UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B. Sc. Examination 2010

Creative Computing

IS52020A (CC227) Creative Computing 2

Duration: 3 hours

Date and time:

There are six questions in this paper. You should answer no more than four questions. Full marks will be awarded for complete answers to a total of four questions. Each question carries 25 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

This is a practical examination; each answer requiring code or other computational material should be named according to question number, part and sub-part: for example, Q5_b_2.pde for a Processing sketch in answer to part (b) sub-part (ii) of question 5. Save your answer to the exam submission folder. You are responsible for ensuring that your answers have been saved in the correct location.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

Question 1 Ambiguity

(a) Give an example of ambiguity in each of language, image and sound, explaining in each case the nature of the ambiguity.

[9]

(b) A sound signal is measured using a microphone at a sampling frequency of 8kHz, and the measurements stored in an Octave vector named s. If the recorded sound signal in continuous time is given by

$$\frac{1}{6}\sin(880\pi t) + \frac{1}{15}\sin(1760\pi t)$$

and the first sample is taken at t = 0, give an Octave expression to construct the same measured values for a sampling period of two seconds.

[5]

- (c) Compute the value of the following Octave expressions, where s names the signal measurement vector as above.
 - i. s[1];
 - ii. s[2];
 - iii. s[50];
 - iv. s[8001];

[6]

(d) For the continuous-time signal given by

$$\frac{1}{6}\sin(16880\pi t) - \frac{1}{15}\sin(14240\pi t)$$

sampled as above and stored in the Octave vector v, compute the values of v[2] and v[50] that would be measured, and comment on your answer.

[5]

Question 2 Multimedia Information Retrieval

- (a) Describe the **fingerprinting** and **recommendation** tasks in the context of Multimedia Information Retrieval.
- [6]
- (b) Define the terms **true positive**, **false negative** and **false positive**, and use those terms to explain the **precision** and **recall** performance measures of an Information Retrieval system.
- [6]
- (c) An Information Retrieval system retrieves 10 items for a given query. If 6 of those items are relevant results, and there were another 6 relevant items which were not retrieved, compute the precision and recall of the system for this query.
- [4]
- (d) A company wishes to set up a music recommendation service, offering suggestions of tracks a listener might like based on a set of example tracks. Explan what retrieval results should be considered relevant in this context, and hence which of precision and recall is more important when evaluating this system.
- [9]

Question 3 Colour Mixing

(a)	Explain what is meant by colour mixture by averaging, and briefly describe the physiological mechanisms by which the effect of colour mixture by averaging occurs.	[6]
(b)	Construct $Processing$ sketches to illustrate the mixture of equal amounts of the sRGB colours $\{255,0,0\}$ and $\{0,255,0\}$ for averaging by	
	i. area; and	[4]
	ii. time.	[4]

(c) Explain why the perceived mixture colour as a result of the mixture is close to neither {255, 255, 0} nor {127, 127, 0}.

[4]

(d) Given that the sRGB colour space value of γ (gamma) can be approximated by about 2.2, compute the approximate mixture colour for an equal amount of sRGB colours {255, 0, 0} and {0, 255, 0}. (You may wish to check your answer in a temporary sketch; you may but need not submit that sketch as part of your working.)

Audio Perception Question 4

Write a short essay on **each** of the following topics:

[25]

- i. sound source location;
- ii. harmony, consonance and dissonance.

Each essay is worth half the marks for this question.

Question 5 Systems and Image filtering

- (a) In the context of signal processing, what is a *system*? Give one example of a system commonly used in musical audio effects. [4]
 - nal [3]
- (b) Define, either in words or in symbols, the convolution of two one-dimensional signals x and h.
- (c) Describe how a Finite Impulse Response filter can be implemented using the convolution operator. [3]
- (d) A filter for images has the kernel

$$\frac{1}{4} \left(\begin{array}{ccc} 0.25 & 0.5 & 0.25 \\ 0.5 & 1 & 0.5 \\ 0.25 & 0.5 & 0.25 \end{array} \right)$$

Using *Octave*, write a function to implement the processing of a grayscale image with this filter. You may assume that your function receives a two-dimensional matrix argument representing the pixel data, one element per pixel, and should return the new image in the same format.

[8]

[5]

- (e) Apply this filter to the data in the image file provided, and save the resulting image data to file in png format.
 - part (d) represent? [2]
- (f) What effect does the filter in part (d) represent?

Question 6 Visualization

- (a) Describe the purpose of visualisation, and give two examples of visualisations of audio signals, explaining how those visualisations address the stated purpose.
- (b) The table below tabulates the carbon emissions for a particular year by region of the world. Describe a suitable visualisation for this kind of data, and construct, using *Processing* or otherwise, a simple example or mockup of your visualisation. [12]

Region	Carbon Emissions / Mton
Africa	1,020
Central & South America	1,140
Middle East	1,470
Eurasia	2,870
Europe	4,450
North America	6,980
Asia & Oceania	10,270

(c) Suggest extra data which if it were available would allow for a more informative visualisation, and explain how you would make use of it. [4]

[9]