Creative Computing II

Christophe Rhodes
c.rhodes@gold.ac.uk

Autumn 2010, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316
Winter 2011, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316

Signals

The Complex Exponential

Signals

The Complex Exponential

Signals

Sinusoidal functions

Functional relations:
$-\cos (\omega t)=\frac{e^{i \omega t}+e^{-i \omega t}}{2}$

- $\sin (\omega t)=\frac{e^{i \omega t}-e^{-i \omega t}}{2 i}$

Identities:

- $e^{i \pi}=-1$ (Euler's Identity)
- $e^{i \frac{\pi}{2}}=i$
- $e^{2 \pi i}=1$
- $(\cos (\theta)+i \sin (\theta))^{n}=\cos (n \theta)+i \sin (n \theta)$ (de Moivre's formula)

Signals

Fourier Series

Square wave:

$$
s_{f}(t)=\sum_{k=1}^{\infty} \frac{1}{2 k-1} \sin (2 \pi(2 k-1) f t)
$$

Signals

Fourier Series:

- Any signal can be written as a weighted sum of sin and cos terms: a Fourier Series.
- For a signal of length L, all sinusoids have angular frequencies that are integer multiples of $\frac{2 \pi}{L}$.
- For a real discrete-time signal at sample rate R, the maximum frequency component is the Nyquist frequency.

Signals

Fourier Series

Fourier Series:

- Any signal can be written as a weighted sum of sin and cos terms: a Fourier Series.
- For a signal of length L, all sinusoids have angular frequencies that are integer multiples of $\frac{2 \pi}{L}$.
- For a real discrete-time signal at sample rate R, the maximum frequency component is the Nyquist frequency.

Fourier Analysis of Signals:

- Extraction of frequency components for a given signal;
- Dot-product multiply by complex exponential signal;
- Magnitude and phase of result give magnitude and phase of corresponding sinusoid.

Signals

Fourier Series

How does this work?

- dot-product of sinusoid with exactly itself gives a non-zero result;
- all other dot-products between sinusoids give zero.
- sinusoids are orthogonal basis functions.

Signals

Fourier Series

How does this work?

- dot-product of sinusoid with exactly itself gives a non-zero result;
- all other dot-products between sinusoids give zero.
- sinusoids are orthogonal basis functions.

Signals

Fourier Series

How does this work?

- dot-product of sinusoid with exactly itself gives a non-zero result;
- all other dot-products between sinusoids give zero.
- sinusoids are orthogonal basis functions.

Signals

Fourier Series

How does this work?

- dot-product of sinusoid with exactly itself gives a non-zero result;
- all other dot-products between sinusoids give zero.
- sinusoids are orthogonal basis functions.

Signals

Fourier Series

How does this work?

- dot-product of sinusoid with exactly itself gives a non-zero result;
- all other dot-products between sinusoids give zero.
- sinusoids are orthogonal basis functions.

Signals

Fourier Series

How does this work?

- dot-product of sinusoid with exactly itself gives a non-zero result;
- all other dot-products between sinusoids give zero.
- sinusoids are orthogonal basis functions.

Signals

Fourier Series

How does this work?

- dot-product of sinusoid with exactly itself gives a non-zero result;
- all other dot-products between sinusoids give zero.
- sinusoids are orthogonal basis functions.

Signals

Fourier Series

How does this work?

- dot-product of sinusoid with exactly itself gives a non-zero result;
- all other dot-products between sinusoids give zero.
- sinusoids are orthogonal basis functions.

Signals

Fourier Transforms

We can convert a signal into its Fourier representation by extracting all its frequency components: the Fourier Transform.

Signals

Fourier Transforms

We can convert a signal into its Fourier representation by extracting all its frequency components: the Fourier Transform.

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L-1} x(k) e^{-i \omega k}
$$

Signals

Fourier Transforms

We can convert a signal into its Fourier representation by extracting all its frequency components: the Fourier Transform.

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L-1} x(k) e^{-i \omega k}
$$

- ω takes on values $\left\{0, \frac{2 \pi}{L}, \frac{4 \pi}{L}, \ldots, \pi, \ldots, \frac{2 \pi(L-1)}{L}\right\}$
- L (real) signal values $\rightarrow \frac{L}{2}$ (complex) frequency components
- (L complex values $\rightarrow L$ complex frequency components)

Signals

Fourier Transforms

We can convert a signal into its Fourier representation by extracting all its frequency components: the Fourier Transform.

