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Course Outline
Syllabus

I Visual perception;

I Animation;

I Sound, hearing and music;

I Signals;

I Audio and image filtering;

I Multimedia information retrieval;
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Syllabus

I Visual perception: cones, rods and the eye; optical illusions;
colour vision; colour spaces and profiles; motion perception
and Gestalt psychology.

I Animation: approaches to animation; perception in video and
film; making animations; visualisation.

I Sound, hearing and music: sound and the ear; frequency,
pitch and harmony; melody; rhythm; digital audio formats and
compression.
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I Signals: the nature of signals; special signals; audio signals
and sampling; frequency, amplitude and phase; the Fourier
representation.

I Systems: linearity and time-invariance; impulse responses and
convolution; spectral analysis; convolution by spectrum
multiplication.

I Audio and image filtering: EQ; filter design; subtractive
synthesis; echo and reverberation; resampling; image
representation; two-dimensional convolution and image effects.

I Multimedia information retrieval: retrieval, fingerprinting
and similarity; features and distance measures; systems for
multimedia information retrieval.
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Systems

I ‘Systems’ construct new signals from existing ones.
I Examples:

I computer monitor
I input: electrical signals;
I output: light emitted from screen.

I violin body
I input: bow moving over the strings;
I output: musical sound.

I car suspension
I input: bumps on the road;
I output: smoothness of ride.
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I Properties and nomenclature
I Linearity
I Time-invariance

I Impulse Response
I System characterisation
I Convolution

I Spectral Analysis
I Complex Numbers
I Complex Exponentials
I Fourier Transform
I Fast Fourier Transform
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Systems
Notation

Given an input signal x , the action of a system H on that signal,
producing an output signal y , is denoted

y = H{x}

For a discrete-time signal x [n],

y [n] = H{x [n]} or y [n] = H{x}[n]

System Hx [n] y [n] = H{x}[n]

(Health Warning: the notation can be confusing)



Systems
Notation

Given an input signal x , the action of a system H on that signal,
producing an output signal y , is denoted

y = H{x}

For a discrete-time signal x [n],

y [n] = H{x [n]} or y [n] = H{x}[n]

System Hx [n] y [n] = H{x}[n]

(Health Warning: the notation can be confusing)



Systems
Notation

Given an input signal x , the action of a system H on that signal,
producing an output signal y , is denoted

y = H{x}

For a discrete-time signal x [n],

y [n] = H{x [n]} or y [n] = H{x}[n]

System Hx [n] y [n] = H{x}[n]

(Health Warning: the notation can be confusing)



Systems
Notation

Given an input signal x , the action of a system H on that signal,
producing an output signal y , is denoted

y = H{x}

For a discrete-time signal x [n],

y [n] = H{x [n]} or y [n] = H{x}[n]

System Hx [n] y [n] = H{x}[n]

(Health Warning: the notation can be confusing)



Systems
Linear Systems

Linear systems have the property that superposition and scaling of
their input signals yield the corresponding scaled superposition of
their outputs.

For any input signals x1 and x2, if

y1 = H{x1}

and
y2 = H{x2},

a system H is linear if

H{αx1 + βx2} = αy1 + βy2

(Almost) all systems in the real world are linear systems for small
enough signals.
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Systems
The Unit Delay System

We introduce a special linear system T1 whose output signal is the
input signal, but delayed by one time unit.

y = T1{x}

or with discrete time explicitly represented

y [n] = x [n − 1]

This unit delay system is the building block of the systems we will
cover in this course.

Octave:

I shift function (almost) is a direct implementation of a delay;

I we will instead be using a more general system
implementation.
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Time-invariant Systems

Time-invariant systems have the property that the output signal
of the system for a given input signal does not depend explicitly on
absolute time.

For any input signal x with y = H{x}, the system H is
time-invariant if

H{Tδ{x}} = Tδ{y}

Where Tδ is a delay system for arbitrary delay.

Many systems of interest in the real world are time-invariant
systems.
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Systems
Linear Time-Invariant Systems

Linear Time-Invariant or LTI Systems have both the linear
property and the time-invariant property.



