
Creative Computing II

Christophe Rhodes
c.rhodes@gold.ac.uk

Autumn 2010, Wednesdays:
10:00–12:00: RHB307 & 14:00–16:00: WB316

Winter 2011, TBC

c.rhodes@gold.ac.uk


Octave
Introduction

Octave: high-level language for numerical computations:

I part of the GNU project;
I dealing with signals:

I construction;
I manipulation;
I visualization.

I interactive interface.

For our purposes:

I visualisation of signals;

I rapid investigation of audio;

I (next term) linear systems and filters.



Octave
Introduction

Octave: high-level language for numerical computations:

I part of the GNU project;
I dealing with signals:

I construction;
I manipulation;
I visualization.

I interactive interface.

For our purposes:

I visualisation of signals;

I rapid investigation of audio;

I (next term) linear systems and filters.



Octave
Scalars

Two types of scalar:
I numbers:

I 3
I -6
I 3.1416

I strings:
I ’a string’



Octave
Scalar Operations

Both operators and functions operate on scalars:

I basic mathematical operators: +, -, *, /, ^

I statistical functions: min(), max(), mean()

I trigonometric functions: sin(), cos(), tan()

Examples:

I 4.5 + 9.6 * 2

I (4.5 + 9.6) * 2

I (4.5+9.6) ^ 2 / 2



Octave
Scalar Operations

Both operators and functions operate on scalars:

I basic mathematical operators: +, -, *, /, ^

I statistical functions: min(), max(), mean()

I trigonometric functions: sin(), cos(), tan()

Examples:

I 4.5 + 9.6 * 2

I (4.5 + 9.6) * 2

I (4.5+9.6) ^ 2 / 2



Octave
Variables

Names for values:

I variables are untyped;

I values have type;

I = is assignment.

Examples:

I a = -100

I aLongVariableName = 10

Some predefined constants:

I pi

I e



Octave
Variables

Names for values:

I variables are untyped;

I values have type;

I = is assignment.

Examples:

I a = -100

I aLongVariableName = 10

Some predefined constants:

I pi

I e



Octave
Variables

Names for values:

I variables are untyped;

I values have type;

I = is assignment.

Examples:

I a = -100

I aLongVariableName = 10

Some predefined constants:

I pi

I e



Octave
Other programming constructs

Relational operators:

I <, >, <=, >=

I ==, !=

Conditionals:

I if(...) ... endif

I switch ... case {...} ... otherwise ... endswitch

Loops:

I for(...) ... endfor

I while(...) ... endwhile

Look, ma, no braces!



Octave
Other programming constructs

Relational operators:

I <, >, <=, >=

I ==, !=

Conditionals:

I if(...) ... endif

I switch ... case {...} ... otherwise ... endswitch

Loops:

I for(...) ... endfor

I while(...) ... endwhile

Look, ma, no braces!



Octave
Other programming constructs

Relational operators:

I <, >, <=, >=

I ==, !=

Conditionals:

I if(...) ... endif

I switch ... case {...} ... otherwise ... endswitch

Loops:

I for(...) ... endfor

I while(...) ... endwhile

Look, ma, no braces!



Octave
Other programming constructs

Relational operators:

I <, >, <=, >=

I ==, !=

Conditionals:

I if(...) ... endif

I switch ... case {...} ... otherwise ... endswitch

Loops:

I for(...) ... endfor

I while(...) ... endwhile

Look, ma, no braces!



Octave
Scripts and Functions

We can define scripts and functions to perform calculations:

I script: no arguments, no results: just side-effects;

I function: multiple arguments, multiple results, side-effects.

function f = add(x, y)

f = x + y;

endfunction

function [a, b] = fun(c, d)

a = c + 1;

b = sin(d);

endfunction



Octave
Scripts and Functions

We can define scripts and functions to perform calculations:

I script: no arguments, no results: just side-effects;

I function: multiple arguments, multiple results, side-effects.

function f = add(x, y)

f = x + y;

endfunction

function [a, b] = fun(c, d)

a = c + 1;

b = sin(d);

endfunction



Octave
Vectors

Vectors are sequences of scalars:

I [0 1 2 3 4 5]

I [0:5]

I [0:1:5]

Many of the same operations work on vectors as scalars:

I 1 + [0:5]

I [0:5] - 2

I 3 * [0:5]

I sin([0:5])

but not division (/), exponentiation(^) or multiplication of vectors
by vectors.



