of elements that the vector contains if it is
oriented as a row vector as in the examples above. Vectors have either one row and

multiple columns of values, or one column and multiple rows. The orientation of a

vector determines whether its values are organised in rows or columns.

To find out whether a vector is a row or a column vector you can use Octave’s

size() command:

octave:> size([-1 0 1 2 3 4 5])

ans =

1 7

The size command returns the number of rows and columns in a vector. In this

example, the command has resulted in a response of 1 7 for row and column

respectively, indicating that the resulting vector is a row vector.

To make a column vector you can enter the values one row at a time:

octave:> [

> -1

> 0

> 1

> 2

> 3

> 4

> 5]

22

Octave

ans =

-1

0

1

2

3

4

5

Notice that the resulting values are now listed as a single column.

Conveniently, Octave keeps the last computed value in an automatic variable called
ans; in this case a column vector. The size function can be called with ans as an

argument to find out the number of rows and columns of the last computed vector:

octave:> size(ans)

ans =

7 1

Now Octave reports that there are 7 rows and 1 column; so this is a column vector.

The orientation of a vector is very important. The process of changing orientation is

a fundamental operation in Octave called transposition; transposition of a vector is
obtained with a special operator “ ’ ”.

In the following examples we transpose a row vector into a column vector, and a
column vector into a row vector. Just as with scalars, you can assign vectors to

variables. There is nothing special that needs to be done; Octave treats scalars and

vectors in the same manner for variable assignment:

octave:> a = [-1 0 1 2 3 4 5]

a =

-1 0 1 2 3 4 5

octave:> b = [-1 0 1 2 3 4 5]’

b =

-1

0

1

2

3

4

5

octave:> aSize = size(a)

aSize =

1 7

octave:> bSize = size(b)

bSize =

7 1

Notice how the number of rows and columns is exchanged with the use of the ’

operator.

Another special operator enables vectors to be defined as sequences of numeric

23

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

values, without having to list the entire sequence. The colon operator : was used
above in the myfunction.m function; it is an iterator that generates a list of values

between a start value and an end value:

octave:>[1:10]

ans =

1 2 3 4 5 6 7 8 9 10

octave:> [10.5:20.4]

ans =

10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5

In the above two examples, the start and end values are traversed in order in step
sizes of 1.0, the default increment for colon operator iteration.

Learning activity

In the second example above, the value 20.4 is not reached. Can you see why?

To change the step size of the iteration Octave has a syntax using two colon

operators:

octave:> [10.5:.9:20.4]

ans =

Columns 1 through 10:

10.5 11.4 12.3 13.2 14.1 15.0 15.9 16.8 17.7 18.6

Columns 11 and 12:

19.5 20.4

Learning activity

Here the value 20.4 is reached. Can you see why?

In this example, the direction of the iterator is reversed by the use of a negative

increment:

octave:> myVector = [10:-1:1]’

myVector =

10

9

8

7

6

5

4

3

2

1

The increment argument to the colon operator can have any real numeric value. In

this example the resulting vector was transposed to a column vector using the

transpose operator ’.

24

Octave

Learning activity

Try reversing the positions of 10 and 1 in the above example. Explain the output that you see.

Vector arithmetic operations

The same mathematical operations are available for vectors as for scalars. First, we
can apply the basic operations of addition, subtraction, multiplication and division

between vectors and scalars:

octave:> aVec = [0 : 0.1 : 1]

aVec =

Columns 1 through 8:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Columns 9 through 11:

0.8 0.9 1.0

octave:> aVec + 1

ans =

Columns 1 through 10:

1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Column 11:

2.0

octave:> aVec * 10

ans =

Columns 1 through 8:

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Columns 9 through 11:

8.0 9.0 10.0

octave:> aVec - 1

ans =

Columns 1 through 8:

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3

Columns 9 through 11:

-0.2 -0.1 0.0

octave:> aVec / 0.1

ans =

Columns 1 through 8:

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Columns 9 through 11:

8.0 9.0 10.0

The following examples consist of arithmetic operations between two vectors:

octave:> bVec = [1 : -0.1 : 0]

bVec =

Columns 1 through 8:

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Columns 9 through 11:

0.2 0.1 0.0

octave:> aVec + bVec

ans =

25

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

1 1 1 1 1 1 1 1 1 1 1

octave:> aVec - bVec

ans =

Columns 1 through 8:

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Columns 9 through 11:

0.6 0.8 1.0

The operations of vector addition and vector subtraction simply perform the scalar
operations of addition and subtraction independently on each pair of vector

elements taken in order.

Learning activity

What happens if you add, or subtract, two vectors of different lengths? Why does this happen?

What happens if you transpose one of two vectors of the same length and perform addition or subtraction?

What happens if you transpose both vectors? Can you explain the result?

The rule for adding, or subtracting, pairs of vectors is that they must have the same

dimensionality. That is, they must both be either row vectors or column vectors and

they must have the same number of elements. Before performing vector addition or
subtraction it is often useful to use the size() command, to make sure that the

vectors are compatible with the rules of vector arithmetic.

Vector indexing

Octave provides access to the individual elements of a vector variable using
parentheses: (). The ordinal position of the element that is required is supplied as

an argument, as if the vector variable were itself a function. For example:

octave50>a = [1 1 2 3 5 8 13 21 34]

>a(4)

ans = 3

>a(9)

ans = 34

>a(0)

error: invalid vector index = 0

>a(10)

error: invalid vector index = 10

Note that the indexing is one-based, not zero-based as it is in Java. This can lead to a
lot of confusion when moving from Java to Octave, so it is best to take extra care

when writing index code in Octave.

The argument supplied for vector indexing can be another vector. The elements of

the inner index vector are the positions in the outer vector to access:

octave:> a([2 4 6 8])

ans =

1 3 8 21

26

Octave

octave:> a([3 5 7 9])

ans =

2 5 13 34

octave:> a([1:2:9])

ans =

1 2 5 13 34

In the last example, the colon notation was used to construct an index vector

starting at 1 with increment 2 and ending at 9. This example demonstrates how
vectors can take on different roles depending on how they are used. Mastery over

vectors and their notation in Octave will be necessary for understanding the

concepts of signals and systems and how they can be implemented in Octave.

Learning activity

For each of the following, find at least three ways to construct the vector: (Hint: you can use direct

construction, the colon operator and arithmetic operators.)

even numbers from 22 to 56

odd numbers from -17 to -39

the Sine function for values pi/8, 2*pi/8, 3*pi/8, 4*pi/8

the eighth through 10th powers of 2

a single vector consisting of the integers 1 through 5 forwards and then backwards.

Vector multiplication

You should already be familiar with vector and matrix multiplication; here we revisit

the principles of vector multiplication in the context of Octave.

Given the above examples it may seem intuitive that two vectors should be

multiplied in the same way as addition. Try multiplying two vectors that are of the

same dimensionality:

octave:> aVec * bVec

error: operator *: nonconformant arguments (op1 is 1x11, op2 is

1x11)

error: evaluating binary operator ‘*’ near line 50, column 6

What has happened? The dimensionality of the vectors is the same; yet Octave has

given a nonconformant arguments error.

The operation of vector multiplication is not the same as element-wise scalar

multiplication. Instead, it has a special meaning that is unique to vectors. When two
vectors are multiplied, the elements are taken from the columns of the first vector

and the rows of the second vector. In other words, the two vectors must be in

different orientations. Let us see what happens when we multiply two vectors of
equal lengths – i.e. the same number of elements – but transpose the second vector

to be a column vector:

27

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

octave:> aVec * bVec’

ans = 1.65

The result is a single number: 1.65. This number is obtained by first multiplying each
element of the first vector with each element of the second and then summing all the

values to get a single number. This is a fundamental operation of Linear Algebra,
which is the branch of mathematics that Octave uses to represent numerical

computations.

The operation of multiplying two vectors produces either a scalar or a whole set of

new vectors, called a matrix, depending on the orientation of the two arguments.

This algebra is non-commutative; this means that if we change the order of the
multiplication we usually get a different answer. This is different from scalar

multiplication which is commutative, so changing the order of a multiplication does
not affect the result and the same value is obtained.

Learning activity

There are some instances where matrix multiplication can be commutative. Give some examples where this

is the case.

Some examples of vector multiplication in Octave follow:

First, let us define two vectors of the same length but in different orientations.

octave:> a = [0 1 2]

a =

0 1 2

octave:> b = [3 4 5]’

b =

3

4

5

octave:> size(a)

ans =

1 3

octave:> size(b)

ans =

3 1

The above example defines a row vector and a column vector. The size() function

is used to discover the dimensions of each of the vectors: size(a) == [1 3] and

size(b) == [3 1]. If we take the number of rows of the first vector, a and the
number of columns of the second vector, b, the two resulting values inform us of the

dimensionality of the output: in this case it will be [1 1], which means one row and

one column, which is simply a scalar.

Each column of the first vector is multiplied by each row of the second and the

resulting answers are summed to yield the vector multiplication result. Using vector
indexing we can generate the result manually:

octave:> a(1)*b(1) + a(2)*b(2) + a(3)*b(3)

ans = 14

28

What are signals?

Here, each pair of elements was taken from the two vectors in turn and added to
make a final value, 14. This is the value that we obtain if we multiply these two

vectors:

octave:> a*b

ans = 14

A second rule for multiplication is that the second dimension of the first vector must

match the first dimension of the second vector: in this case these dimensions are 3
and 3 so all is well. If we transpose one of the vectors then the second dimension of

the first vector and first dimension of the second will not match.

However, if we transpose both of the vectors then we get two vectors that have

dimensionalities [3 1] and [1 3] respectively. The first dimension of the first vector

and the second dimension of the second vector forms a new object that has
dimensionality [3 3]. By the second rule of vector multiplication, the second

dimension of the first vector matches the first dimension of the second vector, 1 and
1, respectively, so the operation is permitted. What results, then, is a matrix that is

formed of three column vectors. These column vectors are the first vector [0 1 2]’

scaled by each of the elements of the second vector [3 4 5]:

octave:> a’ * b’

ans =

0 0 0

3 4 5

6 8 10

Note that Octave uses the * symbol for vector and matrix multiplication.

3.3 What are signals?

For the work that follows, we take the view that a signal is a measurement that is

done at regular time intervals. Examples of signals are the temperature reading from

a thermometer taken at hourly intervals, the hours of daylight for each day of the
year, your height measured annually or the number of sounds that you hear between

successive clock ticks. Creative computing is concerned with signals that are

organised for our senses.

You will find it very helpful to look at the introductory chapters of the recommended
reading, or any other book on signal processing, to clarify the basic concepts that

follow.

3.3.1 One-dimensional signals

The examples given above are all one-dimensional signals. That is, they are

functions of one independent variable, time.

Let us construct a real signal using Octave.

29

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Learning activity

You will need a clock or watch with a second hand for this activity.

Open Octave, type sig1 = [without hitting return.

Now, over a ten second period; count the number of sounds you hear between each clock tick and type the

number into Octave followed by a space.

The first click is time 0. The second clock tick will be the first count – i.e. at time index 1. The third clock tick

will yield the second count, at time index 2.

When you reach time index 10, type the last count and then type a] and hit return.

Octave now has a variable defined called sig1 that provides information about the level of sound
activity in your neighbourhood. There should be 10 samples in your signal. To verify, use Octave’s length
command:

octave:>length(sig1)

ans=10

Now you can display your signal using Octave’s stem command:

octave:>stem(sig1,’*’)

This command makes a plot that shows the height of your signal at each discrete time instant.

If all is well you should see your sound activity signal; it should look like Figure 3.1.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 3 4 5 6 7 8 9 10

Figure 3.1: A stem plot of the sound activity signal.

For samples 2 through 9 it is easy to read the values. But the samples at time 1 and time 10 are not easy to

see because they sit on top of the axis lines. To make the axis lines move outside of the range of our signal

we can use Octave’s axis command.

octave:>axis([0 11 0 3])

30

What are signals?

This takes a vector consisting of four values: xmin, xmax, ymin, ymax. Notice that the minimum

value of the y-axis is located at the bottom of the graph; this is the reverse of graphical representations in

Java-like languages. It is also often desirable to place grid lines on our plots so that it is easier to read the

heights of the values. We can do this using Octave’s grid command:

octave:>grid on

With these two commands executed you should now see a graph that looks like Figure 3.2.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

Figure 3.2: A stem plot of the same sound-activity signal but with the position of the axes

changed so as not to overlap with the signal, and with grid lines added.

3.3.2 Octave representation of discrete-time signals

We can inspect the sound activity measurement for each of the time instants,
1 . . . 10, in the above signal using the time point (in seconds) as an index:

octave:>sig1(1)

ans=1

octave:>sig1(2)

ans=2

octave:>sig1(10)

ans=2

For this signal we are fortunate that it does not have a meaningful value at time

point 0. What would happen if we tried to access the signal’s value at time point 0?

31

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Learning activity

Try the above. what does Octave do?

Most signals have time indices that do not conveniently line up with Octave’s vector

indexing. The time index must be mapped into a vector index.

To do this we must choose a sample in our signal to act as the zero-time reference

index. This could be vector index 1, or vector index 100, depending on the signal.
Time point zero is often used to mean now, rather than simply the beginning of a

signal. The meaning of 0 is determined by the application.

Once a zero-time reference index is chosen we may represent signals that have

negative, zero and positive time index values. In this notation, the zero time index

represents now; negative time indices represent past values of the signal and
positive values represent future values of the signal. This is not to be taken literally;

the concept of the zero time index is simply a reference point for various uses, such
as to relate the time positions of other signals.

Figure 3.3 shows a cosine function that is sampled at nine equally-spaced positions.
The spacing of the positions is pi/8, but the time index is discrete, running from 0 to

8.

Here is the signal’s construction in Octave:

octave:>t = 0 : pi/8 : pi

t =

Columns 1 through 8:

0.0 0.39270 0.78540 1.17810 1.57080 1.96350 2.35619 2.74889

Column 9:

3.14159

octave:>sigcos = cos(t)

sigcos =

Columns 1 through 5:

1.e+00 9.2388e-01 7.0711e-01 3.8268e-01 6.1230e-17

Columns 6 through 9:

-3.8268e-01 -7.0711e-01 -9.2388e-01 -1.e+00

octave:>stem(0:length(sigcos)-1, sigcos, ’*’)

octave:>axis([-1 length(sigcos) -1.5 1.5])

octave:>sigcos(0 + 1)

ans = 1

octave:>sigcos(8 + 1)

ans = -1

In this example a number of convenient variables are used. The first is the definition

of a vector of time values, t, at which to sample the cosine function. These are the
time points which are distinct from the discrete-time index which runs from

0:length(sigcos)-1. In this case, the time points are related to the discrete-time
index by a scalar multiplication by pi/8:

octave:>t

t =

Columns 1 through 8:

32

What are signals?

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8

Figure 3.3: A cosine signal plotted using Octave’s stem() function. The time interval between

samples is pi/8 but the time index is discrete, running from 0 to the length of the signal

minus 1. This discrete time index is a requirement in digital signal processing.

0.0 0.39270 0.78540 1.17810 1.57080 1.96350 2.35619 2.74889

Column 9:

3.14159

octave:>[0 : length(sigcos)-1] * pi/8

ans =

Columns 1 through 8:

0.0 0.39270 0.78540 1.17810 1.57080 1.96350 2.35619 2.74889

Column 9:

3.14159

This is the most common form of discrete time index used in signal processing.
Finally, when requesting values from the signal vector, the lookup is performed using

the discrete time index mapped to Octave’s vector indexing (1:length(sigcos) in

this case). To do this we add the zero-time reference index 1 to the discrete-time
index. To look at the value of sigcos at time-position 0, the vector index 0 + 1 is

used, and to access the value of sigcos at time-position 8 the vector index 8 + 1 is

used.

Of course, we did not need to write the vector index as 0 + 1 and 8 + 1 respectively,
but we do this to remind ourselves that we map from the discrete-time index 0 and 8

to Octave’s vector index 1 and 9 using the zero-time reference index of 1. Figure 3.4

shows the same signal, but with the discrete-time signal elements individually
labelled as x[0], x[1], . . . , x[8]. When we notate signals we must include the square

brackets containing either a number or a variable to show that the value of the

signal depends on a discrete-time index. In general we represent a signal when we
write it down as x[n]; thus showing that it is a function of the independent

discrete-time index n.

33

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8

x[0]
x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]
x[8]

0 1 2 3 4 5 6 7 8
x[n]

Figure 3.4: A cosine signal sampled at intervals of pi/8 from 0 to pi yielding a vector of nine

elements. While the sampling interval of the nine samples is pi/8, the signal has a discrete

time index in the range 0 to 8. Each time index represents a sampling interval of pi/8.

Figure 3.5 shows a stem plot of a different signal. This time the signal has negative,
zero and positive discrete-time indices. The vector indices are in the range 1 to 10;

but the discrete-time index runs from −4 to +5. When plotting the signal, the

discrete-time index [−4 : 5] is provided to Octave’s stem() function.

Learning activity

Use the following Octave code, but fill in the correct values in the vector in the first line, to produce the

signal in Figure 3.5.

octave:>sig2=[]

>stem(-4:5, sig2, ’*’);

>axis([-5 6 -6 5])

Here, the discrete-time index 0 of the signal corresponds with vector index 5.
Therefore, vector-index 5 is the zero-time reference index in this example. To access

values of the sig2 vector in Octave by their discrete-time index we must add the

zero-time vector reference index 5.

Learning activity

What is the effect of including the ; in the above example? What would happen if you did not have it?

34

What are signals?

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-4 -2 0 2 4 6

x[-4]

x[-3]

x[-2]

x[-1]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

-4 -3 -2 -1 0 1 2 3 4 5
x[n]

Figure 3.5: A discrete-time signal; the x-axis is the independent variable, usually representing

time. The y-axis is the signal’s value at each discrete-time instant. A vector, x, holds the

values of the signal; the individual samples of the signal are accessed by vector indexing,

x[1], x[2], etc.

octave:>sig2(-4 + 5)

ans = 3

octave:>sig2(1 + 5)

ans = 2

The concept of zero-time reference index is independent of the actual size of the
vector. We can use a time index that is anywhere in the range of integers that can be

represented on a given machine architecture. For example, a signal consisting of 10
samples makes a vector of length 10. However, the zero-reference time index might

be -10. The range of discrete-time indices would then be -10:-1 with zero-reference

time index 11, which is a greater value than the length of the signal vector.

