Creative Computing II

Christophe Rhodes
c.rhodes@gold.ac.uk

Autumn 2010, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316 Winter 2011, TBC

The Ear

The Ear

Outer Ear

Outer Ear:

- pinna: flap of skin;
- assists in sound source location.
- auditory canal:
- resonant cavity;
- amplifies frequencies close to 4 kHz .
- typmanic membrane (ear drum):
- converts pressure differences to mechanical vibration.

The Ear

Middle Ear

Middle Ear:

- ossicles (small bones):
- malleus (hammer);
- incus (anvil);
- stapes (stirrup);
- transmit mechanical vibrations to inner ear;
- amplification by lever principle.
- elliptical window
- small membrane (compare with ear drum);
- amplification by area.

The Ear

Inner Ear

Inner Ear or Cochlea:

- filled with perilymph fluid
- incompressible;
- moves in response to elliptical window;
- (circular window moves to compensate).
- scala media (inner channel)
- walls made from membranes (Reissner's membrane and basilar membrane)
- walls displaced by fluid motion
- basilar membrane
- tapered in thickness;
- different regions respond best to different frequencies;
- regions attached to hair cells;
- hair cells attached to auditory nerve.

Sound Perception

- Pressure waves (oscillating between overpressure and underpressure) impact on Tympanic Membrane
- Oscillations transmitted (and amplified) through hammer to stirrup
- Moves fluid in Cochlea, moving against receptor cells; those cells fire, sending signal to brain.
- Sensitive to oscillations between 20 Hz and 20 kHz .
- High frequency sensitivity decreases with age.
- Peak sensitivity: between 1 kHz and 3 kHz .

Sound Perception

Pitch in speech

Vowel formants:

Vowel	Main formant region/Hz
u	$200-400$
o	$400-600$
a	$800-1200$
e	$400-600 \& 2200-2600$
i	$200-400 \& 3000-3500$

Sibilants:

- sh: peak energy around 4000 Hz , top at 8000 Hz ;
- s: peak energy around 8000 Hz , top at 10000 Hz .

Sound Perception

Pitch in singing

Singing:

- sustained pitch on the vowels;
- terminal consonants are delayed and short.

How can a singer be heard over an entire orchestra?

- amplification (cheating!);
- singer's formant;
- in trained voices, clear formant around 3 kHz .
- (refer back to perceived loudness)
[demonstration]

Sound Perception

Pitch and harmony

Harmony:

- perceptual quality when pitched sounds (notes) occur simultaneously or in close temporal proximity;
- structural theory for describing same.

What is a consonant chord?

- chord: multiple tones;
- fundamental frequencies related by small integer ratio.

Sound Perception

Pitch and harmony

Harmony:

- perceptual quality when pitched sounds (notes) occur simultaneously or in close temporal proximity;
- structural theory for describing same.

What is a consonant chord?

- chord: multiple tones;
- fundamental frequencies related by small integer ratio.

Why?

- no beating;
- no dissonance.

Sound Perception

Pitch and harmony
Beating:

$$
\begin{aligned}
& A \sqrt{A} \sqrt{ } \text { जV }
\end{aligned}
$$

$$
\sin (A)+\sin (B)=2 \sin \left[\frac{A+B}{2}\right] \cos \left[\frac{A-B}{2}\right]
$$

Sound Perception

Pitch and harmony

One-dimensional instruments:

- stringed instruments (violin, viola, 'cello; guitar, piano) [string]
- wind instruments (flute, oboe, clarinet, basoon) [cavity]
- brass instruments (trumpet, trombone, tuba) [tubing]
- tuned percussion (xylophone, glockenspiel) [bars]

Vibrate at

- fundamental frequency;
- harmonics: integer multiples of the fundamental.