Octave
Vectors

Vectors are sequences of scalars:

I [0 1 2 3 4 5]

I [0:5]

I [0:1:5]

Many of the same operations work on vectors as scalars:

I 1 + [0:5]

I [0:5] - 2

I 3 * [0:5]

I sin([0:5])

but not division (/), exponentiation(^) or multiplication of vectors
by vectors.



Octave
Vectors

Vectors are sequences of scalars:

I [0 1 2 3 4 5]

I [0:5]

I [0:1:5]

Many of the same operations work on vectors as scalars:

I 1 + [0:5]

I [0:5] - 2

I 3 * [0:5]

I sin([0:5])

but not division (/), exponentiation(^) or multiplication of vectors
by vectors.



Octave
Vector indexing

Elements of a vector can be retrieved by indexing :

I [0:5](3)

I sin([0:5])(3)

Note: although Java and Processing arrays are indexed starting
from 0, Octave arrays are indexed starting from 1.



Octave
Vector indexing

Elements of a vector can be retrieved by indexing :

I [0:5](3)

I sin([0:5])(3)

Note: although Java and Processing arrays are indexed starting
from 0, Octave arrays are indexed starting from 1.



Octave
Vector multiplication

Vectors can be multiplied in two ways:
I element-by-element: the two vectors must have the same

dimensions:
I [0:5] .* [5:-1:0]
I error: [0:5] .* [1:5]

(also called the Hadamard product)

I matrix: the two vectors must have the same length and one
must be transposed :

I [0:5] * [5:-1:0]’
I [0:5]’ * [5:-1:0]
I error: [0:5] * [5:-1:0]



Octave
Vector multiplication

Vectors can be multiplied in two ways:
I element-by-element: the two vectors must have the same

dimensions:
I [0:5] .* [5:-1:0]
I error: [0:5] .* [1:5]

(also called the Hadamard product)
I matrix: the two vectors must have the same length and one

must be transposed :
I [0:5] * [5:-1:0]’
I [0:5]’ * [5:-1:0]
I error: [0:5] * [5:-1:0]



Signals

What is a signal?

I a time-varying quantity;

I any quantity varying over space or time.

I (maths: function; physics: field)

Examples:

I temperature at a location, measured hourly;

I electrical current at a point in a circuit;

I count of students attending weekly lectures;

I intensity of light at a location on a photosensitive receptor;

I temperature at all places within a room.



Signals

What is a signal?

I a time-varying quantity;

I any quantity varying over space or time.

I (maths: function; physics: field)

Examples:

I temperature at a location, measured hourly;

I electrical current at a point in a circuit;

I count of students attending weekly lectures;

I intensity of light at a location on a photosensitive receptor;

I temperature at all places within a room.



Signals

What is a signal?

I a time-varying quantity;

I any quantity varying over space or time.

I (maths: function; physics: field)

Examples:

I temperature at a location, measured hourly;

I electrical current at a point in a circuit;

I count of students attending weekly lectures;

I intensity of light at a location on a photosensitive receptor;

I temperature at all places within a room.



Signals

What is a signal?

I a time-varying quantity;

I any quantity varying over space or time.

I (maths: function; physics: field)

Examples:

I temperature at a location, measured hourly;

I electrical current at a point in a circuit;

I count of students attending weekly lectures;

I intensity of light at a location on a photosensitive receptor;

I temperature at all places within a room.



Signals

For now, restrict to one-dimensional time signals.
I continuous-time signals:

I current at a point in a circuit;
I temperature at a location.

I discrete-time signals:
I current at a point in a circuit, measured once per second;
I temperature at a location, measured hourly;
I count of students attending weekly lectures.



Signals

For now, restrict to one-dimensional time signals.
I continuous-time signals:

I current at a point in a circuit;
I temperature at a location.

I discrete-time signals:
I current at a point in a circuit, measured once per second;
I temperature at a location, measured hourly;
I count of students attending weekly lectures.



Signals
Sampling

A continuous-time signal can be converted to a discrete-time one
by sampling:

I choose an interval in time (the sampling period);

I measure the signal at a start time;

I after a sampling period has elapsed, measure again;

I (repeat)

The sampling frequency or sampling rate is the reciprocal of the
sampling period:

SR = fs =
1

τ



Signals
Sampling

A continuous-time signal can be converted to a discrete-time one
by sampling:

I choose an interval in time (the sampling period);

I measure the signal at a start time;

I after a sampling period has elapsed, measure again;

I (repeat)

The sampling frequency or sampling rate is the reciprocal of the
sampling period:

SR = fs =
1

τ



Signals
Vector representation

Octave vectors can be used to represent one-dimensional
discrete-time signals.