It does not matter that the zero-reference time index is greater than the length of the

signal vector if we only want to access values in the discrete-time range −10 : −1.
For example,

octave:>sig3 = [2 : 2 : 20]

sig3 =

2 4 6 8 10 12 14 16 18 20

octave:> sig3(-10 + 11)

ans = 2

octave:> sig3(-1 + 11)

ans = 20

octave:> sig3(3 + 11)

error: invalid vector index = 14

In the last command the vector index was out of range. This is because we tried to

35

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

access the signal using a discrete-time index that was out of range of the signal
which we determined would represent time indices −10 : −1. Familiarity with

discrete-time indexing and its relationship to vector indexing in Octave will be
needed for working with discrete-time signals and systems.

Learning activity

Construct the following signals in Octave; for each signal, write down the zero-time reference vector index

and use it to access the first and last values of the signal vector using the discrete-time index:

the odd numbers from 23 to 3 with discrete-time index−11 : −1
sine function sampled at intervals of π/4 from 0 to 2 ∗ π with discrete-time index 0 : 8

even numbers from 100 to 120 with discrete-time index 10033 : 10053.

3.3.3 The unit impulse

The fundamental building block of discrete-time signal processing is an entity called

the unit impulse. We can think of the unit impulse as being the number 1
represented as a signal at discrete-time index 0. The remainder of the signal is zero.

The unit impulse is often called the delta function so it is a signal called δ[n], where

n is the independent variable.

We can construct a function imp in Octave that returns the unit impulse:

octave:1> function result = imp(length,position)

> zeros = zeros(1,length)

> zeros(position)=1

> result = zeros

> endfunction

This user-defined function takes two arguments: the first is the length of the signal

to generate and the second is the position of the 1 within the signal. This position is
the zero-time reference index for the vector. We can now use the function, as shown

below:

octave:>imp(11,6) % Make a unit impulse

zeros =

0 0 0 0 0 0 0 0 0 0 0

zeros =

0 0 0 0 0 1 0 0 0 0 0

result =

0 0 0 0 0 1 0 0 0 0 0

ans =

36

What are signals?

0 0 0 0 0 1 0 0 0 0 0

stem(-5:5,imp(11,6),’*’)

In this example the impulse is centred in a signal of length 11. The position of the

impulse is the zero-time index 6. Figure 3.6 shows the unit impulse stem plot
labelled with the signal’s common name: δ[n]; the 1 occurs at time 0 denoted by

δ[0]. Note that it is possible to define the function in such a way that it does not

output the values of zeros, etc., while it is being executed, by using appropriate
semi-colons at the end of relevant lines.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-6 -4 -2 0 2 4 6

d[0]

-5 -4 -3 -2 -1 0 1 2 3 4 5
d[n]

Figure 3.6: The unit impulse, or delta, is a fundamental building block of discrete-time signal

processing. It consists of a single non-zero sample with value 1 at time index 0.

We shall see in the next chapter that the unit impulse is the basis for every signal and

signal operation in DSP.

3.3.4 The unit step

The unit step signal is one that is all ones for time indices zero and higher, and zeros

for negative time indices. It is named u[n] because it is a fundamental building block
of discrete-time signal processing. The unit step signal can be constructed in Octave

using two convenient functions: zeros() and ones():

octave:> u = [zeros(1,10) ones(1,11)]

u =

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

Here the zero-time reference is vector index 11. The zeros() function accepts two

arguments which are the number of rows and columns of zeros to generate.

37

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Similarly the ones() function also takes the same arguments but generates ones
instead of zeros. Putting these two functions together allows construction of signals

containing runs of ones and/or zeros as in the example above. Figure 3.7 shows the
unit step signal for discrete-time index −10 : 10.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-10 -5 0 5 10

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Figure 3.7: The unit step is also a fundamental building block of discrete-time signal

processing. It consists of zeros for negative discrete-time indices and all ones for indices

zero and higher.

Octave has a built-in function that can differentiate signals. This means that it
subtracts the value at each time point from the value of the previous time-point to

generate a new signal. For example:

octave:> a = [0 1 3 6 10 15 21 28 36 45 55]

a =

0 1 3 6 10 15 21 28 36 45 55

octave:> diff(a)

ans =

1 2 3 4 5 6 7 8 9 10

What happens when you differentiate the unit step signal above? Which signal does
this produce?

3.3.5 The unit delay

Another of the fundamental building blocks of DSP systems is the unit delay. This

signal is exactly the same as the Delta signal δ[n], but it has its non-zero sample at

time-index 1 instead of time-index 0.

Figure 3.8 shows a stem plot of the unit delay signal. The concept of delay is

fundamental to much DSP processing as we shall see in the next chapter. The unit

38

What are signals?

delay is the simplest possible representation of the concept of delay. It has the same
name as the delta signal, which was notated δ[n], but to represent the delay the time

index is denoted n − 1, so the unit delay is notated as δ[n− 1].

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-4 -2 0 2 4 6

d[n-1]

-4 -3 -2 -1 0 1 2 3 4 5 6

Figure 3.8: The unit delay signal is a time-delayed delta signal. The delay is one sample,

which means the time index of the non-zero value is 1 compared with 0 of the delta signal.

The impulse has been delayed by one sample to occur later in time.

This notation indicates that a delay is a subtraction operation that acts on the
discrete-time index of the signal rather than on the signal itself. This process means

that the Delta signal should be looked-up one sample before, −1, the given
discrete-time index, n. Putting this together, the unit delay is the Delta signal

transformed to a new signal by performing an arithmetic operation on its time

index.

A signal can be delayed by any number of samples using this notation. Consider

Figure 3.9. Here the Delta signal has been delayed by two samples. The notation is
now δ[n − 2] to show that the signal is constructed by looking-up the Delta signal

two samples prior to the given time-index.

Just as we can delay a signal by a given number of samples, we can also advance it

in time. Figure 3.10 shows the Unit Advance signal. This is also constructed out of
the Delta signal, but the notation is now δ[n+ 1] to indicate that we lookup the Delta

signal one sample ahead of the given time index. A signal may be advanced by any

number of samples; furthermore the relationship between time-advance and
time-delay is now obvious since they are both simply arithmetic operations upon the

time index of a signal. A negative time-delay is equivalent to a time advance; can

you see a mathematical reason why this is so?

39

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-4 -2 0 2 4 6

d[n-2]

-4 -3 -2 -1 0 1 2 3 4 5 6

Figure 3.9: The Delta signal delayed by two samples. The notation for delaying the delta

signal, δ[n], by two samples is δ[n − 2] indicating that the Delta signal is to be read at a

given time-index, n, minus two samples. If we do this, the value 1 is produced at

time-index n = 2, because δ[2− 2] = δ[0] = 1 later in time.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-6 -4 -2 0 2 4 6

d[n+1]

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 3.10: The unit advance signal is a time-advanced delta signal. The advance is by one

sample, which means the time index of the non-zero value is −1 compared with 0 of the

delta signal. The impulse has been advanced by one sample to occur earlier in time by one

sample.

40

What are signals?

3.3.6 Delay operations in Octave

Delay operations in Octave can be implemented by careful use of the discrete-time

index, the zero-time reference vector index and the time-index arithmetic
implementing delays as discussed above. We must ensure that there is enough space

inside our vector to perform the given delay operation; we do this by padding the
signal at the beginning and end with zeros, making note of the zero-time vector

index reference.

Consider the Delta signal padded with ten zeros on either side of time-index zero

giving zero-time vector reference index 11:

octave:> d = [zeros(1,10) 1 zeros(1,10)]

d =

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

octave:> d(0 + 11)

ans = 1

The Delta function can be delayed by one sample, making it a unit delay, by

subtracting one from the discrete-time index:

octave:> d(0 - 1 + 11)

ans = 0

octave:> d(1 - 1 + 11)

ans = 1

To understand this, we have now used three values for indexing the signal vector.

The first value is the discrete-time index, the second is the amount of delay to

introduce into the signal and the third value is the zero-reference vector index
(because Octave uses indices that run from 1 to the length of the signal). We can

perform time advances as either an additive value to the discrete time index, or
equivalently, as a negative delay, thus subtracting a negative number from the

discrete-time index.

octave:> d(0 - -1 + 11)

ans = 0

octave:> d(1 - -1 + 11)

ans = 0

octave:> d(-1 - -1 + 11)

ans = 0

Here the only value of the discrete-time index that outputs the value 1 is time -1.
Hence the discrete-time index is advanced by one sample before looking up the

value in the delta signal. Fortunately, Octave provides a more convenient method to

perform time-delays and time-advances on signals than that of using three different
indices. The function is called shift():

octave:> d

d =

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

octave:> shift(d,1) ans =

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

octave:> shift(d,-1)

ans =

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

41

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

We now have enough knowledge about signals to start to use them to represent
sound and images for creative computing. The remainder of the Chapter is devoted

to the representation and display of sound and image as signals.

3.4 Audio signals

The ear/brain system interprets certain types of motion in air as sound. The

conditions under which movement in air is heard as sound are complex. When an

object in air undergoes a displacement, the air pressure changes a small amount,
near the object, for a short period of time. When a back-and-forth motion is

introduced into the air by an object, called an oscillation, the displacement of air is

also in a back and forth motion causing oscillations in the air pressure.

In general, sounds are caused by objects in the world that vibrate. The vibrations
that the ear is sensitive to are those that occur between the range of 20 cycles per

second and 20,000 cycles per second. A cycle is a single back-and-forth motion, so

objects that move back and forth more than twenty times per second, but less than
20,000 times per second, cause pressure changes in the air that can be heard as

sound.

Air is a gas, so when some of the air molecules are displaced they, in turn, displace

air molecules near them forming a chain reaction in air pressure changes that is

called a pressure wave. The change in air pressure can be detected at a remote point
in space because it is transmitted via the air molecules to that point.

Audio signals represent the displacement of air at a single point in space as

measured by a microphone membrane. Displacement of the membrane generates an

electrical signal that is proportional to the displacement. The process of digital
sampling is that of recording the level of the electrical signal at fixed time intervals

called the sampling period. The measured value is recorded in digital memory as

either an integer or a floating point number for each sample.

To play back an audio signal the digitally sampled signal must first be converted

back to an analogue electrical signal and then this signal used to displace the cone,
or membrane, in a loudspeaker or headphones. The operation of moving the air

using a loudspeaker generates movement in air that is similar to the movement that
we measured with a microphone.

Again, reference to a relevant textbook will be helpful for you, as these are standard
audio signal processing concepts.

3.4.1 Sampling

As mentioned above, sampling is the process of measuring the value of some
phenomenon at regular intervals, called the sampling period. If measured in

seconds, the sampling period is inversely proportional to the sampling frequency,

also called the sample rate: SR. To capture the variation in the measured value of a
phenomenon, such as sound, we must know in advance what the maximum

frequency will be. Then we make sure that we measure the source often enough to

capture the variation at this maximum frequency.

The maximum frequency that is audible by humans is in the region of 20kHz. So we

42

Audio signals

must be able to capture variation in a signal that is close to 20kHz. To do this we
must use a sampling rate that is at least twice the maximum frequency that we want

to measure. This is because the maximum frequency that can be detected by
sampling is half the sample rate: SR/2. This latter frequency is called the Nyquist
frequency named after the engineer Harry Nyquist who first recognised its

importance. If we make the Nyquist frequency the maximum frequency we want to
detect, such as 20kHz in the case of audio, then the sampling rate will be double this

maximum frequency: 40kHz.

The most commonly used sample rate used for digital audio is 44.1kHz which is just

slightly above that required for detecting frequencies at 20kHz. Other common

sample rates are 22.05kHz, 11.025kHz, 96kHz, 48kHz, 32kHz, 16kHz and 8kHz. What
are the Nyquist frequencies for each of these sampling rates?

Learning activity

Show why if you do not sample at twice the frequency, you can lose vital information about the wave.

Digital audio

Digital audio is the application of discrete-time signal construction and signal

processing to applications using sound. As such, the sine and cosine functions, sin()

and cos(), are often used as sound atoms; they are the building blocks of digital
audio.

The definition of the sine and cosine functions comes from the coordinates of the
unit circle. At each point on the unit circle, the angle of the line from the origin to

that point has the cosine value of the point’s x-coordinate and the sine value of the

point’s y-coordinate.

Figure 3.11 illustrates the relationship between angle, a point on the unit circle and

the sin() and cos() functions. To construct a sine wave in time, we consider a
point starting at a given angle on the unit circle, and imagine it travelling at a

constant speed around the circumference of the unit circle. At each moment in time,
the height of the point above or below the x-axis makes the sine wave through time.

Audio occurs in time and is due to oscillation in air. A fundamental form of
oscillation is a sine wave; which is the sin() function through time. When played as

a sound a sine wave is heard as a pure tone, such as the sustained part of a tuning

fork sound.

3.4.2 Frequency

The frequency of a sine wave is the number of oscillations, or cycles, per second.

That is, the number of complete revolutions around the unit circle tracing out the
height of a point travelling on its circumference. The faster the point travels around

the unit circle, the higher the frequency.

From elementary mathematics, the circumference of a circle is 2πr with r the radius.

The unit circle has radius 1 so the circumference has length 2π. For a given point on

43

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Figure 3.11: A circle of radius 1. For angle t, a line from the origin meets the circle at the

point (cos(t), sin(t))

the unit circle, the distance around the circumference of the unit circle to that point
from the intersection with the positive x-axis is the angle in radians.

For example, a point that is a quarter of the distance around the unit circle,
measured counter clockwise, has an angle of 2π/4 = pi/2 radians. The sine function

is the height (as measured on the y-axis) of the point at this angle, which is 1. So
sin(pi/2) has the value 1.

To return to the frequency of a sine wave, a point that is travelling at 1Hz frequency
around the unit circle traverses a distance of 2π once every second. A point

travelling at 50Hz traverses the unit circle 50 times every second, so it travels a

distance of 2π in 1
50

of a second. Therefore, the frequency, f , of a sine wave
expressed as cycles per second, or Hertz, is the distance travelled per second which

is 2πf . For f = 50Hz the distance is 2πf radians per second. So we often call the

frequency of a sinusoid its angular frequency because it is expressed in radians.

Now to construct a sine wave, all that is needed is the angular frequency, in radians,
and a time index. The time index is a vector of time points, in seconds, at which to

sample the sine wave. By the Nyquist theorem we know that we must sample a

waveform at a rate of at least twice the highest frequency that we want to measure.
A sine wave has exactly one frequency, its angular frequency. So we must be sure to

sample the sine wave at at least twice this angular frequency. However, in practice it

is best to make sure that the sampling rate is much greater than this, to avoid
possible boundary effects near the limit. As an exercise, you should try to establish

what happens with very low sample rates, to see what is meant by the possibility of

boundary effects.

For digital audio, typical sampling rates are: 8000Hz, 16000Hz, 32000Hz, 11025Hz,
22050Hz, 44100Hz, 48000Hz, 96000Hz. The sample rate is measured in Hertz (Hz)

because it is a fixed number of samples per second.

As an example, let us construct one second of a sine wave with angular frequency

400 Hz at a sample rate of 8kHz (8000Hz).

We first generate a time index that samples the time interval 0s to 1s in steps of

1/8000s. Then we construct a sine wave using an angular frequency and the sampled

time intervals.

44

Audio signals

octave:>t = [0 : 1/8000 : 1] ;

octave:> x = sin(2 * pi * 400 * t) ;

octave:>stem(t(1:20), x(1:20),’*’)

Note that this example uses a semicolon at the end of each line that generates a

vector. A semicolon in Octave is used as a command separator, but it has another
function, that is to suppress the printing of results of operations to the terminal. The

vectors for audio signals are very long – in this case 8001 samples – so we want to

suppress Octave’s default behaviour of printing vectors to the screen. When you have
made your plot of the sine wave you should see a figure like that of Figure 3.12.

We computed 8001 values for one second of the sine wave. The extra sample is
because we sampled up to and including the 1s boundary, which made the example

easier to read. To generate exactly 8,000 samples, i.e. exactly one second of audio,
we should use: t = [0 : 1/8000 : 1 - 1/8000] or, equivalently, t = [0 :

7999] / 8000.

-1

-0.5

 0

 0.5

 1

 0 0.0005 0.001 0.0015 0.002 0.0025

A
m

pl
itu

de

Time (s)

Figure 3.12: One complete cycle of a A 400Hz sine wave sampled with a sampling rate of

8000Hz (8kHz). The time index is in seconds.

The example above plotted only 20 samples of the signal instead of the entire signal.

This is for two reasons: the first is that 8,000 samples is a lot of data, and plotting it
would produce an unreadable graph. Secondly, this number of samples was chosen

to plot because it is exactly one complete cycle out of the 400 cycles in the one
second signal that we generated.

Plotting an audio signal is useful to check that we have performed the correct
operations. We see an oscillating waveform that has a maximum height of 1, and

that the duration is 0.0025 seconds, which is 1/400s; that is, the amount of time that

a single cycle of a 400Hz signal occupies. But plotting the signal is not the same as
hearing it, so let us listen to the entire signal.

We can play digital audio in Octave using the sound() function. Sound takes two

45

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

arguments, a signal and a sampling rate:

octave:>sound(x, 8000)

When you hit the return key, you should hear a pure tone that lasts for one second.

You should also see Octave print out some information about the sound:

Input File : ’-’ (au)

Sample Size : 16-bit (2 bytes)

Sample Encoding: signed (2’s complement)

Channels : 1

Sample Rate : 8000

Time: 00:00.12 [4473:55.33] of 4473:55.46 (0.0%) Output Buffer: 5.80K

play sox: ’resample’ clipped 4 samples; decrease volume?

play sox: alsa: output clipped 2 samples; decrease volume?

