
Creative Computing II

Complex Numbers

19th January 2011

This lab sheet covers the manipulation and use of complex numbers with pen and paper and
with Octave, and the construction of the Mandelbrot set.

1. Using pencil and paper, calculate the values of the following expressions:

(a) (1 + 2i) + (3− 4i)

4− 2i

(b) (3 + 9
4 i)− (4− 5

8 i)

−1 + 23
8 i

(c) 2× (83 + 2i)
16
3 + 4i

(d) i× (7− 9i)

9 + 7i

(e) (2 + 3i)× (1− 4i)

14− 5i

(f) 1
2−4i
1
10 + 1

5 i

(g) 15−2i
2−4i
19
10 + 14

5 i

(h) |(3 + 4i)(5− 12i)|
65

(i) |
√

(15 + 20i)|
5

(j) arg
(
1
2 +

√
3
2 i
)

π
3

(k) arg
(√

i
)

π
4

In some of these questions, you do not need to compute all intermediate results. For
example, for two complex numbers z1 and z2, |z1z2| = |z1||z2|, so part 1h is easily
calculated as 5×13. Similarly, arg z1z2 = arg z1+arg z2, meaning that arg

√
z = 1

2 arg z.

2. For each of the expressions in part 1, check your answer using Octave, using the built-in
support for complex numbers.

There are a few notational conversions that must be made when going between mathe-
matical notation and Octave:

Mathematics Octave
9
4 i 9i/4, (9/4)i√
z sqrt(z)

|z| abs(z)

f × g f * g

(a + ib)(c + id) (a + b*i)*(c + d*i)

Otherwise, you should find that Octave and your pencil-and-paper calculations are in
agreement.

3. There are many interesting applications of complex numbers; one is in the construction
of fractals. You have already met fractal objects in CC112: the L-system objects such
as the Koch curve, and the biomorph tree-like objects constructed by Richard Dawkins.
This part of the lab is about another fractal object, the Mandelbrot set.

(a) We will be applying a transformation repeatedly to complex numbers within the
range −2 ≤ <z,=z ≤ 2. The first step is to construct a matrix representing that
region of the complex plane. Construct in Octave a 5×5 complex matrix so that
the real part of the (y, x)th entry is 3 − y and the imaginary part is x − 3. Your
matrix should be printed by Octave like

−2 + 2i −1 + 2i 0 + 2i 1 + 2i 2 + 2i
−2 + 1i −1 + 1i 0 + 1i 1 + 1i 2 + 1i
−2 + 0i −1 + 0i 0 + 0i 1 + 0i 2 + 0i
−2− 1i −1− 1i 0− 1i 1− 1i 2− 1i
−2− 2i −1− 2i 0− 2i 1− 2i 2− 2i

(hint: you may find the Octave function repmat useful in your answer – though
there are many ways to achieve this)

The simplest construction of the above array is to initialize an array of the ap-
propriate size, and then set each element to the desired value. This would look
like

c = zeros(5,5);

for x = (1:5)

for y = (1:5)

c(y,x) = (x-3) + i*(3-y);

end

end

This strategy is fine, but the strength of Octave is in array manipulation, and
explicit loops such as in the code above are executed much slower than the equivalent
array code. Using the hint in the question, it is possible to construct the array by
adding together two 5×5 matrices, one for the real part and one for the imaginary
part. Each of these matrices has a repeated pattern, which is why the Octave
function repmat is appropriate:

c = repmat((-2:2),5,1) + repmat((2:-1:-2)’,1,5)*i;

This solution is worth studying so that you understand how it works. It is possible
to apply the same strategy using matrix multiplication rather than repmat: the
repmat operation we have used is equivalent to multiplying the vector with an
appropriate vector made up only of ones:

c = ones(5,1)*(-2:2) + (2:-1:-2)’*ones(1,5)*i;

It is worth studying this solution also.

(b) The transformation we will be applying is the mapping of a point on the complex
plane to itself squared, plus its original value: z → z2+c. In order to do this, store
the value of your array from part 3a in the Octave variable c, and use c to initialize
the matrix z. Then to perform one iteration, use the Octave expression z = z.^2

+ c;, which will elementwise square each entry in z and add the corresponding
entry in c.

(c) Repeat this mapping a few times (say four), then inspect the contents of the matrix
z. You should find that some of the values have grown very large, while others are
0 or 1.

(d) The Mandelbrot set is the set of numbers z which do not grow without bound
under the iteration z → z2 + c. From your examination of the z matrix in part
3c, suggest numbers which are probably in the Mandelbrot set. (If you can, prove
that those numbers do not diverge under the mapping).

The numbers −1, 0, i and −i are all in the Mandelbrot set. The proof for 0 is
trivial; the others follow the following repeating sequences:

• −1→ 0→ −1→ ...

• i→ −1 + i→ −i→ −1 + i→ ...

• −i→ −1− i→ i→ −1− i→ ...

and so none of them diverge under the mapping.

(e) If the modulus of a complex number under the mapping exceeds 2, then the map-
ping will diverge. This fact enables us to visualise the results of your iteration,
by treating all the numbers whose modulus exceeds 2 equally. Use the Octave
expression imagesc(min(abs(z),2)) to view the contents of your matrix. (You
may wish to read the online help for imagesc).

(f) The matrix we started with is insufficiently detailed to see the structure of the
Mandelbrot set. Repeat this question with a 513×513 matrix for the numbers in
the range −2 ≤ <z,=z ≤ 2; you may need to do more iterations in part 3c to see
the fine detail of the structure emerge.

Setting up the matrix is the same as in part 3a, except that 513-element vectors
must be created rather than the 5-element vectors there. Each step is therefore 1

128 ,
so the Octave expression to construct c is

c = repmat((-2:1/128:2),513,1) + repmat((2:-1/128:-2)’,1,513)*i;

256 iterations is enough to get a good picture of the set. You may find that it is
slow to run; this is because the numbers in the matrix begin to overflow the range
of representable floating point numbers. To speed it up, it is possible to replace

all the elements at each iteration which will diverge with 2, to keep the numbers
bounded:

for j = (1:256) z = z.^2 + c; z(abs(z)>2) = 2; end

Other resources:

• Penrose, R., The Road to Reality, Chapters 2-7.

• Peitgen, H.-O., Jürgens, H. and Saupe, D., Chaos and Fractals

• http://en.wikipedia.org/wiki/Mandelbrot set.