I each entry in the vector is the corresponding measured value;

I first entry (vector index 1) is measurement at start time;

I successive entries at successive measurement times.

Converting index i to and from time t:

i(t) = 1 +
t − t0
τ

;

t(i) = t0 + τ(i − 1);



Signals
Vector representation

Octave vectors can be used to represent one-dimensional
discrete-time signals.

I each entry in the vector is the corresponding measured value;

I first entry (vector index 1) is measurement at start time;

I successive entries at successive measurement times.

Converting index i to and from time t:

i(t) = 1 +
t − t0
τ

;

t(i) = t0 + τ(i − 1);



Signals
Audio Signals

Measurement of displacement of a microphone membrane:

I pressure difference causes motion;

I electrical signal proportional to displacement;

I sampled at some sampling frequency.

Common sampling frequencies for audio:

I 44.1kHz;

I 192kHz, 96kHz, 48kHz;

I 22.05kHz, 11.025kHz;

I 32kHz, 16kHz, 8kHz.



Signals
Audio Signals

Measurement of displacement of a microphone membrane:

I pressure difference causes motion;

I electrical signal proportional to displacement;

I sampled at some sampling frequency.

Common sampling frequencies for audio:

I 44.1kHz;

I 192kHz, 96kHz, 48kHz;

I 22.05kHz, 11.025kHz;

I 32kHz, 16kHz, 8kHz.



Signals
Audio Signals

Measurement of displacement of a microphone membrane:

I pressure difference causes motion;

I electrical signal proportional to displacement;

I sampled at some sampling frequency.

Common sampling frequencies for audio:

I 44.1kHz;

I 192kHz, 96kHz, 48kHz;

I 22.05kHz, 11.025kHz;

I 32kHz, 16kHz, 8kHz.



Signals
Audio Signals

Why does the sampling frequency matter?

I playback: need to know how to convert discrete-time index to
real time;

I information: sampling destroys information.

Maximum frequency representable (Nyquist frequency) is half the
sampling frequency:

fNyquist =
1

2
fs



Signals
Audio Signals

Sinusoid (generic sin and cos)

I using only sinusoids, can build any signal whatsoever
I Fourier theory

I discrete-time: Fourier series;
I continuous-time: Fourier transforms.

In general:

sf (t) =
a0
2

+
∞∑
k=1

(ak cos(2πkft) + bk sin(2πkft))

Example: square wave.

sf (t) = sin(2πft) +
1

3
sin(2π3ft) +

1

5
sin(2π5ft) + ...

=
∞∑
k=1

1

2k − 1
sin(2π(2k − 1)ft)



Signals
Audio signals

Square wave:

sf (t) =
∞∑
k=1

1

2k − 1
sin(2π(2k − 1)ft)

+

=



Signals
Audio signals

How to go from a signal to its component sinusoids?

I Fourier analysis

Quick recipe:

I take one cycle (T ) of the signal to be decomposed (frequency
1
T );

I perform Hadamard product of signal with cos(2π t
T );

I average resulting signal values and multiply by 2, giving a1;

I repeat above steps with cos(2× 2π t
T ), giving a2;

I repeat above steps with cos(k × 2π t
T ), giving ak ;

I repeat above steps with sin(k × 2π t
T ), giving bk .



Signals
Audio signals

How to go from a signal to its component sinusoids?

I Fourier analysis

Quick recipe:

I take one cycle (T ) of the signal to be decomposed (frequency
1
T );

I perform Hadamard product of signal with cos(2π t
T );

I average resulting signal values and multiply by 2, giving a1;

I repeat above steps with cos(2× 2π t
T ), giving a2;

I repeat above steps with cos(k × 2π t
T ), giving ak ;

I repeat above steps with sin(k × 2π t
T ), giving bk .



Signals
Audio signals

How to go from a signal to its component sinusoids?

I Fourier analysis

Quick recipe:

I take one cycle (T ) of the signal to be decomposed (frequency
1
T );

I perform Hadamard product of signal with cos(2π t
T );

I average resulting signal values and multiply by 2, giving a1;

I repeat above steps with cos(2× 2π t
T ), giving a2;

I repeat above steps with cos(k × 2π t
T ), giving ak ;

I repeat above steps with sin(k × 2π t
T ), giving bk .



Signals
Audio signals

How to go from a signal to its component sinusoids?