Done.

If you do not see information like this (it will be different on different operating
systems) but instead see an error then you must check your computer’s audio

settings. It is best to check things in the following order:

Is the volume turned up? (Find the audio control panel on your computer and

check this.)

Is there a cable plugged into the headphone socket on your computer?

If yes, then is the cable connected to headphones, speakers or an external audio

device?

If speakers and/or external audio device, are they switched on?

Double check your setup by playing a music file from iTunes (Mac) or

WindowsMediaPlayer (Windows) or RhythmBox/mplayer (Linux).

If you cannot hear sound from a media player then you may need to purchase a

sound card for your computer; or there may be something wrong with the audio
facility on your computer.

If you can hear sound from a media player but not in Octave, check the internet

for information about your operating system’s version of Octave: search for
Octave Audio Windows, Mac or Linux. You may need to install a software

package for audio support: such as sox, http://sox.sourceforge.net/, which is

also free software.

46

Audio signals

Learning activity

Make the following sine waves and play them using the sound() command in Octave: (Note: If you

cannot get the sound command to work in Octave, but your media player works, then you can save your

sound using the wavwrite() command and then open it in your media player to hear it.)

a 1s 1000Hz sine wave at 8000Hz sample rate

a 1s 50Hz sine wave at 8000Hz sample rate

a 1s 8000Hz sine wave at 32000Hz sample rate

a 1s 11000Hz since wave at 44100Hz sample rate.

For each of the sine waves above:

make a stem plot of one cycle of the sine wave: (the number of samples in one cycle is SR/f where

SR is the sample rate and f is the angular frequency of the sine wave)

play the sound of one cycle of the sine wave (instead of one second): what do you hear?

play the sound of five cycles of the sine wave (instead of one second): what do you hear?

play the sound of twenty cycles of the sine wave (instead of one second): what do you hear?

3.4.3 Amplitude

The maximum height of the waveform is its amplitude or peak amplitude. In

Octave, sounds are represented by floating-point numbers in the range −1.0 to 1.0;
any sound that has a greater range than this is scaled so that it fits within this range.

The sine waves we generated above have amplitude 1; so they are at the maximum

range for sound in Octave.

The perceived intensity of the sound is relative to its amplitude. To change the

perceived intensity of a sound the waveform is divided (or multiplied) by a scalar.
For example, dividing the sound by 10 will result in an amplitude that is 10 times

smaller. However, the sound that is heard will be perceived as approximately half as

loud. This is due to the way the ear responds non-linearly to changes in a sound’s
amplitude.

A common measure of a sound’s level, or loudness, is decibels (dB). Decibels can be

computed from a sine wave’s amplitude using the following expression:

decibels = 20 * log10(max(sig)))

For a sine wave at full volume the loudness – relative to the gain in the speakers – is
at 0dB. This is called the reference; all other loudness levels are measured with

respect to this reference loudness.

We might be able to amplify the output of Octave using speakers so that the loudness

is perceived to be the same as normal conversation. Given this loudness reference,

Table 3.1 is a guide for relative loudness of different sounds at different decibel
levels:

47

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

dB Amplitude factor Sound Perceived loudness

-0 1 Normal conversation 1

-10 0.3162 Quiet suburban outdoors 1/2
-20 0.1 Buzz of mosquito 1/4
-30 0.03162 Watch ticking 1/8
-40 0.01 Quiet house interior 1/16
-50 0.003162 Rustling leaves 1/32
-60 0.001 Threshold of hearing (silence) 1/64

Table 3.1: Table of relative loudness levels for sounds across the entire range of human

hearing.

A change of -10dB represents half the perceived loudness; and a change of −20dB is
a change of half of a half which is a quarter of the loudness. Therefore each loudness

step in Table 3.1 is a perceived change of a factor of two in loudness.

To change the loudness of a sine wave we multiply the signal by a scalar. To do this,

first turn the speakers up to the reference loudness of 0dB and then attenuate the

signal by multiplication with a scalar < 1.0 to the desired loudness level relative to
the 0dB reference.

octave:>sound(x, 8000) % reference level of 0dB

octave:>sound(0.31623 * x, 8000) % -10dB = half the loudness of 0dB

octave:>sound(0.1 * x, 8000) % -20dB = quarter of the loudness of

0dB

octave:>sound(0.031623 * x, 8000) % -30dB = eight of the loudness of

0dB

octave:>sound(0.01 * x, 8000) % -40dB = sixteenth of the loudness of

0dB

As well as sine waves, we can generate noise very easily in Octave. Noise is simply

uniform randomness which in Octave is generated by the rand() function. This
function takes two arguments: the number of rows and columns of the vector that it

generates. It generates uniform random real numbers in the range 0 to 1; to make

them occupy the full audio range we multiply the output of the rand() function by 2
and subtract 1. Now the random numbers will be in the range −1 to 1 as in the

following example.

octave:>x = rand(1,8000)*2-1;

octave:>sound(x,8000);

When you play this example you should hear a loud noise that lasts for one second.

Noise is another fundamental unit for constructing audio signals and it is very often

used to make synthetic percussion sounds such as snare drums, cymbals and other
instruments. Noise has a very interesting property with regard to its frequency

content. Recall that a sine wave has exactly one frequency present, while noise has
all frequencies present in the signal (at random amplitudes). This remarkable fact

makes uniform random noise a very useful signal. Figure 3.13 shows a stem plot of a

randomly-generated signal.

48

Audio signals

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0005 0.001 0.0015 0.002 0.0025

A
m

pl
itu

de

Time (s)

Figure 3.13: Twenty samples of a random signal sampled at 8000Hz. It is not possible to

select a single cycle of a random signal because all frequencies are present. The signal is

generated in the range −1 to 1 so it has a peak amplitude of 1.

Learning activity

Using the noise signal, x, generated above, play back the sound at the following different loudness levels:

−10dB
−20dB
−30dB
−40dB
−50dB
−60dB.

At what level can you no longer hear the sound?

3.4.4 Phase

Other than amplitude, angular frequency and a time index, there is another

parameter available for sine waves; that is the phase offset. A phase offset occurs
when the sine wave starts at an angle (in radians) other than 0. Figure 3.14 shows a

sine wave with the same frequency and amplitude as Figure 3.12 but that starts, at

time 0, with a phase offset of pi/8 radians.

49

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Instead of starting with a height of 0 at time 0, this sine wave starts with a value of
0.38268 at time 0. This corresponds to the value of a sine wave at pi/8 radians. The

remaining values continue the sine function for the given angular frequency but they
are all offset by pi/8 radians.

To implement a phase offset in Octave we add the phase offset to the instantaneous
phase argument of the sin() function:

octave:>x = sin(2 * pi * 400 * t + pi/8);

octave:>stem(t(1:20),x(1:20))

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0005 0.001 0.0015 0.002 0.0025

A
m

pl
itu

de

Time (s)

Figure 3.14: One complete cycle of a 400Hz sine wave with phase offset of pi/8.

We can offset a sine wave by any angle. For example, let’s see what happens when

we offset the sine wave by an angle of pi/2 radians:

octave:>x = sin(2 * pi * 400 * t + pi/2);

octave:>stem(t(1:20),x(1:20))

One cycle of the resulting signal is shown in Figure 3.15. What is the value of this

signal at time 0? Contrast this with the value of the signal with phase offset of 0.
Which mathematical function has been generated by a sine wave with a phase offset

of pi/2?

Additive synthesis

A sinusoid is a sine wave that can have any amplitude, frequency and phase offset;

i.e. sin() and cos() are both sinusoids; they are instances of the same curve but
they are offset by pi/2. It is a remarkable fact about sinusoids that a number of

them can be summed to make any signal. There must be the correct number with

correct amplitudes, frequencies and phase offsets, but it is a fact that they can be

50

Audio signals

-1

-0.5

 0

 0.5

 1

 0 0.0005 0.001 0.0015 0.002 0.0025

A
m

pl
itu

de

Time (s)

Figure 3.15: One complete cycle of a 400Hz sine wave with phase offset of π/8.

51

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

seen as the fundamental elements of all signals. Therefore, sinusoids form a basis
over signals; they are the sound atoms from which signals can be constructed.

To see how sinusoids can be used to make complex waveforms we consider the
simple case of adding sinusoids with different amplitudes and frequencies. First, let

us add two sinusoids, where the second has double the frequency of the first:

octave:> x1 = sin(2 * pi * 400 * t);

octave:> x2 = sin(2 * pi * 800 * t);

octave:>complexSig = (x1 + x2) / 2;

octave:>sound(complexSig * 0.3162, 8000)

octave:>stem(t(1:20), complexSig(1:20))

Figures 3.16 to 3.18 show successive plots of the signals after adding one more

sinusoid to the signal obtained from the previous one. Work through all of these
examples successively. How do the sounds compare with previous and subsequent

tones?

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0005 0.001 0.0015 0.002 0.0025

A
m

pl
itu

de

Time (s)

Figure 3.16: One complete cycle of a complex signal formed by summing two sinusoids with

frequencies 400Hz and 800Hz. The amplitudes of the sinusoids were halved after summing

so that the amplitude remained at 1.

52

Audio signals

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0005 0.001 0.0015 0.002 0.0025

A
m

pl
itu

de

Time (s)

Figure 3.17: One cycle of a complex signal formed by summing three sinusoids with

frequencies 400Hz, 800Hz and 1200Hz. The amplitudes were divided by 3 giving a peak

amplitude of 1 in the resulting complex signal.

53

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.0005 0.001 0.0015 0.002 0.0025

A
m

pl
itu

de

Time (s)

Figure 3.18: One cycle of a complex signal formed by summing four sinusoids with

frequencies 400Hz, 800Hz, 1200Hz and 1600Hz. The amplitudes were divided by 4 giving a

peak amplitude of 1 in the resulting complex signal.

54

Exercises

3.5 Summary and learning outcomes

This chapter provides an introduction to basic signal processing, through the use of

the Octave software. It introduced some important signals, namely the unit impulse,
the unit step, and the unit delay. It then went on to discuss sampling of audio

signals, and described how changes in frequency, amplitude and phase affect sounds.

With a knowledge of the contents of this chapter and its directed reading and

activities, you should be able to:

use Octave to perform basic signal processing tasks, as well as generate plots of
signals

describe what a signal is, and in particular what a one-dimensional signal is

discuss the significance of the unit impulse, the unit step, and the unit delay in

signal processing

perform various delay operations using Octave

discuss what the Nyquist frequency is, and how it relates to sound and digital

processing

describe frequency, amplitude and phase as properties of signals.

3.6 Exercises

1. Type the following lines into Octave. This code makes a vector of sinusoid

samples x, plots one cycle of the sinusoid and plays the sinusoid as audio at a
sample rate of 11.025kHz. This sample rate is the default setting for Octave. You

can use the command setaudio to change the sample rate in Octave.

amp = 0.3162; % sinusoid amplitude (-10dB)

freq = 110; % frequency in Hertz (cps)

dur = 2.0; % duration in seconds

sr = 16000; % the audio sample rate

phase= 0; % initial phase (phase offset)

n = [0 : dur * sr]; % sample index vector

x = sin(2 * pi * freq / sr * n + phase); % The sinusoid generator

plot([0 : ceil(sr/freq) - 1] / sr , x(1 : ceil(sr/freq))) % Plot one

%cycle grid add grid markings to the plot

sound(x, 16000) % play the sound

Experiment with the interactive command-line by making sinusoids of 220Hz,

440Hz and 130.81Hz, 261.63Hz and 523.25Hz; these correspond to the musical

pitches A3, A4 and C2, C3 and C4. Play the audio for these sinusoids; can you
hear the musical scale relationships?

(a) Plot your sinusoids on the same graph by typing hold on in Octave.

(b) Choose a melody and construct it out of a set of sinusoids by playing them
one after the other. The melody could be a favourite song, or your national

anthem, for example.

2. The interactive command line is useful but a bit slow. To speed up making

sinusoids we can make a function. Use a text editor to type in the following
function and save it as an Octave function in a file called sinusoid.m.

55

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

function [y, n] = sinusoid(A, f, dur, sr, phi)

% y = sinusoid(A, f, d, sr, phi)

%

% A - amplitude

% f - frequency in Hertz

% d - duration in seconds (1.0)

% sr - sample rate in Hertz (44100)

% phi - initial phase n Radians (0)

if nargin<5, phi=0; end % default phase

if nargin<4, sr=16000; end % default sr

if nargin<3, dur=1; end % default dur

if nargin<2, f=440; end % default freq

if nargin<1, A=0.3162;end % default amplitude (-10dB)

n = [0:ceil(dur*sr)-1]./sr; % sample index

y = A * sin (2*pi*f*n + phi); % sinusoid

p = sum(y.^2) / length(n); % average power

To use the function you will need to type
addpath(’/Volumes/myDisk/myPath/’). This function returns a vector of

sinusoid samples as its first return argument, and a vector of time instants as its

second return argument. For example:

octave:>[x,t] = sinusoid(100, 440, 2, 11025, pi/2);

octave:>stem(t(1:20),x(1:20),’*’)

(a) Using your newly created function, plot sinusoids of the following

frequencies:

110Hz

220Hz

330Hz

440Hz.

3. So far we have made simple tones. Helmholtz studied the composition of

complex tones. We make complex tones by summing simple tones (sinusoids) of
different amplitudes, frequencies and phases.

We can efficiently compute the partials for a harmonic series using a for loop in

Octave.

amp = 0.3162; % amplitude

freq = 220; % frequency

dur = 2; % duration

phase = 0; % phase

sr = 44100; % sample rate

N=10; % Number of partials

x = zeros(1, ceil(dur*sr)); % initial empty vector

for k=1:N

x = x + (1/N)*sinusoid(amp, k * freq, dur, sr, phase);

end

stem([0:length(x(1:ceil(sr/freq)))]/sr,*x(1:ceil(sr/freq)) % Automatically plot one cycle

sound(x*.01) % scale audio by number of partials

If Octave does not graph your function then the graphics may need re-setting.

Use the command close all to close all open graphics windows and reset the

axis scaling.

56

Exercises

(a) Use a for-loop, similar to the example above, to construct each of the
following waveforms with a sample rate of 44.1kHz:

ten harmonics with amplitude (1− k/10) ∗ amp

ten harmonics with amplitude k/10

ten harmonics with amplitude exp(0.5 ∗ −k) ∗ amp

ten harmonics with amplitude exp(0.5 ∗ k) ∗ amp

the fundamental and even harmonics up to ten harmonics [1 2 4 6 8 10]

the fundamental and odd harmonics up to ten harmonics [1 3 5 7 9].

(b) Listen to each of your waveforms. Describe the sounds that you hear.

4. Using the sinusoid function from above, make two sinusoid vectors called x and

y, each with amplitude 0.3162 and frequency 220 Hertz, but x should have a
phase offset of 0 and y should have a phase offset of π (pi in Octave and PI in

MATLAB).

(a) What is the difference between these waveforms? Is there an easy way to

derive y from x and vice-versa?

(b) Now make the following waveforms:

ten harmonics with amplitude (1− k/10) ∗ amp with alternating phases

0, pi

ten harmonics with amplitude exp(0.5 ∗ −k) ∗ amp with alternating
phases 0, pi

the fundamental and odd harmonics up to ten harmonics [1 3 5 7 9]
with alternating phases 0, pi.

(c) Plot these waveforms against the corresponding waveforms from above.

What is the difference?

(d) Now listen to each of these waveforms against the corresponding waveforms

from above. What is the difference between the two?

5. Make a cosine wave using a sine wave with a phase offset of π
2
(pi/2). Play

both of the signals using the sound() function. Is there an audible difference
between the sine wave and cosine wave? Explain your answer.

57

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

58

Chapter 4

Systems

Essential reading

Eaton, J.W. GNU Octave Manual. (Bristol: Network Theory, 1996) [ISBN 0954161726]. (This is also

available online in HTML form at

http://www.gnu.org/software/octave/doc/interpreter and in texinfo source format in

the Octave source code distribution.)

Recommended reading

Oppenheim, A.V. and A.S. Willsky with S. Hamid Nawab Signals and Systems. (Upper Saddle River, N.J.; London:

Prentice Hall, 1997) [ISBN 0138147574].

4.1 Introduction

The previous chapter discussed how increasingly complex signals can be constructed

by summing fundamental signal building blocks called sinusoids. Digital signal
processing is concerned with both the construction and transformation of signals to

make new signals. The transformation processes are made from combinations of

fundamental transformation building blocks; collectively, these transformations are
called systems.

A system responds to an input signal to produce a new output signal. Examples of
input signals and system responses include:

the electromagnetic spectrum and the radio

the hammer and the church bell

the electric current and the dimmer switch

the bow on the string and the violin body

the bump on the road and the car’s suspension

the bat’s chirp and the echo from an insect

the lightning strike and the rolling thunder

the glottis and the vocal tract (speech)

the baseball on the bat and the ‘pop’

the penny dropped and the resulting ring.

In all of these examples an initial signal is transformed into another signal via a

system. The system can be simple, as in the case of the dimmer switch which is a
variable resistor, or very complex as in the case of rolling thunder (which is due to

the acoustic properties of air and the geography and architecture of the region of the

lightning strike).

59

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

4.2 LTI systems

Much of DSP is concerned with the mathematical analysis of the properties of
systems; as such there are a very wide variety of systems and classes of systems that

occupy different branches of mathematics. Examples are linear systems, non-linear
systems, linear dynamical systems, non-linear dynamical systems and chaotic

systems.

Of all the classes of system the most widely used are linear time-invariant (LTI)

systems. LTI systems are characterised by three properties: linearity, time-invariance

and complete characterisation by an impulse response.

In mathematical notation a system is represented as a function, T{.}, that acts on an

input signal, x[n] to produce an output signal y[n]:

y[n] = T{x[n]}

The output signal, y[n] is called the system response to system T{.} acting on input
signal x[n]. The independent variable, n, represents a discrete-time index; so the

above notation means that at each discrete time instant, n, the signal y[n] at that

instant is generated by the action of a system T{.} acting upon an input signal x[n].
Using this notation the following sections describe the properties of LTI systems in

greater detail.

