Creative Computing II

Christophe Rhodes
c.rhodes@gold.ac.uk

Autumn 2010, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316 Winter 2011, TBC

Colour Spaces

Colour Spaces

How to specify a colour?
Examples:

- device-dependent spaces:
- RGB (Red-Green-Blue)
- HSB (Hue-Saturation-Brightness)
- CMY (Cyan-Magenta-Yellow)
- CMYK (Cyan-Magenta-Yellow-Key)
- HSL, YCrCb...

Colour Spaces

Colour Spaces

How to specify a colour?
Examples:

- device-dependent spaces:
- RGB (Red-Green-Blue)
- HSB (Hue-Saturation-Brightness)
- CMY (Cyan-Magenta-Yellow)
- CMYK (Cyan-Magenta-Yellow-Key)
- HSL, YCrCb...
- device-independent spaces:
- CIE XYZ;
- CIE xyY;
- CIE La*b*;
- sRGB;
- CIE Luv, Adobe RGB, Pantone...

Colour Spaces

The RGB colour space

Colour Spaces

The RGB colour space

A colour is specified using three numbers:

- the quantity of red;
- the quantity of green;
- the quantity of blue.

Colour Spaces

The RGB colour space

A colour is specified using three numbers:

- the quantity of red;
- the quantity of green;
- the quantity of blue.

Colours can be represented by a location in 3D space:

- $X_{\mathrm{RGB}}=r$
- $y_{\mathrm{RGB}}=g$
- $z_{\mathrm{RGB}}=b$

Colour Spaces

The HSB colour space

Wikimedia Commons (user Moongateclimber)

Colour Spaces

The HSB colour space

A colour is specified using three numbers:

- the hue angle (which colour);
- the hue saturation (how much colour);
- the brightness (how much light).

Colour Spaces

The HSB colour space

A colour is specified using three numbers:

- the hue angle (which colour);
- the hue saturation (how much colour);
- the brightness (how much light).

Location of a colour in 3D space:

- $x_{\text {HSB }}=s \beta \cos h$
- $y_{\text {HSB }}=s \beta \sin h$
- $z_{\mathrm{HSB}}=\beta$

Colour Spaces

Conversions between RGB and HSB

RGB \rightarrow HSB

- max $=\max (r, g, b)$;
- $\min =\min (r, g, b)$;

Colour Spaces

Conversions between RGB and HSB

RGB \rightarrow HSB

- max $=\max (r, g, b)$;
- $\min =\min (r, g, b)$;
$-h= \begin{cases}0 & \max =\min ; \\ \frac{\pi}{3} \times \frac{g-b}{\max -\min } \bmod 2 \pi & \max =r ; \\ \frac{2 \pi}{3}+\frac{\pi}{3} \times \frac{b-r}{\max -\min } & \max =g ; \\ \frac{4 \pi}{3}+\frac{\pi}{3} \times \frac{r-g}{\max -\min } & \max =b ;\end{cases}$

Colour Spaces

Conversions between RGB and HSB

RGB \rightarrow HSB

- max $=\max (r, g, b)$;
- $\min =\min (r, g, b)$;
$-h= \begin{cases}0 & \max =\min ; \\ \frac{\pi}{3} \times \frac{g-b}{\max -\min } \bmod 2 \pi & \max =r ; \\ \frac{2 \pi}{3}+\frac{\pi}{3} \times \frac{b-r}{\max -\min } & \max =g ; \\ \frac{4 \pi}{3}+\frac{\pi}{3} \times \frac{r-g}{\max -\min } & \max =b ;\end{cases}$
- $s= \begin{cases}0 & \max =0 ; \\ 1-\frac{\min }{\max } & \text { otherwise }\end{cases}$

Colour Spaces

Conversions between RGB and HSB

RGB \rightarrow HSB

- max $=\max (r, g, b)$;
- $\min =\min (r, g, b)$;
$-h= \begin{cases}0 & \max =\min ; \\ \frac{\pi}{3} \times \frac{g-b}{\max -\min } \bmod 2 \pi & \max =r ; \\ \frac{2 \pi}{3}+\frac{\pi}{3} \times \frac{b-r}{\max -\min } & \max =g ; \\ \frac{4 \pi}{3}+\frac{\pi}{3} \times \frac{r-g}{\max -\min } & \max =b ;\end{cases}$
- $s= \begin{cases}0 & \text { max }=0 ; \\ 1-\frac{\min }{\max } & \text { otherwise }\end{cases}$
- $\beta=\max$.