Systems
The Unit Impulse

The unit impulse is a signal such that

d [n] =

{
1 n = 0
0 otherwise

The unit impulse is a fundamental signal building block:

I any signal is the weighted sum of delayed unit impulses

I x =
∑∞
−∞ x [n]Tn{d}



Systems
Impulse Response

Since we can represent any signal as a sum of impulses

x =
∞∑
−∞

x [n]Tn{d}

if we know the response of an LTI system to the unit impulse, we
know its response to any signal whatsoever.

System Hd [n] h[n] = H{d}[n]
impulse impulse response

Octave: the conv operator
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Systems
Convolution

The convolution operation is notated

y(t) = (h ∗ x)(t)

In discrete time we define the operation as

y [n] = (h ∗ x)[n] =
∞∑

k=−∞
h[k]× x [n − k]



Systems
Convolution

Properties:

I commutative: (a ∗ b) = (b ∗ a);

I associative: (a ∗ (b ∗ c)) = ((a ∗ b) ∗ c);

I distributive over addition: (a ∗ (b + c)) = (a ∗ b + a ∗ c)

Octave: conv function

I care required in interpreting output (time origin);

I length(conv(a,b)) = length(a) + length(b) - 1



Systems
Convolution

Why convolution?

I implementation of LTI systems!

The output y of a system H for an input signal x is the
convolution of the input and the impulse response of the system.
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Systems
The Unit Delay System, Again

Let

h[k] =

{
1 k = 1
0 otherwise

The convolution of h with an input signal x :

y [n] =
∞∑

k=−∞
h[k]x [n − k]

is equal to x [n − 1]. Therefore h[τ ] represents the unit delay
system.

Octave:

I h = [0 1]

I [0 1] is also the representation of the impulse response of
the unit delay system.

I NB: vector index 1 corresponds to discrete time 0.
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Systems
Scaled Delay Systems

General transformation built from scaling and time delay:

I delay by k time units;

I scale by a factor s.

System notated as sTk{}.

Octave:

I [zeros(1,k) s]

I exercise: check that convolving this kernel with a signal
outputs the appropriate scaled delayed signal.
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Systems
Convolution Efficiency

Consider a linear, time-invariant system H with Finite Impulse
Response

I Impulse Response of length L (in samples);

I All other values 0

Implementation of that system with direct convolution for an input
signal X of length N:

y [n] =
∞∑

k=−∞
h[k]x [n − k] =

L−1∑
k=0

h[k]x [n − k]

Computational Complexity:

I O(NL)

I ... but we can do better ...

I ... with some more technical machinery.
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Numbers
The Natural Numbers

The Natural Numbers are the (strictly) positive integers.

1 2 3 4 5 6 7 8
...

I First recorded use (of tallies) c. 35000 BC;
I Place-value systems:

I Babylonians (base 60, c. 3400 BC);
I Egyptians (base 10, c. 3100 BC).

I The set of natural numbers is sometimes denoted N



Numbers
The Number Zero

Zero as a number in an of itself:
I What number, added to 4, gives 4?

I Solve 4 + x = 4 for x .

I What do I have left if I subtract 7 from 7?
I 7− 7 =?

0 1 2 3 4 5 6 7 8
...

I NB: not the same as the ‘no tens’ in a place-value system;
I Historical:

I India, China in 4th Century BC;
I Greece: Ptolemy 130AD
I Persia: Abū Àbdallāh Muh.ammad ibn Mūsā al-Khwārizm̄ı

(c.780–c.850)

I The natural numbers and zero denoted by N0.



Numbers
Negative Numbers

I Solve 4x + 20 = 0 for x .

...
−4 −3 −2 −1 0 1 2 3 4

...

I Historical:
I China, 100BC;
I Greece, 3rd C. AD (Diophantus, c.210–c.290);
I Europe, 12th C. AD (Fibonacci, c.1170–c.1250)

I Uses:
I Initially, as a calculation aid;
I Given independent meaning in accounts as debts or losses.

I the set of integers is denoted Z.



Numbers
Rationals

Rational numbers are those which can be expressed as fractions of
two integers.

1
1+ 1

1+ 1
2

1
1+ 1

4

1

I Used since antiquity; recognized as numbers in Greek times;

I Connection to musical tuning (Pythagoras);

I The set of rationals is denoted Q.
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Numbers
Irrationals

System of numbers Q is closed :

I for linear equations;

I with the exception of division by zero.

