Creative Computing II

Christophe Rhodes
c.rhodes@gold.ac.uk

Autumn 2010, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316
Winter 2011, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316

Course Information

Administrative matters

- Course website:
http://doc.gold.ac.uk/~mas01cr/teaching/cc227/
- My e-mail address: c.rhodes@gold.ac.uk
- Feedback and Consultation hours:
- Wednesday, 16:00-18:00, room 2.06, BPB
- Use phone for entry to BPB 2nd floor

Course Information

Administrative matters

- Course website:
http://doc.gold.ac.uk/~mas01cr/teaching/cc227/
- My e-mail address: c.rhodes@gold.ac.uk
- Feedback and Consultation hours:
- Wednesday, 16:00-18:00, room 2.06, BPB
- Use phone for entry to BPB 2nd floor
- Dr Marcus Pearce: m.pearce@gold.ac.uk

Course Outline

Syllabus

- Visual perception;
- Animation;
- Sound, hearing and music;
- Signals;
- Audio and image filtering;
- Multimedia information retrieval;

Course Outline

Syllabus

- Visual perception: cones, rods and the eye; optical illusions; colour vision; colour spaces and profiles; motion perception and Gestalt psychology.
- Animation: approaches to animation; perception in video and film; making animations; visualisation.
- Sound, hearing and music: sound and the ear; frequency, pitch and harmony; melody; rhythm; digital audio formats and compression.

Course Outline

Syllabus

- Visual perception:
colour vision; colour spaces and profiles; motion perception and Gestalt psychology.
- Animation:
- Sound, hearing and music: sound and the ear; frequency, pitch and harmony; melody; rhythm; compression.

Course Outline

Syllabus

- Signals: the nature of signals; special signals; audio signals and sampling; frequency, amplitude and phase; the Fourier representation.
- Systems: linearity and time-invariance; impulse responses and convolution; spectral analysis; convolution by spectrum multiplication.
- Audio and image filtering: EQ; filter design; subtractive synthesis; echo and reverberation; resampling; image representation; two-dimensional convolution and image effects.
- Multimedia information retrieval: retrieval, fingerprinting and similarity; features and distance measures; systems for multimedia information retrieval.

Course Outline

Syllabus

- Signals: the nature of signals; special signals;
and sampling;
frequency, amplitude and phase; the Fourier representation.
- Systems: linearity and time-invariance; impulse responses and convolution; spectral analysis; convolution by spectrum multiplication.
- Audio and image filtering: EQ; filter design; subtractive synthesis; echo and reverberation; resampling; image representation; two-dimensional convolution and image effects.
- Multimedia information retrieval: retrieval, fingerprinting and similarity; features and distance measures; systems for multimedia information retrieval.

Systems

- 'Systems' construct new signals from existing ones.
- Examples:
- computer monitor
- input: electrical signals;
- output: light emitted from screen.

Systems

- 'Systems' construct new signals from existing ones.
- Examples:
- computer monitor
- input: electrical signals;
- output: light emitted from screen.
- violin body
- input: bow moving over the strings;
- output: musical sound.

Systems

- 'Systems' construct new signals from existing ones.
- Examples:
- computer monitor
- input: electrical signals;
- output: light emitted from screen.
- violin body
- input: bow moving over the strings;
- output: musical sound.
- car suspension
- input: bumps on the road;
- output: smoothness of ride.

Systems

Overview

- Properties and nomenclature
- Linearity
- Time-invariance

Systems

Overview

- Properties and nomenclature
- Linearity
- Time-invariance
- Impulse Response
- System characterisation
- Convolution

Systems

Overview

- Properties and nomenclature
- Linearity
- Time-invariance
- Impulse Response
- System characterisation
- Convolution
- Spectral Analysis
- Complex Numbers
- Complex Exponentials
- Fourier Transform
- Fast Fourier Transform

Systems

Notation

Given an input signal x, the action of a system H on that signal, producing an output signal y, is denoted

$$
y=H\{x\}
$$

Systems

Notation

Given an input signal x, the action of a system H on that signal, producing an output signal y, is denoted

$$
y=H\{x\}
$$

For a discrete-time signal $x[n]$,

$$
y[n]=H\{x[n]\} \text { or } y[n]=H\{x\}[n]
$$

Systems

Notation

Given an input signal x, the action of a system H on that signal, producing an output signal y, is denoted

$$
y=H\{x\}
$$

For a discrete-time signal $x[n]$,

$$
y[n]=H\{x[n]\} \text { or } y[n]=H\{x\}[n]
$$

Systems

Notation

Given an input signal x, the action of a system H on that signal, producing an output signal y, is denoted

$$
y=H\{x\}
$$

For a discrete-time signal $x[n]$,

$$
y[n]=H\{x[n]\} \text { or } y[n]=H\{x\}[n]
$$

(Health Warning: the notation can be confusing)

Systems

Linear Systems
Linear systems have the property that superposition and scaling of their input signals yield the corresponding scaled superposition of their outputs.