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L-1} x(k) e^{-i \omega k}
$$

- ω takes on values $\left\{0, \frac{2 \pi}{L}, \frac{4 \pi}{L}, \ldots, \pi, \ldots, \frac{2 \pi(L-1)}{L}\right\}$
- L (real) signal values $\rightarrow \frac{L}{2}$ (complex) frequency components
- (L complex values $\rightarrow L$ complex frequency components)

This is the frequency spectrum (sometimes just spectrum) of the signal.

Signals

Fourier Transforms

We can convert a signal into its Fourier representation by extracting all its frequency components: the Fourier Transform.

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L-1} x(k) e^{-i \omega k}
$$

- ω takes on values $\left\{0, \frac{2 \pi}{L}, \frac{4 \pi}{L}, \ldots, \pi, \ldots, \frac{2 \pi(L-1)}{L}\right\}$
- L (real) signal values $\rightarrow \frac{L}{2}$ (complex) frequency components
- (L complex values $\rightarrow L$ complex frequency components)

This is the frequency spectrum (sometimes just spectrum) of the signal.
Note: $\mathcal{F}(x)$ sometimes notated as \tilde{x}.

Signals

Fourier Transforms

Fourier Transform: direct calculation is $O\left(L^{2}\right)$.

Signals

Fourier Transforms

Fourier Transform: direct calculation is $O\left(L^{2}\right)$.

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L-1} x(k) e^{-i \omega k}
$$

Signals

Fourier Transforms

Fourier Transform: direct calculation is $O\left(L^{2}\right)$.

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L-1} x(k) e^{-i \omega k}
$$

- $X \leftarrow \mathcal{F}(x)$
$L \leftarrow$ length (x)
$X \leftarrow$ newArray $(L, 0)$
for j from 0 below L do
for k from 0 below L do
$X_{j} \leftarrow X_{j}+x(k) \times e^{-\frac{2 \pi i j k}{L}}$
end for
end for

Signals

The Fast Fourier Transform

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L / 2-1} x(2 k) e^{-i \omega(2 k)}+e^{-i \omega} \sum_{k=0}^{L / 2-1} x(2 k+1) e^{-i \omega(2 k)}
$$

Signals

The Fast Fourier Transform

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L / 2-1} x(2 k) e^{-i \omega(2 k)}+e^{-i \omega} \sum_{k=0}^{L / 2-1} x(2 k+1) e^{-i \omega(2 k)}
$$

Signals

The Fast Fourier Transform

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L / 2-1} x(2 k) e^{-i \omega(2 k)}+e^{-i \omega} \sum_{k=0}^{L / 2-1} x(2 k+1) e^{-i \omega(2 k)}
$$

Signals

The Fast Fourier Transform

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L / 2-1} x(2 k) e^{-i \omega(2 k)}+e^{-i \omega} \sum_{k=0}^{L / 2-1} x(2 k+1) e^{-i \omega(2 k)}
$$

Signals

The Fast Fourier Transform

$$
(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L / 2-1} x(2 k) e^{-i \omega(2 k)}+e^{-i \omega} \sum_{k=0}^{L / 2-1} x(2 k+1) e^{-i \omega(2 k)}
$$

Signals

The Fast Fourier Transform
$(\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L / 2-1} x(2 k) e^{-i \omega(2 k)}+e^{-i \omega} \sum_{k=0}^{L / 2-1} x(2 k+1) e^{-i \omega(2 k)}$

Signals

The Fast Fourier Transform

$$
\begin{aligned}
& (\mathcal{F}(x(k)))(\omega)=\sum_{k=0}^{L / 2-1} x(2 k) e^{-i \omega(2 k)}+e^{-i \omega} \sum_{k=0}^{L / 2-1} x(2 k+1) e^{-i \omega(2 k)} \\
& \bullet X \leftarrow \operatorname{FFT}(x) \\
& L \leftarrow \operatorname{length}(x) \\
& \text { if } L=1 \text { then } \\
& X \leftarrow x \\
& \text { else } \\
& X \leftarrow \operatorname{newArray}(L, 0) \\
& E \leftarrow \operatorname{FFT}\left(X_{2 k}\right) ; O \leftarrow \operatorname{FFT}\left(X_{2 k+1}\right) \\
& \text { for } j \text { from } 0 \text { below } L \text { do } \\
& X_{j} \leftarrow E_{j \% \frac{L}{2}}+e^{-\frac{2 \pi i j}{L}} O_{j \% \frac{L}{2}} \\
& \text { end for } \\
& \text { end if }
\end{aligned}
$$

Signals

The Fast Fourier Transform

Notes:

- FFT has time complexity $O(N \log N)$
- Real algorithms are significantly more complicated
- non-powers-of-two;
- base case;
- choice of radix;
- exploit performance characteristics of processor and memory.