I Fourier analysis

Quick recipe:

I take one cycle (T ) of the signal to be decomposed (frequency
1
T );

I perform Hadamard product of signal with cos(2π t
T );

I average resulting signal values and multiply by 2, giving a1;

I repeat above steps with cos(2× 2π t
T ), giving a2;

I repeat above steps with cos(k × 2π t
T ), giving ak ;

I repeat above steps with sin(k × 2π t
T ), giving bk .



Signals
Audio signals

Amplitude mapping:

I convert measurements at the microphone to number between
-1 and 1;

I maximum displacement (in either direction) mapped to ±1;

I all other displacements mapped linearly.

I (similar to time mapping)

Consequences:

I displacement amplitude directly corresponds to pressure;

I SPL = 20× log(amplitude) (with 0dB = maximum)

I with both (amplitude and sampling frequency) mappings, can
reproduce corresponding analogue signal.



Signals
Audio signals

Amplitude mapping:

I convert measurements at the microphone to number between
-1 and 1;

I maximum displacement (in either direction) mapped to ±1;

I all other displacements mapped linearly.

I (similar to time mapping)

Consequences:

I displacement amplitude directly corresponds to pressure;

I SPL = 20× log(amplitude) (with 0dB = maximum)

I with both (amplitude and sampling frequency) mappings, can
reproduce corresponding analogue signal.



Signals
Audio signals and Octave

Construct a signal:

octave> 0.1*sin(2*pi*440*[0:1/8000:1]):

I pure sinusoid;

I amplitude one-tenth of the maximum;

I frequency 440 Hz;

I one second long;

I sampling frequency 8kHz.

Play a signal:

octave> sound(0.1*sin(2*pi*440*[0:1/8000:1]), 8000)

or
octave> wavwrite(0.1*sin(2*pi*440*[0:1/8000:1]),8000,’foo.wav’)



Signals
Audio signals and Octave

Multiple channels: represented as multiple columns:

octave> t = [0:1/8000:1];

octave> signal = [sin(2*pi*440*t);sin(2*pi*550*t)]’;

octave> sound(0.1*signal,8000)

or

octave> wavwrite(0.1*signal,8000,’foo.wav’)

(conventionally, first channel: left; second channel: right)



Signals
Audio signals and Octave

Additive synthesis:

I making signals by adding together other signals;

I (square wave example);

I perceived pitch is the fundamental frequency.



Signals
Audio signals and Processing

Minim: AudioSignal interface:

I additive synthesis;
I implement generate() methods:

I void generate(float[])
I void generate(float[], float[])

I live generation context; interface implementor must:
I keep track of state;
I be able to work with many different parameter values.



Signals
Audio signals and Processing

Driver:

import ddf.minim.*; import ddf.minim.signals.*;

Minim minim; AudioOutput out; Sine sine;

void setup () {

minim = new Minim(this);

sine = new Sine(440);

out = minim.getLineOut(Minim.STEREO, 1024);

out.addSignal(sine);

}

void draw () { }

void stop () {

out.close();

minim.stop();

super.stop();

}



Signals
Audio signals and Processing

Sine class, first attempt:

class Sine implements AudioSignal {

float f;

Sine(float frequency) { f = frequency; }

void generate(float[] buf) {

for(int i = 0; i < buf.length; i++) {

buf[i] += sin(TWO_PI * f * i / 44100);

}

}

void generate(float[] left, float[] right) {

generate(left);

generate(right);

}

}



Signals
Audio signals and Processing

Sine class, second attempt:

class Sine implements AudioSignal {

float f;

int t = 0;

Sine(float frequency) { f = frequency; }

void generate(float[] buf) {

for(int i = 0; i < buf.length; i++) {

buf[i] += sin(TWO_PI * f * t++ / 44100);

}

}

void generate(float[] left, float[] right) {

generate(left);

generate(right);

}

}



Signals
Audio signals and Processing

Sine class, third attempt:

class Sine implements AudioSignal {

float f;

int t = 0;

Sine(float frequency) { f = frequency; }

void generate(float[] buf) {

for(int i = 0; i < buf.length; i++) {

buf[i] += sin(TWO_PI * f * t++ / 44100);

}

}

void generate(float[] left, float[] right) {

int savet = t;

generate(left);

t = savet;

generate(right);

}

}



Signals
Audio signals

Audio signals: a summary

I sinusoids are the building blocks of audio signals;

I sampling frequency an important parameter;

I overall amplitude maximum is 1;

I representation as Octave vectors or Processing classes;

I playback using Octave sound function or Minim (Processing)
AudioSignal.


	Signals
	Octave
	Sampling
	Audio Signals