Figure 4.1 shows a schematic diagram of a system. The input signal, the system and

the output signal are shown as a cascading circuit with a box in the middle
representing the system.

Figure 4.1: A system block diagram showing the flow of a signal from input, x[n], through the

system to produce the output signal, y[n].

4.2.1 Linearity

A system, T{.}, is said to be linear if it satisfies the property of scaling:

aT{x[n]} = T{ax[n]}

This means that scaling the system response to an input signal produces the same

output as scaling the input signal and then applying the transformation. The order
of the operations does not affect the result.

60

LTI systems

Linear systems also obey the property of superposition for sums of signals:

aT{x[n]} + bT{y[n]} = T{ax[n] + by[n]}

This property demonstrates one of the main utilities of linear systems; there are two
transformations on the left-hand side of the equation and only one transformation

on the right-hand side. Linear systems allow algebraic manipulation of signals and

systems to find a more efficient way to implement the transformations. This
principal is very important to the field of digital signal processing because, often, the

goal is to perform complex tasks with limited computational means.

4.2.2 Time invariance

The property of time invariance means that a system responds in the same manner

to its input at all instants in time. So there is no dependence on the variable n in the
action of the system.

Formally, this concept is notated by:

y[n] = T{x[n + d]} → y[n − d] = T{x[n]}∀n

4.2.3 Impulse response

LTI systems are completely characterised by their impulse response. The impulse

response is the system response given the delta function (the impulse) as input.

By convention, we call the impulse signal d[n] and the impulse response of a system

h[n]. Figure 4.2 shows the system block diagram of an impulse response.

Figure 4.2: The impulse response of a system is the system response to the delta signal input.

The delta signal is called the unit impulse. The impulse response completely characterises

an LTI system.

The fact that an impulse reponse characterises an LTI system means that once we

know the impulse response of a system, we know exactly how the system will

respond to any signal. The impulse response is a precise description of an LTI
system.

This fact means that we can implement an LTI system by transforming a signal with
the impulse response of a system. The operation that transforms a signal using an

61

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

impulse response is called convolution.

The impulse response is itself a discrete-time signal. This means that systems are

implemented by convolving two signals. We will now discuss the convolution
operator in more detail.

4.2.4 Convolution

Convolution is represented by a special operator notated as ∗. This is not to be

confused with the multiplication operator that uses the same symbol in most

computer programming languages:

y[n] = x[n] ∗ h[n]

The convolution operator implements the convolution sum, which is a widely-used
operation in mathematics:

y[n] =

∞
∑

k=−∞

h[k]x[n − k]

This notation informs us that the output at each time instant, n, is formed by adding
the impulse response, h[n] to the current output time location, y[n] and scaling it by

the current input value x[n].

In Octave, the convolution operator is provided by a function call, conv(). The

following example shows the use of the convolution operator to transform a uniform
random signal, with length 10, using an impulse response of length 2:

octave:>x = rand(1,10); % A random signal of length 10

octave:>h = [0.5 0.5]; % An impulse response

octave:>y = conv(x, h);% Convolution operation

octave:>subplot(211)

octave:>stem(0:length(x)-1, x,’*’)

octave:>axis([-1 length(y) 0 1])

octave:>subplot(212)

octave:>stem(0:length(y)-1,y,’*’)

octave:>axis([-1 length(y) 0 1])

The length of the input signal x is 10 and the impulse response h has length 2 in this

case. The convolution operation produces a signal that is length(x) + length(h)

- 1, so the length of the output signal y is therefore 11.

The signal in Figure 4.3 is transformed to that of Figure 4.4 via the system with
impulse response h = [0.5 0.5]. We often call the process of convolving a signal

with an impulse response filtering, because it helps us to extract specific parts of a
signal. In this case the system is a two-point averaging filter. As we shall see in the

following chapter, this corresponds to a low-pass filter which means that high

frequencies present in the signal are attenuated and low frequencies are passed
through unchanged.

62

LTI systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Figure 4.3: A signal of length 10 generated using Octave’s rand() function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Figure 4.4: The signal of Figure 4.3 convolved with the two-point impulse response [0.5

0.5]. The convolved signal has length length(x)+length(h)-1 which is 11 samples.

63

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

4.2.5 Unit impulse and unit delay systems

Convolution with the unit impulse produces the identity. This means that the signal

is passed through the system unchanged regardless of its frequency content.

Convolution with a unit delay produces a delayed signal; the signal is passed
through shifted by the delay time of the impulse:

octave:>y = conv(x, [0 1]); % Unit Delay signal

stem(0:length(y)-1, y, ’*’);

axis([-1 length(y) 0 1])

In this example the zero-time reference index is 1. So the signal is shifted by one

sample relative to vector index 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Figure 4.5: The signal of Figure 4.3 convolved with a unit delay [0 1].

To delay the signal by multiple samples, we can either append more zeros to the

beginning of the unit delay, thus shifting the signal further to the right, or we can

re-convolve the signal with the unit delay. Convolving the output signal with the unit
delay N times produces a delay of N samples:

y = conv(x, [0 0 0 0 0 1]); % delay by five samples

stem(0:length(y)-1,y,’*’);

axis([-1 length(y) 0 1])

Or equivalently:

y = conv(x, [0 1]);

y = conv(y, [0 1]);

y = conv(y, [0 1]);

y = conv(y, [0 1]);

y = conv(y, [0 1]);

stem(0:length(y)-1,y,’*’);

axis([-1 length(y) 0 1])

These examples show that the convolution operation can be re-applied multiple

64

LTI systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

Figure 4.6: The signal of Figure 4.3 convolved multiple times with a unit delay [0 1]. The

result is a signal shifted by multiple samples; in this case five samples.

times; with each iteration taking the previous output and feeding it back into the

system for the next input. This process of applying a system multiple times to a
signal, via the system output, is called composition.

We can also compute system composition as a set of nested function calls in Octave:

d = [0 1]; % The unit delay y = conv(conv(conv(conv(conv(x, d), d),

d), d), d);

4.2.6 Scaled delay

By the linearity of LTI systems, a signal can be scaled by multiplying the input by a

scalar, multiplying the output by a scalar or multiplying the impulse response by a
scalar. The following examples produce the same signal as output:

y1 = conv(0.5 * x, [0 1]);

y2 = conv(x, [0 0.5]);

y3 = 0.5 * conv(x, [0 1]);

You should verify that the three signals y1, y2 and y3 are the same.

4.2.7 Convolution revisited

Given the properties of linearity and superposition we discussed above, there is an
alternative way to think of the convolution operation.

The impulse response can be thought of as consisting of delayed, scaled, unit

impulses. For example, the impulse response [0.5 0.25 0.125 0.125] consists of four

scaled and shifted impulses. The first is scaled by 0.5 and shifted by zero samples.
The second is scaled by 0.25 and shifted by one sample, the third is scaled by 0.125

65

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

and shifted by two samples, and the fourth is also scaled by 0.125 but shifted by
three samples.

By the property of superposition, convolution can be calculated as shifting and
scaling the input signal by each scaled and shifted impulse in the impulse response

and summing the four system responses:

y = conv(x, [0.5 0 0 0]);

y = y + conv(x, [0 0.25 0 0]);

y = y + conv(x, [0 0 0.125 0]);

y = y + conv(x, [0 0 0 0.125]);

You should verify that the output of this set of operations is the same as convolution

of the input signal with the impulse response [0.5 0.25 0.125 0.125].

This example illustrates a very important property of convolution, namely that the

operation can be broken into a number of very simple steps:

delay the signal

scale the signal

sum it with the output signal.

It was stated above that the output of the convolution operation is a signal that has

length length(x) + length(h) -1. For an input signal of length 10 and an impulse
response of length 4 the resulting output will be length 13. We can produce the

convolution operation without the use of the conv() function by padding the input

signal with zeros at the end so that it is the correct length for the convolution
operation, then performing the simple operations of delay and scale. For the

convolution of the signal x with h = [0.5 0.25 0.125 0.125] the signal needs to

be padded with length(h)-1 = 3 zeros:

x1 = [x zeros(1,3)];

Now the convolution operation can be expressed as a sequence of delay, scale and

sum operations on the input signal:

y = x1 * 0.5; % The first impulse

y = y + 0.25 * shift(x1, 1); % the second impulse

y = y + 0.125 * shift(x1, 2); % the third impulse

y = y + 0.125 * shift(x1, 3) % the fourth impulse y =

Columns 1 through 8:

0.16641 0.14002 0.20713 0.36773 0.59303 0.30806 0.55423 0.35422

Columns 9 through 13:

0.17872 0.63382 0.27538 0.13764 0.12407

These examples illustrate that the convolution operation is the result of a set of

fundamental signal processing operations: scale, shift and sum. The properties of
linearity and superposition are key to the ability to represent complex transforms as

sequences of such simple unit transforms.

The prevalence of DSP in the world is due in large part to the ability to implement

such systems out of these elementary building blocks.

66

Spectral analysis

4.3 Spectral analysis

4.3.1 Complex exponentials

The larger part of DSP theory is concerned with the representation of signals and

systems as complex numbers. The reason is that many of the properties of systems
are best represented in the complex domain rather than in the domain of real

numbers.

Complex numbers are easily handled by Octave. A complex number is one that has

both a real and an imaginary component. The real part is simply a real number and
the imaginary part is a real number multiplied by

√
−1, the square-root of −1,

denoted by i. Complex numbers, therefore, are written down as two parts:

a + ib

In Octave we can generate complex numbers by taking the square root of a negative

number; or by multiplying a real number by the square root of −1:

octave:>sqrt(-1)

ans = 0 + 1i

octave:>(-1)^0.5

ans = 0 + 1i % If this says NaN then your version of Octave is out of date

octave:> 2 + 20i

ans = 2 + 20i

Complex arithmetic

The operation of summing two complex numbers involves summing the real parts
and the imaginary parts separately:

(a + ib) + (c + id) = a + c + i(b + d)

In octave we perform addition on complex numbers in the same way as ordinary
numbers:

3 + 4i + -2 + 3i

ans = 1 + 7i

The operation of subtracting two complex numbers requires the subtraction of the

real parts and the imaginary parts as separate operations:

(a + ib)− (c + id) = a − c + i(b − d)

(3 + 4i) - (-2 + 3i)

ans = 5 + 1i

Note in the last example we were careful to use parentheses around each complex

number. What happens if we don’t use parentheses? Why does this happen?

67

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Finally, multiplication of complex numbers follows the standard algebraic operation
of multiplication, but with the complex element i =

√
−1:

(a + ib)(c + id) = ac − bd + i(ad + cb)

when multiplying complex numbers in octave the individual complex numbers must

also be surrounded by parentheses:

(3 + 4i) * (-2 + 3i)

ans = -18 + 1i

These examples illustrate that arithmetic operations on complex numbers result in

other complex numbers.

Polar form of complex numbers

When using complex numbers it is often convenient to convert the rectangular

coordinates (a, ib) to polar form consisting of a magnitude and phase component.

This is performed with the following relations:

r = abs(a + ib) = |a + ib| =
√

a2 + b2

θ = angle(a + ib) = ∠(a + ib) = atan{ b

a
}

Octave conveniently provides the abs() and angle() functions to convert
rectangular complex coordinates into polar form:

octave:>abs(2 + 3i) ans = 3.6056 octave:>angle(2 + 3i) ans = ans =

0.98279

The polar representation can be converted back to complex coordinates using the

relations:

a = rcos(θ)

b = rsin(θ)

The resulting complex number is a + ib:

octave:>x = 2 + 3i % define a complex number variable x
x = 2 + 3i octave:>r = abs(x) % take the magnitude

ans = 3.6056 octave:>theta = angle(x) % take the phase (angle)

ans = 0.98279 octave:>a = r*cos(theta) % get the real part from r and

theta

ans = 2.0 octave:>a = r*sin(theta) % get the imaginary part from r and

theta

ans = 3.0 octave:> a+ib % form the complex number

ans = 2.0000 + 3.0000i % back where we started

68

Spectral analysis

Complex exponential function

The Euler number e is the irrational 2.71828182845905 . . . often truncated to 2.7183.
This is the natural exponent; it has the special property that the slope of the curve ex

at a point x is ex for all values of x.

One of the relations that is fundamental to DSP is that of the exponential function

with a complex argument:

eix
= cos(x) + isin(x)

This is called Euler’s formula due to its creator, Leonard Euler. In this formula, the

complex exponential is understood as the sum of a real cosine and an imaginary sine
value. If we set the sine value to 0 we see that all real sinusoids are actually complex

exponentials, which is of profound importance to DSP and is the reason why DSP

theory is full of complex exponentials.

Euler’s formula can be visualised as the circumference of a unit circle in the complex
plane. The complex plane is a two-dimensional graph with the x-axis representing
the real axis and the y-axis representing the imaginary axis. Euler’s formula is

illustrated in the complex plane in Figure 4.7.

Figure 4.7: Euler’s formula represented as a circle in the complex plane. The x-axis is the real

part and the y-axis the imaginary part of the complex number represented by eiθ. The

circle has radius 1 therefore it is called the unit circle.

One remarkable result of this property of the exponential function is the identity:

eiπ
= −1

following from the relation above. This is called Euler’s identity.

69

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

If we expand the identity:

eiπ
= cos(π) + isin(π)

we can see the derivation cos(π) = −1 and sin(π) = 0 hence eiπ
= −1 + 0 = −1.

By re-arranging this equation we have a relationship between the five most

important numbers in mathematics: e, i, π, 0 and 1:

eiπ
+ 1 = 0

We can see this in Octave using the built-in exp() function and the constants i and
pi:

octave:>exp(i*pi)

ans = -1.0000e+00 + 1.2246e-16i

Note that the imaginary part is 1.2246e− 16i which is 1.2246× 10−16i, a very small
number that is essentially zero. The imaginary part is not exactly zero due to

floating point roundoff error.

Often we wish to represent a real sinusoid using complex exponential notation. How

can we make the exponential function generate a sinusoid that has only an
imaginary part?

To do this we use the relation:

cos(x) =
A

2
{cos(x) + isin(x)} + A

2
{cos(x)− isin(x)}

This says that the cosine function can be understood as two complex exponentials,

one with a positive imaginary part and the other with a negative imaginary part. By
the process of summation for two complex numbers the two complex exponentials

combine to make a single real cosine function. In complex exponential notation we
write:

cos(x) =
A

2
eix
+

A

2
e−ix

=

A(eix
+ e−ix)

2

Here we see that the real cosine function is the sum of two complex exponentials,

one with a positive exponent and the other with a negative exponent with the same

complex argument. We can construct sinusoids using this relation in Octave:

octave:>x=[0:pi/8:pi]

x =

Columns 1 through 8:

0.00000 0.39270 0.78540 1.17810 1.57080 1.96350 2.35619 2.74889

Column 9:

3.14159

octave:> cos(x)

ans =

Columns 1 through 5:

70

Spectral analysis

1.0000e+00 9.2388e-01 7.0711e-01 3.8268e-01 6.1232e-17

Columns 6 through 9:

-3.8268e-01 -7.0711e-01 -9.2388e-01 -1.0000e+00

octave:>exp(i*x)/2 + exp(-i*x)/2

ans =

Columns 1 through 5:

1.0000e+00 9.2388e-01 7.0711e-01 3.8268e-01 6.1232e-17

Columns 6 through 9:

-3.8268e-01 -7.0711e-01 -9.2388e-01 -1.0000e+00

4.3.2 Signal multiplication by complex exponentials

A very useful property of complex exponentials comes when they are multiplied by a

signal. The product of a complex exponential and a signal is a measure of the
amplitude and phase of the signal at the frequency of the complex exponential.

To illustrate this principle we can construct a signal in Octave and measure the

presence of each frequency component by vector multiplication with a complex

exponential at a given analysis frequency.

octave:>sr = 44100;

octave:>t = [0:400] / sr;

octave:>x = sin(2*pi*441*t) + sin(2*pi*882*t);

octave:>h = exp(i*2*pi*1000*t);

octave:>h*x’

ans = -3.0453 + 13.5648i

octave:>abs(h*x’)

ans = 13.0902

octave:>h = exp(i*2*pi*882*t);

octave:>abs(h*x’)

ans=200.00

octave:>angle(h*x’)

ans = 1.5708

In this example we have constructed an audio signal consisting of one cycle of a

441Hz Helmholtz tone with two frequency components; one at the fundamental
frequency and one at the second harmonic. We then constructed a complex

exponential with a frequency of 1000Hz and computed the vector dot product (the
vector multiplication seen in Chapter 3 of this guide) between the complex

exponential and the Helmholtz tone and measured the magnitude. The resulting

magnitude value is 13.902. Then we made a new complex exponential with
frequency 882Hz corresponding with one of the frequencies in the Helmholtz tone;

we took the vector dot product between the complex exponential and the Helmholtz

tone and the resulting magnitude was 200.

Multiplication between the Helmholtz tone and the complex exponential produces a
much higher magnitude value for frequencies that are present in the Helmholtz tone

than when we multiply by a complex exponential having a frequency that is not

present in the Helmholtz tone.

Hence, multiplication by complex exponentials is a way to analyse the frequency

content of signals. This is a very widely used and important concept within DSP and
you should spend time familiarising yourself with it. The learning activity which

follows is an illustration of this principle for audio signals.

71

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Learning activity

Make a complex tone audio signal of 441 sample duration by summing four sine waves with

amplitudes of 0.25 and frequencies of 441Hz, 882Hz, 1323Hz and 1764Hz.

Now make a new sinusoid with amplitude 1 and frequency 1000Hz. Calculate the dot product of this

sinusoid with your complex tone using vector multiplication between the heterodyne and the

transposed complex tone signal. (Find out what is meant by the term heterodyne.)

Do the same for sinusoids with the following frequencies:

• 441Hz
• 882Hz
• 1323Hz
• 1764Hz.
What do you notice about the value returned for 1000Hz versus the other frequency values?