Sound Perception

Pitch and harmony

One-dimensional instruments:

- stringed instruments (violin, viola, 'cello; guitar, piano) [string]
- wind instruments (flute, oboe, clarinet, basoon) [cavity]
- brass instruments (trumpet, trombone, tuba) [tubing]
- tuned percussion (xylophone, glockenspiel) [bars]

Vibrate at

- fundamental frequency;
- harmonics: integer multiples of the fundamental.

Sound Perception

Pitch and harmony

One-dimensional instruments:

- stringed instruments (violin, viola, 'cello; guitar, piano) [string]
- wind instruments (flute, oboe, clarinet, basoon) [cavity]
- brass instruments (trumpet, trombone, tuba) [tubing]
- tuned percussion (xylophone, glockenspiel) [bars]

Vibrate at

- fundamental frequency;
- harmonics: integer multiples of the fundamental.

Sound Perception

Pitch and harmony

One-dimensional instruments:

- stringed instruments (violin, viola, 'cello; guitar, piano) [string]
- wind instruments (flute, oboe, clarinet, basoon) [cavity]
- brass instruments (trumpet, trombone, tuba) [tubing]
- tuned percussion (xylophone, glockenspiel) [bars]

Vibrate at

- fundamental frequency;
- harmonics: integer multiples of the fundamental.

Sound Perception

Pitch and harmony
Dissonance:

- beating between harmonics:

critical bandwidth increases with frequency.

Sound Perception

Pitch and harmony

Western music: 12 equal-sized divisions to the octave.

- NB: not Universal.

Each note has a frequency a factor of $\sqrt[12]{2}$ above the previous one.

- Beware: labels different in different countries.
- Interval between notes: 'semitone'

Conventionally: A above 'middle C' is 440 Hz

- Perfect fifth: should be $\frac{3}{2}$ above the root;
- $2^{\frac{7}{12}}=1.4983 \ldots$
- close, but...

Sound Perception

Pitch and harmony

'Perfect pitch': like colour vision?
Different kinds:

- sing a named note without reference;
- can be achieved by trained singers with muscle memory.
- name a heard note without reference.
- difference in cognition;
- not a different sensation;
- correlation with
- tonal languages?
- musical exposure below age 4?
- autism?

Sound Perception

Pitch and Melody

Melody:

- sequence of pitched events (notes) unfolding in musical time; Perceived through large numbers of musical events:
- proximity (movement by small musical intervals);
- continuity (few breaks in a melody);
- common fate (repetition, with small alterations);

What makes a good melody?

Sound Perception

Pitch and Melody

Melody:

- sequence of pitched events (notes) unfolding in musical time;

Perceived through large numbers of musical events:

- proximity (movement by small musical intervals);
- continuity (few breaks in a melody);
- common fate (repetition, with small alterations);

What makes a good melody?

- if only I knew...

Sound Perception

Rhythm

Tempo:

- natural 'pulse' speed of music;
- often ambiguous (double / half speed).

Sound Perception

Rhythm

Tempo:

- natural 'pulse' speed of music;
- often ambiguous (double / half speed).

Two experiments:

- 'free' tapping;

Sound Perception

Rhythm

Tempo:

- natural 'pulse' speed of music;
- often ambiguous (double / half speed).

Two experiments:

- 'free' tapping;
- beat detection in pulse train.

Sound Perception

Rhythm

Tempo:

- natural 'pulse' speed of music;
- often ambiguous (double / half speed).

Two experiments:

- 'free' tapping;
- beat detection in pulse train.

Preferred tempo: $0.2 \mathrm{~s}-0.8 \mathrm{~s}$

Sound Perception

Rhythm

Metrical Structure:

- hierarchy of temporal groups:
- beats;
- bars;
- four-bar patterns;
- larger groups (12-bar blues, 16-bar 'question'/'response').
intensity

Sound Perception

Rhythm

Rhythm:

- choice of which elements in the hierarchy to emphasize;
- which to elide;

What makes a good rhythm?

Sound Perception

Rhythm

Rhythm:

- choice of which elements in the hierarchy to emphasize;
- which to elide;

What makes a good rhythm?

- if only I knew...