Signals

The Fast Fourier Transform

Notes:

- FFT has time complexity $O(N \log N)$
- Real algorithms are significantly more complicated
- non-powers-of-two;
- base case;
- choice of radix;
- exploit performance characteristics of processor and memory.

Octave: fft function.

- first element is zero-frequency (d.c.) or constant component;

Signals

The Fast Fourier Transform

Notes:

- FFT has time complexity $O(N \log N)$
- Real algorithms are significantly more complicated
- non-powers-of-two;
- base case;
- choice of radix;
- exploit performance characteristics of processor and memory.

Octave: fft function.

- first element is zero-frequency (d.c.) or constant component;
- next element is for angular frequency $\frac{2 \pi}{L}$ (ordinary frequency $\frac{1}{L}$) slowest-moving or fundamental component;

Signals

The Fast Fourier Transform

Notes:

- FFT has time complexity $O(N \log N)$
- Real algorithms are significantly more complicated
- non-powers-of-two;
- base case;
- choice of radix;
- exploit performance characteristics of processor and memory.

Octave: fft function.

- first element is zero-frequency (d.c.) or constant component;
- next element is for angular frequency $\frac{2 \pi}{L}$ (ordinary frequency $\frac{1}{L}$) slowest-moving or fundamental component;
- successive elements are for successive integer multiples of the fundamental, all the way up to the Nyquist frequency;

Signals

The Fast Fourier Transform

Notes:

- FFT has time complexity $O(N \log N)$
- Real algorithms are significantly more complicated
- non-powers-of-two;
- base case;
- choice of radix;
- exploit performance characteristics of processor and memory.

Octave: fft function.

- first element is zero-frequency (d.c.) or constant component;
- next element is for angular frequency $\frac{2 \pi}{L}$ (ordinary frequency $\frac{1}{L}$) slowest-moving or fundamental component;
- successive elements are for successive integer multiples of the fundamental, all the way up to the Nyquist frequency;
- components above the Nyquist then continue all the way to angular frequency $\frac{2(L-1) \pi}{L}$ (regular frequency $\frac{L-1}{L}$).

Systems

Fourier Transforms and Convolution

Previously:

- system H response to signal x is $h * x$;
- direct convolution computation has complexity $O\left(N^{2}\right)$.

Systems

Fourier Transforms and Convolution

Previously:

- system H response to signal x is $h * x$;
- direct convolution computation has complexity $O\left(N^{2}\right)$.

Fourier Transform of a convolution is the product of the Fourier Transforms:

$$
\mathcal{F}(h * x)=\mathcal{F}(h) \times \mathcal{F}(x)
$$

so system output for signal x is

$$
\mathcal{F}^{-1}(\mathcal{F}(h) \times \mathcal{F}(x))
$$

Systems

Fourier Transforms and Convolution

Previously:

- system H response to signal x is $h * x$;
- direct convolution computation has complexity $O\left(N^{2}\right)$.

Fourier Transform of a convolution is the product of the Fourier Transforms:

$$
\mathcal{F}(h * x)=\mathcal{F}(h) \times \mathcal{F}(x)
$$

so system output for signal x is

$$
\mathcal{F}^{-1}(\mathcal{F}(h) \times \mathcal{F}(x))
$$

Octave:

- ifft(fft(h,length([h x])-1)..fft(x,length([h x])-1))

Systems

Fourier Transforms and Convolution

$$
y=\mathcal{F}^{-1}(\mathcal{F}(h) \times \mathcal{F}(x))
$$

SO

$$
\mathcal{F}(y)=\mathcal{F}(h) \times \mathcal{F}(x)
$$

- $\mathcal{F}(h)$ is the frequency response of the system.
- the frequency spectrum of the output signal is the product of the spectrum of the input and the frequency response of the system.