Repeat the above but for an inverted sinuosid (i.e. pi radians phase offset).

What do you notice about the value returned for the inverted sinusoid for each of the signals?

Make a complex exponential at frequency 1000Hz and perform the same dot product on your

complex tone as above. What is the magnitude of the resulting value? Hint: use abs().

What is the angle (phase) of the resulting value?

Make a complex exponential at frequency 1323Hz and perform the dot product on your complex tone.

What is the magnitude of the resulting value?

What is the angle (phase) of the resulting value?

The process of multiplying a signal by a complex exponential yields two values: a
magnitude and a phase of any sinusoidal component present in the complex tone.

The magnitude measures the amount of the given frequency that is present in the
signal and the phase measures the phase offset for a sinusoid at the given frequency

to be present in the signal.

This operation of multiplication by a complex exponential is the basis for Fourier

theory which measures the spectrum of signals.

4.3.3 Spectra of signals and systems

The spectrum of a signal is an analysis of the frequency content of the signal. As we

saw in the last chapter, any signal can be constructed out of a set of sinusoidal

components at the right amplitudes, frequencies and phases.

The process of extracting the sinusoidal parameters from a signal is called spectral

analysis and it is most often performed using Fourier analysis. Fourier analysis
multiplies the signal by a set of complex exponentials at different frequencies,

providing estimates of the amplitudes (magnitudes) and phase offsets for each
sinusoidal component.

To plot a spectrum we put frequency on the x-axis and make exponentials at a
number of equally-spaced intervals starting at 0Hz and extending up to the highest

frequency value in our signal. When we perform a Fourier analysis on a discrete-time

72

Spectral analysis

signal it is called a discrete Fourier transform (DFT). A magnitude spectrum
represents the relative strengths of the sinusoidal components in our signal.

We can re-construct a signal by summing together sinusoids containing the relative
strengths provided by the Fourier analysis. This reverse process is known as Fourier

synthesis.

4.3.4 Fast Fourier Transform (FFT)

The more densely we sample the frequency axis, the more time it takes to perform

the Fourier analysis. For long signals a Fourier analysis can take more time than we
have available. Fortunately, a clever algorithm was invented by Cooley and Tukey in

the 1960s that performs a discrete Fourier transform much faster than the for-loop

above.

Octave provides a function to compute the fast Fourier transform of a signal called

fft(). This function takes a signal as an argument and performs the multiplication
by a series of complex exponentials yielding a complex valued spectrum. We take the

magnitude of the resulting spectrum to find the amplitudes of the sinusoidal
components and we take the angle of the resulting spectrum to find the relative

phase offsets.

Spectrum of a sine wave

Figure 4.8 shows the spectrum of a sine wave. The Octave code that generated the
figure is:

t = [0:1/1000:1]; % 1s at 1000Hz sample rate

x = sin(2*pi*100*t); % 100Hz sine wave

n = 10; % how many frequency samples to take

stem([0:2/n:2-2/n],abs(fft(x(1:n))),’*’)

axis([0 2 0 6])

This example first constructs a vector of time-points at which to sample a sine wave.
The sampling rate is 1000Hz. Then a signal, x, is constructed by sampling a sine

wave with frequency 100Hz which is angular frequency 2*pi*100Hz. We define n
the number of samples of the waveform to use to compute frequency estimates; this
will be the number of frequency samples that are calculated by the FFT. The fourth

line makes a stem plot of the magnitude (abs()) FFT of one cycle of the sine wave,

i.e. 10 samples.

The number of samples in one cycle of a repeating waveform, such as a sine wave, is

called the period:

p = sr/f

Notice that in our examples the period consists of a whole number of samples.

For a sample rate sr and signal of length n, the FFT takes frequency samples of the

signal at angular frequency intervals sr/n; in this case the frequency samples are
spaced by 1000/10 = 100Hz. The x-axis for the stem plot is determined by sampling

73

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

the angular frequencies 0*2*pi/(1000/10) to 10 ∗ 2 ∗ pi/(1000/10)which simplifies
to 0 to 2 ∗ pi. This way of labelling the frequency axis is called normalised
frequency.

In normalised frequency the value 2 ∗ pi is the sample rate, the value pi is the

Nyquist frequency and all the frequency samples are spaced at angular frequency
intervals of 2 ∗ pi/n for a signal of length n.

The spectrum for frequencies greater than the Nyquist frequency is the mirror image,
about pi, of the spectrum for frequencies less than the Nyquist frequency. This

symmetry in the Fourier transform is present for all real-valued signals. It is usual to

ignore the values greater than the Nyquist when interpreting a spectrum.

The most important feature of the spectrum of a sine wave is to recognise that there

is only one frequency, below the Nyquist, that has non-zero magnitude. This means
that a sine wave has exactly one frequency component. The sine wave is the basis

for the spectrum; the spectrum tells us the amplitudes of the sine waves that we
sample, at 2 ∗ pi/n intervals. All length-n signals can be constructed by summing n
sine waves with amplitudes corresponding to the magnitudes of the spectrum. This

is the most remarkable fact of Fourier analysis: (almost) all signals can be
represented and reconstructed as sums of sinusoids; this was discovered by the

French mathematician Jean Baptiste Joseph Fourier in the late 1700s.

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2

M
ag

ni
tu

de

Frequency (multiples of pi)

Magnitude FFT of 1 cycle of 100Hz sine wav at 1000Hz sample rate

Figure 4.8: The magnitude spectrum of one cycle of a 100Hz sine with sample rate 1000Hz.

The x-axis consists of 10 frequency components spanning angular frequencies 0 to 2π. The

spectrum is symmetric around its mid-point; only frequencies from 0 to the Nyquist

frequency π are informative, the rest are due to mathematical symmetry in the Fourier

transform of real signals.

To completely represent a signal in frequency each sinusoidal frequency component

also needs a phase offset.

74

Spectral analysis

Figure 4.9 shows the phase spectrum of the same sine wave. The phase spectrum is
computed by taking the angle() of the FFT of a signal. The phase values represent

the phase offset of each frequency component and these values are in the range −pi
to pi, spanning a 2 ∗ pi range. In the figure the phase angle is shown in normalized

units of pi; the y-axis is in the range −1 to 1 which means −1 ∗ pi to 1 ∗ pi.

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2

P
ha

se
 (

m
ul

tip
le

s
of

 p
i)

Frequency (multiples of pi)

Phase of 1 cycle of 100Hz sine wav at 1000Hz sample rate

Figure 4.9: The phase spectrum of the sine wave corresponding to Figure 4.8. The phase

spectrum is anti-symmetric about its mid-point. The phases of frequencies π to 2π are

inverted values of the phases 0 to π.

From the phase spectrum we can see that the phase of the only non-zero magnitude
sinusoidal component is −π/2. This is the Fourier phase of a sine wave with −π/2
phase; it corresponds to a cosine wave.

Spectrum of a cosine wave

Figure 4.10 shows the magnitude FFT of a cosine wave consisting of 10 samples
corresponding to one full cycle of the cosine wave with frequency 100Hz at a sample

rate of 1000Hz. Can you see a difference between Figure 4.10 and Figure 4.8?

Spectrum of 10 cycles of a sine wave

We already know that a sine wave, or cosine wave, is periodic which means that it
repeats and that the period of the repetition in samples is the sample rate divided by

the frequency: sr/n. How does including more samples of the signal affect the

Fourier analysis of the signal?

By setting n = 10 ∗ sr/f = 100 we can compute the Fourier transform of 10 cycles of

the sine wave. Figure 4.12 shows the Fourier transform. How is the Fourier
transform for 10 cycles different from the Fourier transform for one cycle?

75

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2

M
ag

ni
tu

de

Frequency (multiples of pi)

Magnitude of 1 cycle of 100Hz cosine wav at 1000Hz sample rate

Figure 4.10: The magnitude FFT of a cosine wave with frequency 100Hz at a sampling rate of

1000Hz. The FFT consists of 1000/100 = 10 samples for one cycle of the cosine wave.

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2

P
ha

se
 (

m
ul

tip
le

s
of

 p
i)

Frequency (multiples of pi)

Phase of 1 cycle of 100Hz cosine wav at 1000Hz sample rate

Figure 4.11: The phase of the same cosine wave as in the previous example. The phase of the

frequency component below the Nyquist frequency having non-zero magnitude is pi/4;
this means that Cosine waves are the basis of real signals in Fourier analysis.

76

Spectral analysis

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2

R
M

S
 E

ne
rg

y

Frequency (multiples of pi)

RMS Energy of 100 cycles of 100Hz cosine wav at 1000Hz sample rate

Figure 4.12: Fourier transform of 10 cycles of the sine wave.

By increasing the length of the signal to 100 samples we have not altered the

frequency content of the signal but we have altered the total energy in the signal

because energy depends on the signal’s length:

Energy =

√

√

√

√

N
∑

n=1

x[n]2

To eliminate the dependency on the length of the signal we often use the
root-mean-square (RMS) energy, which divides the total energy by the length of the

signal:

RMS =

√

√

√

√

1

N

N
∑

n=1

x[n]2

If we do the same for the Fourier transform, then the Magnitude spectrum divided

by the signal length will yield the same values for periodic signals with a length of
any integer multiple of the period.

77

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Learning activity

Compute the magnitude Fourier transform of three cycles of a sine wave with frequency 400Hz and

sample rate of 1000Hz. Make a stem plot of the magnitude Fourier transform.

Compute the magnitude Fourier transform of eleven cycles of a sine wave with frequency 400Hz and

sample rate of 1000Hz. Make a stem plot of the magnitude Fourier transform.

Divide the two magnitude Fourier transforms by the length of the signals (3 and 11 cycles

respectively) and make stem plots of the results. What is the difference between the two plots?

Use the Octave commands xlabel, ylabel and title to label your plots.

By increasing the length of the signal we increase the number of frequency samples
in the Fourier transform. This means that the spacing between frequency

components that we analyse gets smaller; the Fourier analysis components are closer

together in frequency.

If we choose an integer multiple of the period of the sine wave as the signal length

then the values of the magnitude components do not change. What changes is the
number of samples of the spectrum that we compute. Hence, for a single sine wave

the same non-zero magnitude value is reported for multiple cycles (after dividing by
the signal length) as for one cycle; but the position of this non-zero value in the

sequence of frequency samples changes because the frequency samples are more

dense. What we see are an increased number of samples of the same underlying
magnitude spectrum.

This is also true for phase. The value of the phase for the component with non-zero
magnitude remains the same but here we see many more phase values that are

non-zero, as in Figure 4.13. These phase values are for components that do not exist

in the signal so they can essentially be ignored. We are only interested in the phases
of those components with non-zero magnitude. Again, what we see is not a different

phase spectrum, but more samples of the same underlying phase spectrum.

Spectrum of an impulse

The Fourier transform of the unit impulse also shows a fundamental property of the
Spectrum:

octave:>fft([1 0 0 0 0 0 0 0])

ans =

1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 - 0i 1 - 0i 1 - 0i

octave:>abs(ans)

ans =

1 1 1 1 1 1 1 1

Figure 4.14 shows the unit impulse signal; notice that the signal is offset in time.

Figure 4.15 shows the spectrum of the unit impulse. These examples illustrate that
the magnitude Fourier transform of the unit impulse is a sequence of 1s. The phase

of each component in the Fourier transform is related to the time shift of the unit
impulse.

78

Spectral analysis

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
ha

se
 (

m
ul

tip
le

s
of

 p
i)

Frequency (multiples of pi)

Phase of 100 cycles of 100Hz sine wav at 1000Hz sample rate

Figure 4.13

For the impulse in Figure 4.14 the phase is:

octave:>angle(fft([0 0 0 0 0 1 0 0 0 0 0]))

ans =

Columns 1 through 8:

0.00000 -2.85599 0.57120 -2.28479 1.14240 -1.71360 1.71360 -1.14240

Columns 9 through 11:

2.28479 -0.57120 2.85599

Note that the signal is of length 11; the phase in this example can be more

conveniently represented in units of 2 ∗ pi/11:

ans/(2*pi/11)

ans =

0 -5 1 -4 2 -3 3 -2 4 -1 5

79

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2 0 2 4 6

Figure 4.14: A unit impulse signal with zero-time reference at sample position 6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

M
ag

ni
tu

de

Frequency (multiples of pi)

Magnitude of 11-point unit impulse

Figure 4.15: The RMS magnitude spectrum of the impulse demonstrating that the unit

impulse consists of all frequencies with unit amplitude.

80

Spectral analysis

Learning activity

Make stem plots of the magnitude and phase spectra, using Fourier transforms, of one cycle of each of the

following waveforms with a sample rate of 44.1kHz and a fundamental frequency of 441Hz (Hint: one cycle

will be 44100/441 = 100 samples):

ten harmonics with amplitude (1− k/10)

ten harmonics with amplitude k/10

ten harmonics with amplitude exp(0.5 ∗ −k)

ten harmonics with amplitude exp(0.5 ∗ k)

the fundamental and even harmonics up to ten harmonics [1 2 4 6 8 10]

the fundamental and odd harmonics up to ten harmonics [1 3 5 7 9].

4.3.5 Convolution by spectrum multiplication

A further very useful property of convolution is that when we take the spectrum of

two signals, their element-wise product is the Fourier transform of their convolution.
This means that taking the inverse Fourier transform, using ifft(), yields the

convolution of the two signals.

Because the FFT is an efficient way to compute the Fourier transform, the process of

computing the spectrum, performing multiplication and taking the inverse Fourier

transform is more efficient and therefore takes less time than the process of
convolution using conv().

Here are some examples of convolution using FFTs. The first example is convolution
of a signal by the unit delay.

sig = [1 2 3 4 5 6 5 4 3 2 1];

d = [0 1]; S = fft(sig, length(sig)+length(d)-1); D = fft(d,

length(sig)+length(d)-1); X = S .* D; x = ifft(X); sig

sig =

1 2 3 4 5 6 5 4 3 2 1

fix(real(x)) ans =

0 1 2 3 4 5 6 5 4 3 2 1

The second example illustrates the use of the FFT to perform low-pass filtering of a
signal using the 2-point averaging filter [0.5 0.5]:

sig = rand(1,10)*2-1;

d = [0.5 0.5]; S = fft(sig, length(sig)+length(d)-1); D = fft(d,

length(sig)+length(d)-1); X = S .* D; x = ifft(X); sig = Columns 1

through 7:

0.660514 -0.287672 0.092979 0.954095 0.137672 0.845794 -0.120167

Columns 8 through 10:

0.920592 -0.715481 -0.512909

x x =

Columns 1 through 7:

0.330257 0.186421 -0.097346 0.523537 0.545883 0.491733 0.362814

81

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Columns 8 through 11:

0.400213 0.102555 -0.614195 -0.256454

conv(sig,d) ans =

Columns 1 through 7:

0.330257 0.186421 -0.097346 0.523537 0.545883 0.491733 0.362814

Columns 8 through 11:

0.400213 0.102555 -0.614195 -0.256454

There are many uses for Fourier transforms: in this chapter we have used them for
analysing spectra of signals to see their constituent frequency components and for an

alternative implementation of the convolution operation.

Building upon the knowledge that you have gained about systems, convolution,

Fourier representations and transformation by Fourier representations, there is a
final observation that we can make.

LTI systems have the unique property that complex exponentials presented at the
input are passed through the system and multiplied by the frequency components of

the impulse response of the system. There can be no new frequency components

added by a linear system; instead, existing frequency components can be attenuated,
amplified or delayed. Therefore all discrete-time systems are combinations of the

simple operation of scaling and delaying individual sinusoidal components that are

summed together to form the system response to the input.

In other words, sinusoids presented at the input to a system are also present at the

output; but they can be scaled and/or delayed. Because all signals can be
represented as sums of sinusoids, all system responses can be decomposed into their

individual scaled and delayed sinusoids that are summed back together to form the
final signal. For this reason it is said that Complex Exponentials are Eigenfunctions of

Linear Time Invariant Systems. An Eigenfunction is a signal, in this case a sinusoid,

that passes through a system with its basic shape unchanged; and LTI systems do not
change the shape of sinusoids, they simply scale them and shift them in time.

4.4 Summary and learning outcomes

This chapter first looked at linear time invariant (LTI) systems and their properties.

The impulse response was introduced as a complete characterisation of LTI systems

that is used to implement system transformations on signals using the convolution
operator.

The convolution operator was shown to be a way to combine a signal with itself by

delaying and scaling. This produces a transformation of the signal that is often

called filtering. The operations of delay and low-pass filtering were introduced.

Representation of sinusoidal signals by complex exponentials was introduced

leading to the representation known as the spectrum. The Fourier transform, using
the FFT, was then discussed as a means for computing spectra as well as its

implementation in the Octave programming language. It was then illustrated that

the Fourier transforms of a signal and a system can be multiplied to produce the
Fourier transform of the convolution of the two signals. By taking the inverse Fourier

transform of this product the convolved, or filtered, signal is produced.

Not only is the Fourier transform a useful analysis tool for inspecting the sinusoidal

components of signals and systems, but it can be a more efficient method for

82

Exercises

performing convolution than computation by direct means (e.g. using conv()). For
these reasons the Fourier transform, and the complex exponential representation of

signals and systems, are very important in the study of signal processing.

With a knowledge of the contents of this chapter and its directed reading and

activities, you should be able to:

describe what an LTI system is

discuss the impulse response and its importance in signal processing

describe what convolution is and how it is used, as well as being able to perform

convolution on signals using Octave

describe the basic theory of Fourier analysis, and in particular the use of the Fast
Fourier Transform in digital signal processing

describe spectral analysis and how signals are made up of sinusoidal waveforms.

4.5 Exercises

In addition to the exercises listed below, you should attempt all of the learning
activities throughout this chapter, to enhance your understanding of the material.

1. What is the difference between a signal and a system?

2. What is meant by the term ‘impulse response’? What is the impulse response of a

room?

3. What is Fourier analysis? Discuss the use of Fourier analysis for both analogue
and digital signals. In particular, describe how the analysis might differ for these

two types of signals.