Systems

Linear Systems

Linear systems have the property that superposition and scaling of their input signals yield the corresponding scaled superposition of their outputs.

For any input signals x_{1} and x_{2}, if

$$
y_{1}=H\left\{x_{1}\right\}
$$

and

$$
y_{2}=H\left\{x_{2}\right\},
$$

a system H is linear if

$$
H\left\{\alpha x_{1}+\beta x_{2}\right\}=\alpha y_{1}+\beta y_{2}
$$

Systems

Linear Systems

Linear systems have the property that superposition and scaling of their input signals yield the corresponding scaled superposition of their outputs.

For any input signals x_{1} and x_{2}, if

$$
y_{1}=H\left\{x_{1}\right\}
$$

and

$$
y_{2}=H\left\{x_{2}\right\},
$$

a system H is linear if

$$
H\left\{\alpha x_{1}+\beta x_{2}\right\}=\alpha y_{1}+\beta y_{2}
$$

(Almost) all systems in the real world are linear systems for small enough signals.

Systems

The Unit Delay System

We introduce a special linear system T_{1} whose output signal is the input signal, but delayed by one time unit.

$$
y=T_{1}\{x\}
$$

or with discrete time explicitly represented

$$
y[n]=x[n-1]
$$

This unit delay system is the building block of the systems we will cover in this course.

Systems

The Unit Delay System

We introduce a special linear system T_{1} whose output signal is the input signal, but delayed by one time unit.

$$
y=T_{1}\{x\}
$$

or with discrete time explicitly represented

$$
y[n]=x[n-1]
$$

This unit delay system is the building block of the systems we will cover in this course.
Octave:

- shift function (almost) is a direct implementation of a delay;
- we will instead be using a more general system implementation.

Systems

Time-invariant Systems

Time-invariant systems have the property that the output signal of the system for a given input signal does not depend explicitly on absolute time.

For any input signal x with $y=H\{x\}$, the system H is time-invariant if

$$
H\left\{T_{\delta}\{x\}\right\}=T_{\delta}\{y\}
$$

Where T_{δ} is a delay system for arbitrary delay.

Systems

Time-invariant Systems

Time-invariant systems have the property that the output signal of the system for a given input signal does not depend explicitly on absolute time.

For any input signal x with $y=H\{x\}$, the system H is time-invariant if

$$
H\left\{T_{\delta}\{x\}\right\}=T_{\delta}\{y\}
$$

Where T_{δ} is a delay system for arbitrary delay.
Many systems of interest in the real world are time-invariant systems.

Systems
Linear Time-Invariant Systems

Linear Time-Invariant or LTI Systems have both the linear property and the time-invariant property.

Systems

The Unit Impulse

The unit impulse is a signal such that

$$
d[n]= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}
$$

The unit impulse is a fundamental signal building block:

- any signal is the weighted sum of delayed unit impulses
- $x=\sum_{-\infty}^{\infty} x[n] T_{n}\{d\}$

Systems

Impulse Response

Since we can represent any signal as a sum of impulses

$$
x=\sum_{-\infty}^{\infty} x[n] T_{n}\{d\}
$$

if we know the response of an LTI system to the unit impulse, we know its response to any signal whatsoever.

Systems

Impulse Response

Since we can represent any signal as a sum of impulses

$$
x=\sum_{-\infty}^{\infty} x[n] T_{n}\{d\}
$$

if we know the response of an LTI system to the unit impulse, we know its response to any signal whatsoever.

Octave: the conv operator

Systems

Convolution

The convolution operation is notated

$$
y(t)=(h * x)(t)
$$

In discrete time we define the operation as

$$
y[n]=(h * x)[n]=\sum_{k=-\infty}^{\infty} h[k] \times x[n-k]
$$

Systems

Convolution

Properties:

- commutative: $(a * b)=(b * a)$;
- associative: $(a *(b * c))=((a * b) * c)$;
- distributive over addition: $(a *(b+c))=(a * b+a * c)$

Octave: conv function

- care required in interpreting output (time origin);
- length (conv(a,b)) = length(a) + length(b) - 1

Systems

Convolution

Why convolution?

