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Signals
The Complex Exponential
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e iθ = cos(θ) + i sin(θ); e−iθ = cos(θ)− i sin(θ).
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Signals
Sinusoidal functions

Functional relations:

I cos(ωt) = e iωt+e−iωt

2

I sin(ωt) = e iωt−e−iωt

2i

Identities:

I e iπ = −1 (Euler’s Identity)

I e i
π
2 = i

I e2πi = 1

I (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ) (de Moivre’s
formula)



Signals
Fourier Series

Square wave:

sf (t) =
∞∑
k=1

1

2k − 1
sin(2π(2k − 1)ft)
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Signals
Fourier Series

Fourier Series:

I Any signal can be written as a weighted sum of sin and cos
terms: a Fourier Series.

I For a signal of length L, all sinusoids have angular frequencies
that are integer multiples of 2π

L .

I For a real discrete-time signal at sample rate R, the maximum
frequency component is the Nyquist frequency.

Fourier Analysis of Signals:

I Extraction of frequency components for a given signal;

I Dot-product multiply by complex exponential signal;

I Magnitude and phase of result give magnitude and phase of
corresponding sinusoid.
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Signals
Fourier Series

How does this work?

I dot-product of sinusoid with exactly itself gives a non-zero
result;

I all other dot-products between sinusoids give zero.

I sinusoids are orthogonal basis functions.
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Signals
Fourier Transforms

We can convert a signal into its Fourier representation by
extracting all its frequency components: the Fourier Transform.

(F(x(k))) (ω) =
L−1∑
k=0

x(k)e−iωk

I ω takes on values {0, 2π
L , 4π

L , ..., π, ..., 2π(L−1)
L }

I L (real) signal values → L
2 (complex) frequency components

I (L complex values → L complex frequency components)

This is the frequency spectrum (sometimes just spectrum) of
the signal.

Note: F(x) sometimes notated as x̃ .
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Signals
Fourier Transforms

Fourier Transform: direct calculation is O(L2).

(F(x(k))) (ω) =
L−1∑
k=0

x(k)e−iωk

I X ← F(x)

L← length(x)
X ← newArray(L,0)
for j from 0 below L do
for k from 0 below L do
Xj ← Xj + x(k)× e−

2πijk
L

end for
end for
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Signals
The Fast Fourier Transform

(F(x(k))) (ω) =

L/2−1∑
k=0

x(2k)e−iω(2k) +e−iω
L/2−1∑
k=0

x(2k +1)e−iω(2k)
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Signals
The Fast Fourier Transform

(F(x(k))) (ω) =

L/2−1∑
k=0

x(2k)e−iω(2k) +e−iω
L/2−1∑
k=0

x(2k +1)e−iω(2k)

I X ← FFT(x)

L← length(x)
if L = 1 then

X ← x
else

X ← newArray(L,0)
E ← FFT(X2k); O ← FFT(X2k+1)
for j from 0 below L do

Xj ← Ej% L
2
+ e−

2πij
L Oj% L

2

end for
end if



Signals
The Fast Fourier Transform

Notes:

I FFT has time complexity O(N logN)
I Real algorithms are significantly more complicated

I non-powers-of-two;
I base case;
I choice of radix;
I exploit performance characteristics of processor and memory.

Octave: fft function.

I first element is zero-frequency (d.c.) or constant component;

I next element is for angular frequency 2π
L (ordinary frequency

1
L) slowest-moving or fundamental component;

I successive elements are for successive integer multiples of the
fundamental, all the way up to the Nyquist frequency;

I components above the Nyquist then continue all the way to
angular frequency 2(L−1)π

L (regular frequency L−1
L ).
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Systems
Fourier Transforms and Convolution

Previously:

I system H response to signal x is h ∗ x ;

I direct convolution computation has complexity O(N2).

Fourier Transform of a convolution is the product of the Fourier
Transforms:

F(h ∗ x) = F(h)×F(x)

so system output for signal x is

F−1(F(h)×F(x))

Octave:

I ifft(fft(h,length([h x])-1).*fft(x,length([h x])-1))
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Systems
Fourier Transforms and Convolution

y = F−1(F(h)×F(x))

so
F(y) = F(h)×F(x)

I F(h) is the frequency response of the system.

I the frequency spectrum of the output signal is the product of
the spectrum of the input and the frequency response of the
system.
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