Trouble in numerical paradise (I):

1

1

?

I Proof attributed to the Pythagorean school;

I The set of real numbers is denoted R.



Numbers
Quadratic equations

Examples of quadratic equations:

I equilateral right-angled triangle: solve x2 − 2 = 0 for x ;

I general quadratic: solve ax2 + bx + c = 0 for x .

Solution:

x =
−b ±

√
b2 − 4ac

2a

I What if b2 − 4ac (the discriminant) is negative?
I no solutions?

I History:
I First known solution: Babylonian, c.2000 BC;
I Geometrical interpretation: India, 8th C. BC; Euclid (Greece),

3rd C. BC;
I First recorded general solution: Abraham bar H. iyya ha-Nasi

(Catalonia, 12th C. AD)



Numbers
The Number Line

Just like at primary school: 1− 3 =?

−4 −3 −2 −1 0 1 2 3 4



Numbers
Cubic equations

General Cubic:

I Solve ax3 + bx2 + cx + d = 0 for x .

Trouble in numerical paradise (II):
I Omar Khayyàm (Persia, 1048–1131)

I Equation can have one or three real-number solutions;

I Gerolamo Cardano (Italy, 1501–1576)
I Publishes method for solving cubic equation;
I Method sometimes involves taking the square root of a

negative number;

I Rafael Bombelli (Italy, 1526–1572)
I publishes rules for dealing with square roots of negative

numbers;



Numbers
Imaginary Numbers

Imaginary numbers (contrast with real numbers):

I Basic building block: i =
√
−1

I General imaginary number: a× i for a ∈ R
Rules (after Bombelli):

I a× bi = abi

I −a× bi = −abi
I a×−bi = −abi
I −a×−bi = abi

I ai × bi = −ab
I ai ×−bi = ab

I −ai × bi = ab

I −ai ×−bi = −ab
Or: i behaves just like another number, but i × i = −1



Numbers
Complex Numbers

Complex numbers:
I sum of a real and an imaginary part
I z = a + ib

Geometrical interpretation (Argand plane):

<

=

−4 −3 −2 −1 1 2 3 4

−3i

−2i

−1i

1i

2i

3i

z = 1 + 2i



Numbers
Complex Numbers

Arithmetic Rules:
I Add and subtract parts:

I (a + ib) + (c + id) = (a + c) + i(b + d)
I (a + ib)− (c + id) = (a− c) + i(b − d)

I Multiply out:
I (a+ib)×(c+id) = ac+ibc+iad+iibd = (ac−bd)+i(bc+ad)

I Divide using complex conjugate:
I (a + ib)÷ (c + id)
I = ((a + ib)(c − id))÷ ((c + id)(c − id))
I = ((a + ib)(c − id))÷ (c2 + d2)



Numbers
Complex Numbers

Complex numbers:
I real length at an angle to the real axis
I z = r(cos θ + i sin θ) = r cis θ

Geometrical interpretation (Argand plane):

<

=

−4 −3 −2 −1 1 2 3 4

−3i

−2i

−1i

1i

2i

3i

z =
√

5cis(63◦)

63◦

√
5



Numbers
Complex Numbers

Multiplication and Division revisited:

I cis(θ1)× cis(θ2) = cis(θ1 + θ2)

I r1 cis(θ1)× r2 cis(θ2) = r1r2 cis(θ1 + θ2)

I r1 cis(θ1)÷ r2 cis(θ2) = r1
r2

cis(θ1 − θ2)

Euler Identity:
e iθ = cis(θ) = cos θ + i sin θ

I ‘one of the most remarkable, almost astounding, formulas in
all of mathematics’ (R.P. Feynman)

I central to complex analysis; used everywhere in physics,
electrical engineering, signal processing...

I connection to signals’ amplitude and phase: Fourier analysis



Systems
Complex Numbers

I The Number Line;

I Pythagoras and the Rationals;

I The irrationality of
√

2;

I Solving quadratic equations;

I Cubic equations and Cardano;

I The Argand Plane;

I Arithmetic properties of Complex Numbers;

I Geometric interpretation of Complex Arithmetic;

I Phase and Logarithms;

I The Complex Exponential.
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