- implementation of LTI systems!

The output y of a system H for an input signal x is the convolution of the input and the impulse response of the system.

Systems

Convolution

Why convolution?

- implementation of LTI systems!

The output y of a system H for an input signal x is the convolution of the input and the impulse response of the system.

Systems

Convolution

Why convolution?

- implementation of LTI systems!

The output y of a system H for an input signal x is the convolution of the input and the impulse response of the system.

Systems

Convolution

Why convolution?

- implementation of LTI systems!

The output y of a system H for an input signal x is the convolution of the input and the impulse response of the system.

Systems

The Unit Delay System, Again
Let

$$
h[k]= \begin{cases}1 & k=1 \\ 0 & \text { otherwise }\end{cases}
$$

The convolution of h with an input signal x :

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

is equal to $x[n-1]$. Therefore $h[\tau]$ represents the unit delay system.

Systems

The Unit Delay System, Again

Let

$$
h[k]= \begin{cases}1 & k=1 \\ 0 & \text { otherwise }\end{cases}
$$

The convolution of h with an input signal x :

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

is equal to $x[n-1]$. Therefore $h[\tau]$ represents the unit delay system.
Octave:

- $\mathrm{h}=\left[\begin{array}{ll}0 & 1\end{array}\right]$
- [0cce 1] is also the representation of the impulse response of the unit delay system.
- NB: vector index 1 corresponds to discrete time 0 .

Systems

Scaled Delay Systems

General transformation built from scaling and time delay:

- delay by k time units;
- scale by a factor s.

System notated as $s T_{k}\{ \}$.

Systems

Scaled Delay Systems

General transformation built from scaling and time delay:

- delay by k time units;
- scale by a factor s.

System notated as $s T_{k}\{ \}$.
Octave:

- [zeros(1,k) s]
- exercise: check that convolving this kernel with a signal outputs the appropriate scaled delayed signal.

Systems

Convolution Efficiency

Consider a linear, time-invariant system H with Finite Impulse Response

- Impulse Response of length L (in samples);
- All other values 0

Implementation of that system with direct convolution for an input signal X of length N :

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]=\sum_{k=0}^{L-1} h[k] x[n-k]
$$

Computational Complexity:

- $O(N L)$
- ... but we can do better ...

Systems

Convolution Efficiency

Consider a linear, time-invariant system H with Finite Impulse Response

- Impulse Response of length L (in samples);
- All other values 0

Implementation of that system with direct convolution for an input signal X of length N :

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]=\sum_{k=0}^{L-1} h[k] x[n-k]
$$

Computational Complexity:

- $O(N L)$
- ... but we can do better ...
- ... with some more technical machinery.

Numbers

The Natural Numbers are the (strictly) positive integers.

$\dot{1}$	$\dot{2}$	$\dot{3}$	$\dot{4}$	$\dot{5}$	$\dot{6}$	$\dot{7}$	$\dot{8}$	\cdots

- First recorded use (of tallies) c. 35000 BC;
- Place-value systems:
- Babylonians (base 60, c. 3400 BC);
- Egyptians (base 10, c. 3100 BC).
- The set of natural numbers is sometimes denoted \mathbb{N}

Numbers

The Number Zero

Zero as a number in an of itself:

- What number, added to 4 , gives 4 ?
- Solve $4+x=4$ for x.
- What do I have left if I subtract 7 from 7 ?
- $7-7=$?

$\dot{0}$	$\dot{1}$	$\dot{2}$	$\dot{3}$	$\dot{4}$	$\dot{5}$	$\dot{6}$	$\dot{7}$	$\dot{8}$	\cdots

- NB: not the same as the 'no tens' in a place-value system;
- Historical:
- India, China in 4th Century BC;
- Greece: Ptolemy 130AD
- Persia: Abū Àbdallāh Muḥammad ibn Mūsā al-Khwārizmī (c.780-c.850)
- The natural numbers and zero denoted by \mathbb{N}_{0}.

Numbers

Negative Numbers

- Solve $4 x+20=0$ for x.

- Historical:
- China, 100BC;
- Greece, 3rd C. AD (Diophantus, c.210-c.290);
- Europe, 12th C. AD (Fibonacci, c.1170-c.1250)
- Uses:
- Initially, as a calculation aid;
- Given independent meaning in accounts as debts or losses.
- the set of integers is denoted \mathbb{Z}.

Numbers

Rationals

Rational numbers are those which can be expressed as fractions of two integers.

- Used since antiquity; recognized as numbers in Greek times;
- Connection to musical tuning (Pythagoras);
- The set of rationals is denoted \mathbb{Q}.