4. What is a Fourier Transform? Can a Fourier Transform be applied to both
analogue and digital signals? What is a Fast Fourier Transform? Is this

applicable to both analogue and digital signals?

5. What is convolution? What is the relationship between convolution and the FFT?

83

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

84

Chapter 5

Audio and image filtering

This chapter introduces a range of methods that are commonly used to transform

media for creative purposes. There are many applications of digital signal processing
(DSP) to manipulation and transformation of media.

All of the methods covered are based on the theory of linear time-invariant systems
and are applications of the convolution operator.

By the end of this chapter you will have a good understanding of how to apply
digital signal processing to audio and images using a wide range of techniques based

on filtering.

5.1 Audio effects

5.1.1 EQ

Every recording studio is designed around a central mixing console which routes

audio signals through a bank of modules, called channels, that control the gain in

decibels (dB) of different instrumental tracks such as drums, vocals, bass guitar and
lead guitar. Most mixers have between four and 48 identical channel modules; often

a mixer can be expanded by adding more modules.

In addition to a gain control, mixing desks have controls called channel equalizers
(EQ). Equalizers change the relative balance of a mixing console channel’s frequency
content by linear filtering. A standard mixing desk has three equalizers per channel.

They apply a gain or attenuation (reduction) in the frequency content in bass,

mid-range and treble ranges; low-frequency, mid-frequency and high-frequency
respectively. Figure 5.1 shows a mixing console with numerous channel modules

featuring faders for attenuating signals and knobs (trim pots) for filtering.

Many mixing consoles are digital which means that they use discrete-time LTI

systems to implement EQ, and other effects, via convolution with a filter impulse

response. In the last chapter, a two-point averaging filter was used to demonstrate
the conv() command. The impulse response was [0.5 0.5] which resulted in a

modification of a random signal that was a low-pass filter.

The low-pass filter reduced the amplitudes of higher sinusoidal component

frequencies relative to low frequencies which are less changed. It is often useful to
be able to visualise which frequencies are attenuated and by how much for a given

impulse response. To do this we take the Fourier transform of the impulse response

and plot its magnitude and frequency. This type of analysis is called the frequency
response of a system.

Figure 5.2 shows the decibel-scale magnitude frequency response of the two-point
averaging filter. The figure shows that the gain for low frequencies is 0, the

85

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Figure 5.1: A contemporary mixing console features long-throw faders for attenuating an

input signal and a set of equalizers (EQ) for altering the relative balance of the frequency

content of each channel’s audio signal. The input channels are routed to the output,

typically stereo, via an audio buss.

pass-band, and that the gain slopes gradually to around −10dB for high frequencies
above 0.8π angular frequency. Using the decibel equation from Chapter 3 the gain is

expressed in meaningful terms for human perception. Recall that a gain of −10dB

corresponds to about half the perceived loudness relative to zero. For an input signal
with equal strength low and high frequencies, after filtering the high frequencies

would sound less than half as loud as the low frequencies in this example. The

frequency range that remains unaltered by a filter is called the pass-band and the
range that is attenuated is called the stop band.

In addition to the magnitude response, it is often important to know the phase
response of a filter. If the phase response is very discontinuous across the frequency

range this can lead to a phenomenon called phase distortion; which can lead to
unwanted artefacts such as blurring of transients (attacks) in the audio signal. The

lower graph of Figure 5.2 shows the phase response of the two-point averaging filter

which is linear. A desirable property of digital filters used for audio filtering is that
they are close to linear phase. Symmetric FIR filters–i.e. those with values that

mirror each other around a centre-point–have linear phase response. Linear phase

means that all frequencies are delayed by the same amount, so there is no phase
dispersion.

By inspection of the diagrams of the frequency response of the two-point averaging

filter we can see that the effect on frequencies is limited until the very highest

frequencies. To create a filter with greater attenuation for mid-range frequencies a
filter with a longer impulse response must be created. The following section

describes how to design such filters in Octave.

86

Audio effects

Figure 5.2: Decibel-scale magnitude frequency response of the two-point averaging low-pass

filter. The frequency response is the Fourier transform of the filter’s impulse response.

87

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

5.1.2 FIR filter design

The filters encountered so far have impulse responses with a finite number of

non-zero samples; the two-point averaging filter had an impulse response of length
two. Filters that have a determinate length are called finite impulse response filters

(FIR); in this chapter we will focus exclusively on these. A different class of filters
have an infinite impulse response (IIR). IIR filters have exactly the same properties

as all LTI systems, except their impulse response is more complicated to describe

than those of FIR filters.

Design of an FIR filter requires a cutoff frequency and a filter order. For an ideal

low-pass filter, the cutoff is the frequency above which sinusoidal components are
rejected; that is, they have a gain of 0. Conversely, for an ideal high-pass filter the

cutoff is that frequency where sinusoidal components of the signal are admitted with
a gain of 1; below the cutoff the gain is 0.

Due to mathematical properties of the frequency domain, the ideal low-pass and
hi-pass filters are not achievable. There is always a region of the frequency space

that is a transition between the pass-band and the stop band; this region is called the

transition band.

Figure 5.3: Decibel-scale frequency response of a 100-point FIR filter designed using fir1()

High-pass filter

A high-pass filter is one for which the stop-band is the low frequencies and the
pass-band is the high frequencies. An example of a high-pass filter is the two-point

differentiating filter [-1 1] or [1 -1]. The frequency response of the two-point

88

Audio effects

differentiating filter is shown in Figure 5.4.

Figure 5.4: The decibel-scale frequency response of the two-point high-pass filter [1 -1]

plotted using an absolute frequency axis.

Just as with the low-pass FIR filter examples above we construct high-pass filters by
specifying a cutoff frequency. The meaning of the cutoff frequency is reversed

relative to low-pass filters; it is the frequency at which the stop band ends and the
pass-band starts.

Band-pass filter

One of the properties of LTI systems is that they can be composed to form an

aggregate filter. The aggregate filter has an impulse response that is the convolution
of the impulse responses of the individual filters. The convolution of two signals or,

equivalently, impulse responses, is the element-wise product of their frequency

responses (i.e. their complex multiplication in the frequency domain).

Hence, we can combine filters by multiplying their complex-valued frequency

responses. Figure 5.6 shows a band-pass filter that rejects both low frequencies and
high frequencies but admits frequency components that are in a centre pass-band.

Band-pass filters are constructed out of the composition of a low-pass and a
high-pass filter. The low-frequency stop-band is determined by the cutoff frequency

of a high-pass filter, and the high-frequency stop-band is determined by the low-pass

filter cutoff. The convolution of the two impulse responses produces the band-pass
filter.

89

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Figure 5.5: Frequency-response of a high-pass filter designed using fir1().

5.1.3 Sweepable EQ

Many larger, and more expensive, mixing consoles feature EQ that has adjustable
frequency ranges. That is, the cutoff frequency for the low-pass and high-pass filters

can be controlled using a potentiometer on the mixing desk. They also have controls

for mid-range band-pass filters that can adjust the size of the pass-band and the
centre frequency. The ratio between the centre-frequency and the pass-band width,

or just band width, is called the Q:

Q = fc/bw

The Q determines the selectivity of a band-pass filter; low-Q means that a lot of
frequencies are passed through the filter and high-Q means that a very narrow range

of frequencies are passed through the filter.

In general, high-Q filters require very long impulse responses, whereas low-Q filters

can be constructed out of relatively short impulse responses. For this reason, high-Q
filters are said to have long ring times.

We can implement a sweepable EQ by varying the filter’s impulse response. To do

this we design filters with different pass-band centre-frequencies and pass-band
widths, keeping the ratio of the centre-frequency and band-width constant for

different frequencies.

90

Audio effects

Figure 5.6: Frequency-response of a band-pass filter designed by convolving the impulse

responses of a low-pass filter and a high-pass filter designed using fir1(). The pass-band

is from 900Hz to 1100Hz normalised to angular-frequency (2 ∗ pi ∗ 900/44100 and

2 ∗ pi ∗ 1100/44100).

91

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Learning activity

Construct the following band-pass filters for a sample rate of 44100Hz with a Q of 10 by convolving a

low-pass and high-pass 100th-order FIR filter in each case:

centre-frequency 1000Hz band-width 100Hz

centre-frequency 2000Hz band-width 200Hz

centre-frequency 100Hz band-width 10Hz.

Plot the impulse responses of your filters, i.e. the vector returned by fir1(), using Octave’s freqz()

function. Save your plots using the print() function.

5.1.4 Subtractive synthesis

Among the first creative uses of digital filtering was music synthesis. Early music

synthesizers, such as those invented by Bob Moog in the 1960s, used a technique
called subtractive synthesis to create different musical timbres, meaning tone

colours or sound qualities.

A rich source waveform is generated at a given musical pitch, which has a

fundamental frequency corresponding to the key pressed on a piano-like keyboard,
and this waveform is filtered to create the different timbres. Musical pitch is relative

to a reference frequency which is usually chosen to be Concert Pitch (A 440Hz). We

use the lowest instance of this pitch (A 55Hz) as the base frequency from which we
generate the frequencies of all other musical pitches. Given a reference frequency,

the frequencies of the semitones of Western music scales are given by the relation:

fk = 55 ∗ 2k/12

where k is the note number, or number of semitones, along a standard music

keyboard. We can hear the basic principles of subtractive synthesis by low-pass or

band-pass filtering a Helmholtz waveform, consisting of many partials.

For musical sounds, the waveform is periodic, meaning that the same wave repeats

every frequency cycle at the given pitch; this means that the spectrum is also
periodic with partials spaced from 0Hz every fk Hz.

To create a frequency-rich waveform, we assume a sample rate of 44.1kHz and a

relatively low fundamental frequency of 100Hz. We can construct a Helmholtz

waveform using the spectrum and inverse FFT:

sr=44100;

X = zeros(1,44100); % make Spectrum vector X(101:100:22050)=1; %

Impulse train in spectrum spaced every 100Hz

X(44100:-1:22051)=X(1:22050); % Symmetric spectrum x=real(ifft(X)); %

Construct waveform by inverse Fourier transform plot(x(1:4410)) % Plot

10 cycles of the waveform

92

Audio effects

Learning activity

Using the fir1 and conv functions, filter the waveform x above using a 1000th-order FIR filter with the
following cutoff frequencies and plot 10 cycles of the resulting waveform:

2*pi*1000/44100 (i.e. 1000Hz)

2*pi*500/44100

2*pi*100/44100

2*pi*50/44100

2*pi*10/44100.

Listen to the waveforms using Octave’s sound() command.

5.1.5 Echo

Recall in the last chapter that the basic elements of systems were reduced to scaling

and delay of complex exponentials. The process of delay can operate at the short
time-scale, which is the case in filtering, or at longer time scales which produce

echoes.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
m

pl
itu

de

Time (samples)

Complete impulse response of an echoic room

Figure 5.7: One second of a room impulse response. The discrete echoes of the early response

are at the left of the figure followed by a noisy late response that lasts for several seconds.

The combined early and late response make the characteristic sound of a room.

One common application of delay is to model the echoes in an acoustic space such as
a cave or a concert hall. The impulse response of an acoustic space consists of a

93

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

decaying set of impulses spaced at relatively long intervals, when compared with
filter impulse responses. Figure 5.7 shows the impulse response of a concert hall

(the impulse is usually a large high-pressure balloon burst and the response is
recorded by a microphone in the room).

-1

-0.8

-0.6

-0.4

-0.2

0

0 500 1000 1500 2000

A
m

pl
itu

de

Time (samples)

Early response of an echoic room

Figure 5.8: Early response of a room measured at a sample rate of 44100Hz. The figure

shows about 1
20

th of a second of the room’s impulse response. Five distinct groups of

echoes can be seen in the figure; the timings of these echoes provide a strong acoustic cue

for the size of the room.

Figure 5.8 shows the first part of the room response. This is called the early response
and it is due to the echoes caused by the walls, floor and ceiling. Impulses at the

same position in the room cause the same set of echoes to occur. However, when the

impulse is produced at a different location the echo response changes. This is due to
the physical action of the impulse wave travelling in the room; the reflections of the

wave to the microphone are determined by the room’s geometry. Hence an echoic

impulse response is determined by the spatial geometry of the architecture. For this
reason, modelling echoes in room responses is part of the field called acoustics.

Echoes feature prominently in many kinds of music and special effects. In the 1960s
the Dub music of Kingston, Jamaica, featured prominent echoes on the vocal track of

dance hall music records. In the 1970s echoes were prominent in progressive rock
music and they feature heavily on many dance music and electronic music tracks of

the 1980s and 1990s.

Echoes can be used to construct rhythms; a regular beat can be made by creating an

echo at equally spaced intervals. This is an effect that is used on many dance music

tracks.

94

Audio effects

Learning activity

The sound files required in this activity will be available for download from the student website

http://www.londonexternal.ac.uk/current students/programme resources

/cis/index.shtml.

Load the echo1.wav soundfile example into Octave.

Load the piano1.wav soundfile example into Octave and convolve the two signals using Octave’s

conv function.

Listen to the original piano1 sound, and then listen to the resulting audio using Octave’s playaudio

function.

What do you hear if you listen to the echo1 sound on its own?

5.1.6 Reverberation

Figure 5.7 shows one second of the room response corresponding to the early
response above. Here we see that after the initial echoes there is a noisy decaying

signal present in the impulse response. This is the part of the room’s response known

as reverberation and it is caused by the rapid build-up of many echoes as the initial
echoes get reflected around the room multiple times each. The noisy late response is

a characteristic of large spaces and it is a very important perceptual cue for the space
that sounds occupy.

The late response of a room can also be modelled using FIR filters; but typically very
long FIR filters are needed. For example, in a large space, the impulse response can

be as long as 20 seconds before the impulse decays below the threshold of hearing,

typically set to −60dB from the initial impulse. At a sample rate of 44.1kHz that is
882,000 samples for the impulse response.

It is especially important when using long impulse responses to perform the
convolution using an efficient method such as spectral multiplication via the FFT.

In the following learning activity you will use the full impulse response of a real
room to change the acoustic image of a sound so that it is perceived as localized in a

concert hall instead of as a dry source.

Learning activity

The sound files required in this activity will be available for download from the student website

http://www.londonexternal.ac.uk/current students/programme resources/

cis/index.shtml.

Load the reverb1.wav soundfile example into Octave. This signal is the room impulse response

shown in Figure 5.7.

Load the piano1.wav soundfile example into Octave and convolve the two signals using Octave’s

conv function.

Listen to the original piano1 sound then listen to the resulting audio using Octave’s playaudio function.

What do you hear if you just listen to the reverb1 sound?

95

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

About how long does the convolution computation take?

Now try using the FFT method of convolution instead of using conv.

How much faster is the FFT-based method?

5.1.7 Resampling

Sometimes it is useful to alter the sample rate of a signal relative to the original rate.

This process is called resampling. For audio synthesis this has the effect of changing

both the perceived musical pitch and the duration of the signal. As such, the process
of resampling is a very important one in music synthesis.

The Fairlight sampling synthesizer was the first commercial digital musical
instrument to employ sampling to emulate real musical instruments. Other

instruments followed including the Synclavier and the Emulator. The idea of

sampling became prominent in the 1980s and was widely used in pop music, music
for film and television and in experimental electronic and computer music.

One of the design constraints in building a sampling synthesizer is the amount of
computer memory needed to store the samples. The access to the sample had to be

rapid, whenever a key was pressed, so they had to be stored in random access
memory rather than on disk during a performance.

At the time these instruments were designed, random access memory was very
expensive; and sampling rates had to be at least 32kHz for the sounds to have high

enough frequencies (16kHz) to be of a high fidelity for musicians to use.

Take, for example, a piano sound produced by a sampling synthesizer. There are 88

keys on a standard piano. The idea behind sampling is to record each note on the

piano separately and to play back these recordings when triggered from a keyboard
adjusting the loudness relative to the velocity of the key stroke. A piano sound is

very long; if we hold the note it can easily last 30 seconds. One trick was to loop the
sample after the initial attack portion of the sound until the key was released.

Another trick was to only sample every few notes (say every four) and to use pitch

shifting of the samples to generate the notes in-between.

The resample function takes three arguments: the signal to be resampled, the

interpolation factor p and the decimation factor q. The last two arguments are
positive integers. The ratio between p and q, i.e. p

q , is the resampling factor. For

example, resampling with p=1 and q=2 gives a factor of 1
2
; the resampling will be to

half the sample rate of the original.

The change in sample rate alters the frequency content and duration of the signal

when it is played back at the original sampling rate. For example, a sine wave with
frequency 440Hz at a sample rate of 44.1kHz that is resampled to 22.05kHz and

played back at 44.1kHz will sound at 880Hz, or double the original frequency. This

is called down-sampling or decimation. The converse is also true; if the original
440Hz sine wave is resampled to 88.2kHz and played back at 44.1kHz then it will

sound at 220Hz. This is called up-sampling, or interpolation.

The following example illustrates the use of Octave’s resample function to alter the

pitch of a sound to play a chromatic musical scale:

96

Audio effects

octave>[x,sr] = wavread(’sounds/pianoC5.wav’);

octave>sr

ans = 44100

octave>playaudio(x); % listen to the original

octave>y = resample(x, 1, 2); % resample to 1/2 the frequency

octave>playaudio(y); % listen to the resampled

octave>for k = 0:11 % make a musical scale

octave>y = resample(x, 2(̂k/12), 1);

octave>playaudio(y)

octave>endfor

Learning activity

What is the length, in samples, of the original piano sound above?

Make a table of the lengths of the resampled versions of the piano sound.

What is the mathematical relationship between the length of the resampled signal and the resampling factor
p
q ?

Band-limited resampling

Up-sampling and down-sampling processes are built upon filtering. These processes

are called band-limited resampling because they use low-pass filtering

(band-limiting) to ensure that no new frequency components are added to the signal
when applying the interpolation and decimation steps.

For band-limited interpolation, the signal is first extended by inserting p-1 zeros
between the original samples. Low-pass filtering must be used to avoid aliasing at

the new sample rate; the cut-off frequency is equal to the Nyquist of the original
sample rate. Figure 5.9 illustrates the steps that make up band-limited interpolation.