Colour Spaces

Conversions between RGB and HSB

HSB \rightarrow RGB

- $i=\left\lfloor\frac{3 h}{\pi}\right\rfloor$;
- $f=\frac{3 h}{\pi}-i$;

Colour Spaces

Conversions between RGB and HSB

HSB \rightarrow RGB

- $i=\left\lfloor\frac{3 h}{\pi}\right\rfloor$;
- $f=\frac{3 h}{\pi}-i$;

$$
p=\beta \times(1-s)
$$

$$
\text { - } q=\beta \times(1-f \times s)
$$

$$
t=\beta \times(1-(1-f) \times s)
$$

Colour Spaces

Conversions between RGB and HSB

HSB \rightarrow RGB

$\triangleright i=\left\lfloor\frac{3 h}{\pi}\right\rfloor$;

- $f=\frac{3 h}{\pi}-i$;

$$
p=\beta \times(1-s)
$$

$$
\quad q=\beta \times(1-f \times s)
$$

$$
t=\beta \times(1-(1-f) \times s)
$$

$-(r, g, b)= \begin{cases}(\beta, t, p) & i=0 ; \\ (q, \beta, p) & i=1 ; \\ (p, \beta, t) & i=2 ; \\ (p, q, \beta) & i=3 ; \\ (t, p, \beta) & i=4 ; \\ (\beta, p, q) & i=5 ;\end{cases}$

Colour Spaces

Additive Colour Models
The RGB model is additive

Three primaries:

- colours formed by linear combination;
- Grassmann's laws.

Colour Spaces

Subtractive Colour Models

Light filters:

Three 'primaries', each subtracting light from white:

- cyan (-red); magenta (-green); yellow (-blue).

Colour Spaces

Subtractive Colour Models

Printing solid colours:

- white comes from light reflecting from the paper;
- colour achieved by filtering through coloured inks.

Colour Spaces

Subtractive Colour Models

Printing solid colours:

- white comes from light reflecting from the paper;
- colour achieved by filtering through coloured inks.

CMYK or process colour model:

- inks for the cyan, magenta and yellow primaries;

Colour Spaces

Subtractive Colour Models

Printing solid colours:

- white comes from light reflecting from the paper;
- colour achieved by filtering through coloured inks.

CMYK or process colour model:

- inks for the cyan, magenta and yellow primaries;
- 'key' ink:
- not necessarily pure black;
- cheaper than mixing subtractive primaries;
- allows fine-detail on (black) text.

Colour Spaces

Subtractive Colour Models
Primaries:

Colour Spaces

Subtractive Colour Models

Primaries:

Mixtures can form other solid colours:

Colour Spaces

Colour Mixing: Area Averaging

How to lighten colours in subtractive models?

- with light projector and filters: add white;
- in printing: halftoning.

Colour Spaces

Colour Mixing: Area Averaging

How to lighten colours in subtractive models?

- with light projector and filters: add white;
- in printing: halftoning.

Colour Spaces

Colour Mixing: Area Averaging

Colour mixture by averaging:

- visual system itself performs the mixing.

Colour Spaces

Colour Mixing: Area Averaging

Colour mixture by averaging:

- visual system itself performs the mixing.

Uses of averaging by area:

- dithering (on digital displays);

Colour Spaces

Colour Mixing: Area Averaging

Colour mixture by averaging:

- visual system itself performs the mixing.

Uses of averaging by area:

- dithering (on digital displays);
- halftoning (in printing);

Colour Spaces

Colour Mixing: Area Averaging
Colour mixture by averaging:

- visual system itself performs the mixing.

Uses of averaging by area:

- dithering (on digital displays);
- halftoning (in printing);
- pointillism:

Un dimanche après-midi à l'île de la Grande Jatte, G. Seurat (1859-1891)

Colour Spaces

Colour Mixing: Time Averaging

Averaging over time by the visual system:

- used by James Clerk Maxwell (1831-1879) in colour systematization.

Wikimedia Commons (user Dicklyon)
Public Domain

Colour Spaces

Colour Mixing: Pigments

red, yellow and blue "primaries"

- convenient for school paints;
- perceptually reasonable (cf. opponent process).

Mixing paints much less systematic (in general) than this.

- same colours can be metamers;
- physics and chemistry of mixing affects colour.