Numbers

Rationals

Rational numbers are those which can be expressed as fractions of two integers.

- Used since antiquity; recognized as numbers in Greek times;
- Connection to musical tuning (Pythagoras);
- The set of rationals is denoted \mathbb{Q}.

Numbers

Irrationals

System of numbers \mathbb{Q} is closed:

- for linear equations;
- with the exception of division by zero.

Trouble in numerical paradise (I):

- Proof attributed to the Pythagorean school;
- The set of real numbers is denoted \mathbb{R}.

Numbers

Quadratic equations

Examples of quadratic equations:

- equilateral right-angled triangle: solve $x^{2}-2=0$ for x;
- general quadratic: solve $a x^{2}+b x+c=0$ for x.

Solution:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

-What if $b^{2}-4 a c$ (the discriminant) is negative?

- no solutions?
- History:
- First known solution: Babylonian, c. 2000 BC;
- Geometrical interpretation: India, 8th C. BC; Euclid (Greece), 3rd C. BC;
- First recorded general solution: Abraham bar Ḥiyya ha-Nasi (Catalonia, 12th C. AD)

Numbers

The Number Line

$$
\text { Just like at primary school: } 1-3=\text { ? }
$$

Numbers

General Cubic:

- Solve $a x^{3}+b x^{2}+c x+d=0$ for x.

Trouble in numerical paradise (II):

- Omar Khayyàm (Persia, 1048-1131)
- Equation can have one or three real-number solutions;
- Gerolamo Cardano (Italy, 1501-1576)
- Publishes method for solving cubic equation;
- Method sometimes involves taking the square root of a negative number;
- Rafael Bombelli (Italy, 1526-1572)
- publishes rules for dealing with square roots of negative numbers;

Numbers

Imaginary Numbers

Imaginary numbers (contrast with real numbers):

- Basic building block: $i=\sqrt{-1}$
- General imaginary number: $a \times i$ for $a \in \mathbb{R}$

Rules (after Bombelli):

- $a \times b i=a b i$
- $-a \times b i=-a b i$
- $a \times-b i=-a b i$
- $-a \times-b i=a b i$
- $a i \times b i=-a b$
- $a i \times-b i=a b$
- $-a i \times b i=a b$
- $-a i \times-b i=-a b$

Or: i behaves just like another number, but $i \times i=-1$

Numbers

Complex Numbers

Complex numbers:

- sum of a real and an imaginary part
- $z=a+i b$

Geometrical interpretation (Argand plane):

Numbers

Complex Numbers

Arithmetic Rules:

- Add and subtract parts:
- $(a+i b)+(c+i d)=(a+c)+i(b+d)$
- $(a+i b)-(c+i d)=(a-c)+i(b-d)$
- Multiply out:
- $(a+i b) \times(c+i d)=a c+i b c+i a d+i i b d=(a c-b d)+i(b c+a d)$
- Divide using complex conjugate:
- $(a+i b) \div(c+i d)$
- $=((a+i b)(c-i d)) \div((c+i d)(c-i d))$
- $=((a+i b)(c-i d)) \div\left(c^{2}+d^{2}\right)$

Numbers

Complex Numbers

Complex numbers:

- real length at an angle to the real axis
- $z=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$

Geometrical interpretation (Argand plane):

Numbers

Complex Numbers

Multiplication and Division revisited:

- $\operatorname{cis}\left(\theta_{1}\right) \times \operatorname{cis}\left(\theta_{2}\right)=\operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$
- $r_{1} \operatorname{cis}\left(\theta_{1}\right) \times r_{2} \operatorname{cis}\left(\theta_{2}\right)=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$
- $r_{1} \operatorname{cis}\left(\theta_{1}\right) \div r_{2} \operatorname{cis}\left(\theta_{2}\right)=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$

Euler Identity:

$$
e^{i \theta}=\operatorname{cis}(\theta)=\cos \theta+i \sin \theta
$$

- 'one of the most remarkable, almost astounding, formulas in all of mathematics' (R.P. Feynman)
- central to complex analysis; used everywhere in physics, electrical engineering, signal processing...
- connection to signals' amplitude and phase: Fourier analysis

Systems

Complex Numbers

- The Number Line;
- Pythagoras and the Rationals;
- The irrationality of $\sqrt{2}$;
- Solving quadratic equations;
- Cubic equations and Cardano;
- The Argand Plane;
- Arithmetic properties of Complex Numbers;
- Geometric interpretation of Complex Arithmetic;
- Phase and Logarithms;
- The Complex Exponential.