For down-sampling, a low-pass filter is applied first with cut-off frequency equal to
the Nyquist of the new sample rate then q-1 samples are removed after every qth

sample.

For resampling a ratio p
q , both of the above operations are applied in the order of

interpolation followed by decimation. In practice, only one low-pass filter is required

when performing both steps together: that is the convolution of the two filters used
in the separate interpolation and decimation steps.

97

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

-1

-0.5

0

0.5

1

2 4 6 8 10 12 14 16 18 20

A
m

pl
itu

de

20 samples of a signal with sample rate SR

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

5 10 15 20 25 30 35 40

A
m

pl
itu

de

Zeros inserted between original samples

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

5 10 15 20 25 30 35 40

A
m

pl
itu

de

Time (samples)

Low-pass filtered with original Nyquist frequency as cutoff. New sample rate is 2*SR

Figure 5.9: Example of band-limited interpolation (up-sampling). An original signal with

sample rate SR is interpolated by a factor of 2 by inserting one zero between each original

sample and low-pass filtering the new signal with cutoff frequency π

2
, the original signal’s

Nyquist frequency. The new signal is twice the length of the original signal and would

need to be played back at twice the sample rate of the original to sound the same.

98

Image filtering

Learning activity

Without using Octave’s resample function, resample the piano signal above by each of the following

interpolation/decimation ratios:

p=3, q=1

p=1, q=2

p=4, q=3

p=1, q=8

p=1, q=16.

Listen to the resulting signals at the original sample rate (44.1kHz). Compare your sounds with Octave’s

resample function. If they don’t sound almost identical there may be a problem with your

interpolation/decimation and filtering method.

5.2 Image filtering

Digital images can be created and transformed using the same signal processing

tools as audio signals. The major difference is that an image has two independent

variables instead of one. These are spatial dimensions, an x-axis and a y-axis. Each
pixel in an image is labelled with an (x,y) index in a similar way to audio signals

which are labelled with only a single time axis.

To represent images a two-dimensional data structure is needed. The

two-dimensional generalisation of vectors are matrices. The following section
describes the basic operations in Octave on matrices.

5.2.1 Matrices

Two or more vectors of the same size can be combined to make a matrix. A matrix is
simply a collection of vectors, with some specific operations that are allowed upon

them as you will learn below.

There are several ways to construct a matrix in octave:

Matrix creation

A matrix can be created by combining vectors of the same length into a single

structure. This is achieved in Octave using the bracket [] and semicolon ; operators:

The bracket notation indicates that the enclosed values form a matrix. The

semicolon notation separates the rows of the matrix. The following are examples of
matrix construction in Octave:

octave:>[1 2 3;4 5 6]

ans =

99

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

1 2 3

4 5 6

Here, a matrix is formed out of two rows consisting of three columns. Thus the
matrix dimensions are 2× 3; two rows and three columns. The rows and columns

can each be any length as long as every contained vector is the same length. The
following example is a matrix with three rows and two columns:

octave:>mymatrix = [1 2; 3 4; 5 6]

mymatrix =

1 2

3 4

5 6

Notice that the semicolon “;” operator separates the rows. This example shows
assignment of the resulting matrix to a variable, mymatrix.

Learning activity

Construct the following matrices:

4 x 3 matrix consisting of integer multiples of the vector [1 2 3].

5 x 5 matrix consisting of the numbers 1 . . . 25

A matrix with rows of different lengths (unequal column counts).

What happens when you try to construct the third matrix above? Why?

Some useful matrix initialisation methods are provided in Octave for convenience.
The two that are possibly the most useful for image processing are the functions

zeros() and ones(). These both take two arguments, the number of rows and

columns to make respectively, and they fill the resulting matrix with the value zero
or one:

octave:>zeros(2,3)

ans =

0 0 0

0 0 0

octave:> ones(7,2)

ans =

1 1

1 1

1 1

1 1

1 1

1 1

1 1

One interesting matrix-generating function in Octave is the magic square constructor

magic(). The function takes one argument, the row and column dimension, and

returns a matrix such that every row, column and main diagonal adds up to the same
value:

octave:20> M5 = magic(5)

100

Image filtering

M5 =

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9 octave:>sum(M5) % sum down the columns

ans =

65 65 65 65 65

octave:>sum(M5,2) % sum along the rows

ans =

65 65 65 65 65

octave:>sum(M5)́ % also sums along the rows

ans =

65 65 65 65 65

octave:> diag(M5) % extract the main diagonal

ans =

17

5

13

21

9

octave:> sum(diag(M5))

ans = 65

To get the backwards diagonal, from the top right to lower left of the matrix, we take
the diag() of the matrix flipped left-to-right using the fliplr() function: octave:>

fliplr(M5)

ans =

15 8 1 24 17

16 14 7 5 23

22 20 13 6 4

3 21 19 12 10

9 2 25 18 11

octave:31> diag(fliplr(M))

ans =

15

14

13

12

11

octave:32> sum(diag(fliplr(M)))

ans = 65

We have now verified that every row, column and diagonal adds up to the same
value: 65.

101

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

Learning activity

Calculate the sums of the rows, columns and two main diagonals of the following matrices:

magic(3)

magic(11)

rand(10).

Matrix operations

Matrix operations are similar to vector operations in Octave.

Adding a scalar to a matrix adds the scalar value to all the individual values of the

matrix:

octave:4> ones(3,2) + 2

ans =

3 3

3 3

3 3

The same is true of subtraction:
octave:49> magic(3) - 1.5 ans =

6.50000 -0.50000 4.50000

1.50000 3.50000 5.50000

2.50000 7.50000 0.50000

Here the resulting matrix contains floating point and negative values. We can also
make a complex-valued matrix by adding a complex number to a real-valued matrix:

octave:>magic(3) + i*pi

ans =

8.0000 + 3.1416i 1.0000 + 3.1416i 6.0000 + 3.1416i

3.0000 + 3.1416i 5.0000 + 3.1416i 7.0000 + 3.1416i

4.0000 + 3.1416i 9.0000 + 3.1416i 2.0000 + 3.1416i

Matrix-scalar multiplication similarly yields the product of the individual matrix
elements and the scalar value:

octave:>mymatrix = ones(4,3) * 1.61-3.14i

mymatrix =

1.6100 - 3.1400i 1.6100 - 3.1400i 1.6100 - 3.1400i

1.6100 - 3.1400i 1.6100 - 3.1400i 1.6100 - 3.1400i

1.6100 - 3.1400i 1.6100 - 3.1400i 1.6100 - 3.1400i

1.6100 - 3.1400i 1.6100 - 3.1400i 1.6100 - 3.1400i

Here, the resulting matrix consists of all complex-valued elements. We can pass a

matrix as an argument to any of Octave’s functions and the results will also be a

matrix:

octave:>abs(mymatrix)

ans =

3.5287 3.5287 3.5287

102

Image filtering

3.5287 3.5287 3.5287

3.5287 3.5287 3.5287

3.5287 3.5287 3.5287

octave:>angle(mymatrix)

ans =

-1.0970 -1.0970 -1.0970

-1.0970 -1.0970 -1.0970

-1.0970 -1.0970 -1.0970

-1.0970 -1.0970 -1.0970

Addition of two matrices is possible only if they have the same number of rows and

columns:

octave:>R = rand(2,3) % A 2× 3 matrix of random values

R =

0.967629 0.254644 0.565806

0.656365 0.876986 0.053914

octave:>a = [1 2 3]

a =

1 2 3

octave:> R + a % Attempt to add a matrix and a vector with different

dimensions

error: operator +: nonconformant arguments (op1 is 2x3, op2 is 1x3)

error: evaluating binary operator ‘+’ near line 4, column 3

The problem here is that we cannot add a vector to a matrix because they have

different dimensions. But we can form a matrix out of the vector so that it has the

same dimensions as the matrix and then perform the addition:

octave:>a = [1 2 3;4 5 6]

a =

1 2 3

4 5 6

octave:>R + a

ans =

1.9676 2.2546 3.5658

4.6564 5.8770 6.0539

Multiplication between matrices has two forms: element-wise multiplication and
matrix multiplication. The rules for element-wise multiplication, or division, are the

same as for addition and subtraction. Two matrices can be multiplied element-wise

if they both have the same row and column dimensions:

R .* a % element-wise multiplication

ans =

0.96763 0.50929 1.69742

2.62546 4.38493 0.32348

octave:67> R ./ a

ans =

0.9676290 0.1273218 0.1886019

0.1640912 0.1753972 0.0089856

The addition operations above are associative and commutative:

associative:A + (B + C) = (A +B) + C,

103

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

commutative:A +B = B +A

The element-wise multiplication operation is associative, distributive and

commutative:

associative:A. ∗ (B. ∗ C) = (A. ∗ B). ∗ C

distributive:A. ∗ (B + C) = A. ∗ B +A. ∗ C

commutative:A. ∗ B = B. ∗ A

However, matrix multiplication is not associative or commutative. The rules for

matrix multiplication are similar to the rules for vector multiplication. Recall that

the inner dimensions of two vectors A,B had to match for multiplication: i.e.
columns(A) == rows(B) must be true for A*B to be possible. The same rule applies

to matrix multiplication:

octave:> R = rand(4,3)

R =

0.149063 0.562362 0.217371

0.048282 0.312965 0.785738

0.830840 0.171665 0.055685

0.092340 0.254154 0.419642

octave:>S = rand(4,3)

S =

0.989472 0.449020 0.589371 0.515513

0.686891 0.470026 0.398442 0.118235

0.791070 0.043644 0.175000 0.753054

octave:>columns(R), rows(S)

ans = 3

ans = 3

octave:>R * S \% matrix multiplication

ans =

0.70573 0.34074 0.34996 0.30703

0.88432 0.20307 0.29066 0.65360

0.98406 0.45618 0.56782 0.49054

0.59791 0.17924 0.22913 0.39367

The resulting matrix has the number of rows as the first matrix and the number of

columns of the second matrix.

Learning activity

For each item below, construct three matrices A, B, C, where each matrix is a different size to the

others, and to satisfy the given Octave expressions:

A + B * C

A * B + C

A * B * C

A * (B * C)

A * (B .* C)

104

Image filtering

5.2.2 Image representation

Matrices are used to represent images in Octave. Both colour and grayscale images

can be represented. A greyscale image is represented by a matrix, with rows and
columns corresponding to the number of pixels in each dimension.

Figure 5.10 shows a 32× 32 pixel image displayed using Octave’s imagesc()

function:

octave:>colormap(gray) octave:>imagesc(rand(32))

y-
in

de
x

x-index

Random 32 x 32 grayscale image

5

10

15

20

25

30

5 10 15 20 25 30

Figure 5.10: A 32× 32 matrix generated using rand(32) displayed as an image using

imagesc(). The values of the image are automatically scaled to the range 0..255 by

imagesc(). In this example, the values represent shades of gray; the colourmap is a gray

scale.

The values of the image matrix are in the range [0..1]. The imagesc() function

scales the image to the appropriate range for displaying images no matter what the

range of input values is. This is a convenience in Octave; usually a greyscale image
will have values in the range [0..255]. The dark colours represent low values in the

image and the bright colours represent high values.

Figure 5.11 shows a 512× 512 matrix displayed using Octave’s imagesc() function.

The pixels are now smaller because the resolution is automatically adjusted by
imagesc() to display matrices of different sizes as images of the same size.

octave:>imagesc(rand(512))

Displaying colour images using a single channel of image information is possible

using a concept known as indexed colour. Here a lookup-table is used to map the
values in the range [0..255] to red, green and blue colour channel values also in the

range [0..255]. The lookup-table for colours is called a colourmap for indexed colour

schemes. The above examples used a greyscale colourmap to display the

105

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

y-
ax

is

x-axis

512 x 512 random grayscale image

0

100

200

300

400

500

0 100 200 300 400 500

Figure 5.11: A 512 × 512 matrix displayed using imagesc(). The pixels are smaller because

the image display function automatically sets the resolution of the image depending on the

size of the matrix so that the resulting image size is independent of the matrix size.

single-colour channel greyscale values. We can map greyscale values onto an

alternate colourmap that expands the monochrome channel to display all three

colour channels using the colormap() function:

octave:>colormap(rainbow)

octave:> imagesc([1:512]’ * ones(1,512))

Here we used vector multiplication to convert a vector [1:512]’ into a matrix using

a second vector consisting only of ones. The matrix repeats the single column vector
512 times to form the matrix. Now that images can be made from matrices the

methods from digital signal processing can be applied to image processing.

Image synthesis

Just as with audio signals, image signals can be created from basic mathematical
functions like sine waves. The following examples illustrate how greyscale image

signals can be synthesised and displayed in Octave:

octave:> t = 1:512; % the pixel index

octave:> x1 = sin(10 * 2*pi/512 * t); % a 1d sinusoid

octave:> imagesc(x1’ * x1) % Make a 512 x 512 image

Example 5.12 shows the resulting image. This example illustrates that the concepts
of an image signal are similar to those of audio signals. The main difference is that

the independent variables are spatial dimensions, not temporal as in audio. This

means that frequency must be interpreted as spatial frequency, which is measured in

106

Image filtering

y-
in

de
x

x-index

Two-dimensional sine wave grating with frequency 10/512 cycles per pixels in x and y

0

100

200

300

400

500

0 100 200 300 400 500

Figure 5.12: A two-dimensional sine wave with spatial frequency 10
512

cycles per pixel in each

dimension. Light regions represent high values.

107

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

cycles-per-pixel. The above example makes a sine wave in two dimensions that has a
spatial frequency of 10

512
≈ 0.02 cycles per pixel.

Likewise, the concepts of amplitude and phase also apply to images. We can offset
the phase of a sinusoid in one of the dimensions to see how this affects the resulting

image:

octave:> x1 = sin(10 * 2*pi/512 * t); % a 1d sinusoid

octave:> x2 = sin(10 * 2*pi/512 * t + pi/2); % a 1d sinusoid offset by

pi/2

octave:> imagesc(x1’ * x2) % Make a 512 x 512 image

Figure 5.13: A two-dimensional sinusoid with the x-axis offset by a phase of pi

2
. Compare

with Figure 5.12.

Figure 5.13 illustrates the image produced when one of the sinusoids is offset by π
2
.

Here we see that the colour values in the x-dimension start at a different point in the
cycle.

To further illustrate the concept of a two-dimensional sinusoid Figure 5.14 shows
one cycle of the two-dimensional sinusoid, with pi

2
offset in the y-dimension, as an

Octave mesh() plot. This type of plot is three dimensional, where the x and y axis

represent the image plane and the z-axis shows the sinusoid’s value as a height
above the plane rather than as a colour. This helps to understand that images are

simply two-dimensional signals; each slice of the two-dimensional signal is a

one-dimensional signal that looks like a simple sinusoid.

We can construct more complex images by summing together sinusoids of different

frequencies, amplitudes and phase offsets. This principal of sinusoids being a basis
for images is the same as for audio signals, but with an added dimension and in the

spatial frequency domain:

octave:>t=1:512;

octave:> x1 = sin(10 * 2*pi/512 * t + pi/2);

octave:> x2 = sin(20 * 2*pi/512 * t + pi/2);

octave:> x3 = sin(30 * 2*pi/512 * t + pi/2);

octave:> x4 = sin(40 * 2*pi/512 * t + pi/2);

108

Image filtering

Mesh plot of one cycle of a 2d sinewave with pi/2 offset in y

10
20

30
40

50

x-index10
20

30
40

50

y-index

-1

-0.5

0

0.5

1

Colour value (amplitude)

Figure 5.14: A three-dimensional mesh plot of one cycle of the two-dimensional sinusoid of

Figure 5.13. The value of the sinusoidal function at each position index (x,y) is

represented as a height instead of as a colour.

octave:> x5 = sin(50 * 2*pi/512 * t + pi/2);

octave:> X = [x1;x2;x3;x4;x5]’ * [x1;x2;x3;x4;x5];

octave:> imagesc(X)

The above example shows the construction of a matrix from five sinusoids with

spatial frequencies being successive integer multiples of 10
512

cycles per pixel, all with

phases offset by pi
2

. The resulting image produced by imagesc() is shown in

Figure 5.15. This is a harmonic series of two-dimensional sinusoids, because they
have frequency relationships that are successive integer multiples of a common

fundamental frequency. Is there a visible relationship between adding

two-dimensional sinusoids in the spatial domain and adding one-dimensional
sinusoids?

To assist in the analysis of two-dimensional signals use Octave’s mesh() plot
function. However, it is important not to pass it too many values because the plot

will take a very long time to display. Figure 5.16 is a mesh plot of one cycle of the
signal shown in Figure 5.15. Here we can see that the construction of a harmonic

series of two-dimensional sinusoids constructs a periodic pulse with fundamental

spatial frequency 10
512

cycles per pixel.

109

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

y-
in

de
x

x-index

Image of a harmonic series of five summed 2D sinusoids

0

100

200

300

400

500

0 100 200 300 400 500

Figure 5.15: Image of five summed sinusoids with fundamental spatial frequencies at integer

multiples of a common fundamental.

Mesh plot of one cycle of a harmonic series of five summed 2D sinusoids

10
20

30
40

50

x-index10
20

30
40

50

y-index

-2

-1

0

1

2

3

4

Colour value (amplitude)

Figure 5.16: A mesh plot of one cycle of the two-dimensional signal of Figure 5.15. The

signal is a harmonic series that constructs a periodic pulse in two dimensions.

110

Image filtering

Learning activity

Construct 512× 512 pixel images from each of the following mathematical expressions:

sum of ten 2D sinusoids with frequencies at integer multiples of a common fundamental of 1
512
cycles

per pixel

sum of ten 2D sinusoids with frequencies at integer multiples of a common fundamental of 1
512
cycles

per pixel and alternating phases of 0 and pi/2

vector product of two sinusoids – one with spatial frequency 1
512
cycles per pixel and the other with

spatial frequency 20
512
cycles per pixel.

Plot your results using both imagesc() and plot a 50× 50 region of each image using the mesh()
function. [Hint: to plot the first 50× 50 patch of an image matrixX use mesh(X(1:50,1:50))].

Natural images

So far we have constructed and inspected synthetic images using mathematical
functions; this process is called image synthesis. Many images that we encounter in

creative practice are obtained by digitally sampling a photographic image.

The process for sampling a photographic image is similar to that of sampling an

audio signal, except that the sampling occurs in the spatial domain and in two
dimensions.

We start with an image resolution which is the sampling rate in the x and y
dimensions expressed in pixels per inch, or pixels per centimeter. It is common to

use a resolution of 200 pixels per inch in both the X and Y dimensions. Some digital

sampling systems use higher or lower resolutions than this; you will need to consult
the equipment user documentation to find the resolution of your equipment.

Assuming that an image has been saved in a digital format, such as JPEG, TIFF, GIF
or PNG, we can load it into Octave using the imread() function. (Note: you should

find your own image with which to try out these examples. When we refer to
‘carousel.jpg’, you should substitute the name of the image you are using for these

examples.)

octave:>A = imread(’/home/cc227/carousel.jpg’);

octave:>size(A)

ans =

933 705 3

Here, the image information is read from a JPEG format image file into a matrix that
has x and y dimensions of 933× 705; the size of the image in pixels. Each value in

the matrix is a number in the range [0..255] representing the brightness on an 8-bit
scale. However, notice that there is another dimension to the image: the three colour

channels holding separate images for Red, Green and Blue. These are represented by

three two-dimensional matrix structures accessed inside the three dimensional
matrix A. The individual colour-channel images can be extracted using: red =

A(:,:,1), green = A(:,:,2) and blue = A(:,:,3).

111

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

To convert the image to greyscale we take the average of the three colour channels
using Octave’s mean() function. We wish to take the mean along the third dimension

of the matrix, giving the average image in the range [0..255]:

octave:>Z = mean(A,3);

With the mean image computed we can now display a greyscale image by setting the

colourmap to gray and displaying the matrix using imagesc():

octave:>colormap(gray); octave:>imagesc(Z);

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

Figure 5.17: A greyscale image constructed by averaging the three colour-channel matrices of

a digital image file loaded using imread() and displayed using Octave’s imagesc()

function. The image dimensions are 933× 705 pixels.

Figure 5.17 shows the resulting greyscale image displayed for the ‘carousel.jpg’

image file. Now that we have loaded an image into Octave and have access to the
image signal as a matrix of values we can perform image filtering to create

photographic effects.

5.2.3 Image effects

Image effects are computed using a two-dimensional impulse response that is

convolved with an image matrix using a two-dimensional convolution operation.

The two-dimensional version of convolution is similar to the one-dimensional
version but it operates along each of the dimensions of the image to produce a

two-dimensional result.

Commercial photograph manipulation software and image processing packages

contain a range of two-dimensional filtering operations that allow various effects to
be applied to an image. These all operate on the same principles as LTI systems and

112

Image filtering

linear filtering as described above and in the last chapter.

To see how this works, we use the Octave function conv2() which takes two

matrices as arguments. The first argument is the image matrix and the second is the
impulse response. As noted in the last chapter, the order of the signals does not

affect the result. The following sections explore different two-dimensional impulse
responses and the effect of convolution of an image on each of them.

Image shift

Recall that a delayed impulse convolved with a one-dimensional signal causes the

signal to be delayed in time. We can translate an image to a different location by
convolving it with a two-dimensional impulse that is shifted in x and y relative to an

origin. A two-dimensional impulse response is often called a kernel in image

processing literature; the kernel is usually symmetric and consists of an odd-number
of samples. Common examples are 3× 3, 5× 5 and 25× 25. The centre-point of the

kernel is taken as the origin, so the unit impulse is taken to be a square matrix with

the centre pixel set to 1 and the other pixels set to zero.

To construct a two-dimensional impulse we start by constructing a one dimensional
impulse and use vector multiplication to make the two-dimensional kernel:

octave:>imp1 = [1 zeros(1,10)] % 11-point impulse

imp1 =

1 0 0 0 0 0 0 0 0 0 0

octave:>imp1 = shift(imp1,5) % shift by floor(11/2)=5 samples

imp1 =

0 0 0 0 0 1 0 0 0 0 0

octave:> kern1 = imp1’*imp1 % Use vector multiplication to make 2D

kernel

kern1 =

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

A call to the function conv2() with an image, Z from above, a kernel, kern1, and a

third argument same, yields the identity:

Z2 = conv2(Z,kern1,’same’); % ’same’ means centre the kernel

The ‘same’ argument tells conv2() to treat the centre point as the zero index. Points

that are to the left of, or above, the centre point are taken as negative shift values

and points that are to the right and below are positive shift values.

In this example we got the same set of values back in the output matrix after

convolution as those in the input matrix. We can verify this by subtracting the result

113

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

from the original image and summing over both dimensions:

sum(sum(Z2 - Z))

ans = 0

This confirms that the output image is exactly the same as the input image even
though we have performed a convolution. Thus the kernel, kern1, is the identity

transform (i.e. the unit impulse or delta function).

We can now move the image to a different location in x and y by offsetting the

impulse relative to its zero-index. The following example constructs a shift of 256

pixels in x and 0 pixels in y using a 513 x 513 kernel:

octave:>kern2 = zeros(513,513); % Make an all-zeros kernel

octave:>kern2(256+257,257)=1; % centre is (257,257) so add 256 in x

octave:>Z2=conv2(Z,kern2,’same’); % perform the convolution

octave:>imagesc(Z2) % display the result

Figure 5.18 shows the result of the convolution. Compare with Figure 5.17. The

convolution takes much longer in this example than in the previous one. This is
because the operation is equivalent to performing a one-dimensional convolution on

every row and column of the image with every row and column of the kernel

respectively. This takes significantly many more multiplications and additions than
for the comparable one-dimensional case.

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

Figure 5.18: The result of convolving the photo in Figure 5.17 with a two-dimensional shift

kernel. The kernel shifts the image 256 pixels in x and 0 pixels in y.

As we learned in the last chapter, we can speed up the process of convolution by
transforming our signals to the frequency domain and using complex multiplication.

We can perform the same sequence of operations as the convolution with kern2

above using the two-dimensional Fourier transform in Octave:

114

Image filtering

octave:> % Take the 2D Fourier transform of the image Z

octave:> % Allow room in the transform for the convolution

octave:> size(Z)

ans =

933 705 % use these values and the 513 x 513 kernel to

octave:> % calculate FFT size

octave:> FZ = fft2(Z, 933+512, 705+512); % 2nd and 3rd arguments are

octave:> % size of Fourier transform

octave:> kern2 = zeros(513,513);

octave:> kern2(257+256,257)=1 % Construct a 2D ’shift’ (delay) kernel

octave:> % We must transpose the kernel when taking its Fourier transform

octave:> FK = fft2(kern2’, 933+512, 705+512); % 2D Fourier transform of kernel

octave:> FY = FZ.*FK’; % Convolution is element-wise complex multiplication

octave:> % notice that the convolution kernel Fourier transform is transposed

octave:> X = real(ifft2(FY)); % convolved image is inverse Fourier transform

octave:> % The FFT does not have the ’same’ argument, so we need to

octave:> % crop the resulting image

octave:> X = X(257:end-255, 257:end-255); % Crop extra pixels from start

octave:> % and end of each dimension

octave:> imagesc(X) % display the image

You should verify that the above recipe using the two-dimensional Fourier transform

produces the same result as the conv2() method. Can you think of a way to do this?

Learning activity

What happens when you omit the ‘same’ argument in conv2() in the kern2 convolution example

above? Why?

How can this be ‘fixed’ after convolution?

Perform each of the following shift operations on the ‘carousel.jpg’ image using either conv2() or

fft2(): [Hint: it will be a lot faster if you use fft2(); how much faster?]

100 pixels to the left

100 pixels to the left and 50 pixels up

256 pixels right and 0 pixels in y

256 pixels right and 256 pixels down.

Image echo

The basic operation of 2D image filtering can be used to perform numerous image

processing effects. The following example illustrates how to construct a kernel to
make image echoes consisting of layered, shifted versions of an image.

We use the same Fourier-transform convolution technique from above but we do not
crop the resulting image to be the ‘same’ size as the original. Instead, we keep the

full transform to allow the image to spread out to a larger canvas:

octave:> kern3=zeros(513,513); % Make a new empty kernel

115

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

octave:> % construct 5 echoes using a for loop

octave:> for k = 1:5

octave:> kern3(ceil(rand(1)*513),ceil(rand(1)*513))=0.2;

octave:> end

octave:> FK = fft2(kern3’, 933+512, 705+512);

octave:> FY = FZ.*FK;

octave:> X = real(ifft2(FY));

octave:> imagesc(X)

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200

Figure 5.19: The result of convolving the photo in Figure 5.17 with a two-dimensional echo

kernel. Here the kernel contains five randomly placed echoes that shift the image both in x

and y.

The result of this convolution is shown in Figure 5.19. The effect is to produce
echoes of the original image but to make them brighter where they overlap more

and darker where the image is not overlapped with echoes.

Learning activity

Make echo kernels that have the following characteristics and test your kernels using frequency-domain

convolution:

three evenly-spaced echoes in the x-dimension only

three randomly-spaced echoes in the y-dimension only

five random echoes in x and y with random heights (impulse amplitudes).

116

Image filtering

Gaussian blur

octave:> n = 25; w = 0.25; % Gaussian size and dispersion params

octave:> g = exp(-0.5*(([0:n-1]’-(n-1)/2)*w).2̂); % Gaussian function

octave:> size(g)

ans =

25 1 octave:> % We use vector multiplication to make a 2D function

octave:> GaussKern = g * g’ ; % make two-dimensional Gaussian

octave:> % The kernel size minus 1 is 24, this is the ‘extra’ we need

octave:> FZ = fft2(Z, 933+24, 705+24);

octave:> FK = fft2(GaussKern’, 933+24, 705+24);

octave:> FY = FZ .* FK;

octave:> X = real(ifft2(FY));

octave:> imagesc(X(13:end-11,13:end-11)) % crop 12 pixels each side of

image

Figure 5.20 shows a mesh plot of the two-dimensional Gaussian kernel of length 25
pixels. Figure 5.21 shows the result of convolving the image from Figure 5.17 with

the Gaussian kernel. This blurring effect is often used to ‘soften’ photographic

images in digital image manipulation software.

Two dimensional Gaussian kernel

5
10

15
20

25

5

10

15

20

250

0.2

0.4

0.6

0.8

1

Figure 5.20: The two-dimensional Gaussian kernel is a bell curve, when convolved with an

image this produces a blurring effect.

Motion blur

Another blur effect is obtained if the blurring is restricted to one direction. This is

motion blur, it simulates the effect obtained when a fast-moving object is

photographed using a relatively slow shutter speed on a camera. The direction of the
blur can be controlled by the orientation of the line of non-zero values in the kernel.

117

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

Figure 5.21: The result of convolving the image with the Gaussian kernel.

octave:> % eye stands for the identity matrix: octave:> M = eye(25);

% Diagonals are 1s rest are zeros

octave:> FK = fft2(M’, 933+24, 705+24);

octave:> FY = FZ.*FK;

octave:> X = real(ifft2(FY));

octave:> imagesc(X(13:end-11,13:end-11))

Figure 5.22 is a mesh plot of the motion-blur kernel. Figure 5.23 shows the result of
convolving the original photograph with the motion-blur kernel.

Edge detection

An edge detection filter preserves only transitions between neighbouring image

values that differ by a large margin in the convolution thus producing an image
consisting only of the edges of an original image.

octave:> D = -ones(11);

octave:> D(ceil(11/2),ceil(11/2))=11*11-1

D =

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 120 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

118

Image filtering

Motion-blur kernel

5
10

15
20

25

5

10

15

20

250

0.2

0.4

0.6

0.8

1

Figure 5.22: The motion-blur kernel is a line oriented in the direction of motion; when

convolved with an image this produces a direction blurring effect.

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

Figure 5.23: The result of convolving the image with the motion-blur kernel.

119

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

octave:> sum(sum(D))

ans = 0

octave:> FZ = fft2(Z, 933+10, 705+10);

octave:> FK = fft2(D’, 933+10, 705+10);

octave:> FY = FZ.*FK;

octave:> X = real(ifft2(FY));

octave:> imagesc(X)

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

Figure 5.24: Convolution with edge-detecting kernel.

Low-pass filter

Constructing filters by hand is very difficult and often non-intuitive. Fortunately,

there exist functions that assist in digital filter design. For example, the fir1()

function used above for one-dimensional audio filtering can also be used to

construct a two-dimensional filter kernel.

We start by constructing a one-dimensional filter, as above, and we extend it to two

dimensions using vector multiplication. The cutoff frequency is expressed in

normalised frequency units as a fraction of π radians; in the case of images, this
frequency is a spatial frequency in cycles per pixel.

The following Octave example illustrates how to make a low-pass filter kernel and
apply it to an image:

octave:> f=fir1(512,.03);

octave:> F = f * f’;

120

Image filtering

octave:> FK = fft2(F’, 933+511, 705+511);

octave:> FY = FZ.*FK;

octave:> X = real(ifft2(FY));

octave:> X=X(257:end-255,257:end-255);

octave:> imagesc(X)

The result of the low-pass filter operation is shown in Figure 5.25. Note that the

low-pass filter operation is similar to the Gaussian blur filter that we used above.
The input image has all the edge detail removed.

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

Figure 5.25: Convolution with a 512× 512 low-pass filter kernel with cutoff frequency 0.03π.

High-pass filter

The following example shows how to perform the same processing steps but to

create a high-pass filter:

octave:> f=fir1(512,.03,’high’);

octave:> F = f * f’;

octave:> FK = fft2(F’, 933+511, 705+511);

octave:> FY = FZ.*FK;

octave:> X = real(ifft2(FY));

octave:> X=X(257:end-255,257:end-255);

octave:> imagesc(X)

The resulting image is shown in Figure 5.26. A high-pass filter emphasizes the places

in the image where the colour values transition between contrasting values. The

effect is to emphasise the edges in the image, so the high-pass filter can be used as
an edge-detector.

121

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

Figure 5.26: Convolution with a 512× 512 high-pass filter kernel with cutoff frequency 0.03π.

To become familiar with how filtering can create different effects in your images you

should experiment with different cutoff frequencies for low-pass, high-pass and

band-pass filters. After a while you will have the experience to be able to create a
range of effects that suit your creative needs.

122

Summary and learning outcomes

Learning activity

All of the convolution operations in the above examples were performed in the frequency domain. The

following activity collects all the different transforms into a single function that you can use for all your image

filtering needs.

Write an Octave function called convImage() that takes three arguments: an image matrix, a 2D

convolution kernel and a third argument indicating whether to make the output image the ‘same’ size

as the input image.

Your function should take the two-dimensional Fourier transform of the image matrix and the

convolution kernel. The size dimensions of the Fourier transform should be the dimensions of the

image matrix plus the length of one side of the kernel minus 1: rows(X)+rows(H)-1,

columns(X)+columns(H)-1. The Fourier transform of the convolution kernel should transpose

the kernel.

The convolution itself is an element-wise matrix multiplication between the two complex Fourier

transformed matrices.

If the ‘same’ flag is present (test using if nargin == 3) then the output matrix should be cropped

so that the output image is the same size as the input image. The cropping should be symmetrical so

that the same number of pixels are removed from the top and bottom and left and right of the output

image.

For hints on how to perform these operations, study all of the examples above.

Make kernels for each of the following transforms and convolve your own image files using your

convImage() function:

a low-pass filter with cutoff 0.05π

a high-pass filter with cutoff 0.05π

an edge-detection filter with dimension 7× 7
a Gaussian blur filter with dimension 5× 5.

5.3 Summary and learning outcomes

The fields of digital audio processing and digital image processing are vast. This

chapter has scratched the surface but you now have enough technical knowledge to
explore the subject further by reading textbooks, Internet sites and by exploring

freely-available software. You can investigate other kernels for audio and image

filtering by experimenting with digital audio and image processing packages such as
Audacity, Photoshop and its free cousin The Gimp.

In many of these packages it is possible to extract the digital filter kernels by
supplying the software with a single impulse in the middle of an otherwise zero

audio or image signal. The resulting impulse response is the basis for your own
version of the digital filter.

This technique only works if the filter being analysed is an LTI system. While many
digital audio and image processing packages are based on LTI systems theory, not all

of them are, so your analyses may vary in success from one application to another.

123

Creative computing II: interactive multimedia – Volume 1: Creative signals and systems

The most important aspect of LTI systems that we have investigated is that a vast
collection of applications and transformations can be reduced to a single operation:

convolution. It is vital to understand how to use convolution as a first step to more
advanced methods that you may encounter.

With a knowledge of the contents of this chapter and its directed reading and
activities, you should be able to:

discuss the relationship between signal processing, and audio and visual effects

describe and implement a range of audio effects

describe and implement a range of image filtering effects.

5.4 Exercises

In addition to the exercises listed below, you should attempt all of the learning
activities throughout this chapter, to enhance your understanding of the material.

1. What is a room response? What are some of the practical reasons for finding out

what a room response is?

What is meant by early and late response? Why would it be useful to know what
the early response is? Why would it be useful to know what the late response is?

How is a room response determined?

2. Can you think of a visual analogue to the concept of a room response? Explain
and discuss your answer.

3. All of the image processing examples in Section 5.2.3 above transformed a

greyscale image. To work in colour we must transform the individual colour

channels. Load a colour image from your collection and work through the
following:

Make a red-only image by copying the matrix returned by imread() and
zeroing the green and blue colour planes. [Hint: the Octave operator

A(:,:,1) accesses colour plane 1 in the three-dimensional matrix

representation used by Octave for colour images.]

Perform a low-pass, high-pass and band-pass convolution on each of the

three colour channels separately. Display your colour filtering operations

using octave’s imshow() function.

Combine your three transformed colour channels into a single

three-dimensional matrix. Display the result using the imshow() function.

124

