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Systems
Review: Linear Systems

Linear systems have the property that superposition and scaling of
their input signals yield the corresponding scaled superposition of
their outputs.

For any input signals x1 and x2, if

y1 = H{x1}

and
y2 = H{x2},

a system H is linear if

H{αx1 + βx2} = αy1 + βy2

(Almost) all systems in the real world are linear systems for small
enough signals.
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Systems
Review: Time-invariant Systems

Time-invariant systems have the property that the output signal
of the system for a given input signal does not depend explicitly on
absolute time.

For any input signal x with y = H{x}, the system H is
time-invariant if

H{Tδ{x}} = Tδ{y}

Where Tδ is a delay system for arbitrary delay.

Many systems of interest in the real world are time-invariant
systems.
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Systems
Review: Convolution

The convolution operation is notated

y(t) = (h ∗ x)(t)

In discrete time we define the operation as

y [n] = (h ∗ x)[n] =
∞∑

k=−∞
h[k]× x [n − k]

Why convolution?

I implementation of LTI systems!

The output y of a system H for an input signal x is the
convolution of the input and the impulse response of the system.
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Systems
Review: Fourier Transforms and Convolution

Previously:

I system H response to signal x is h ∗ x ;

I direct convolution computation has complexity O(N2).

Fourier Transform of a convolution is the product of the Fourier
Transforms:

F(h ∗ x) = F(h)×F(x)

so system output for signal x is

F−1(F(h)×F(x))

Octave:

I ifft(fft(h,length([h x])-1).*fft(x,length([h x])-1))
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Systems
Review: Fourier Transforms and Convolution

y = F−1(F(h)×F(x))

so
F(y) = F(h)×F(x)

I F(h) is the frequency response of the system.

I the frequency spectrum of the output signal is the product of
the spectrum of the input and the frequency response of the
system.



Filtering

Application of systems to multimedia.
I audio:

I mixing and EQ;
I acoustics;
I sound effects;
I subtractive synthesis.

I image:
I various effects

I blurring;
I edge detection;
I sharpening;
I ...



Audio Filtering
Mixing desks

Wikimedia Commons (user Binksternet)
Public Domain



Audio Filtering
Mixing desks

Mixing ‘console’ or ‘desk’:

I gain controls;

I channel equalizers;

I (and other functionality).

Gain control:

I controls proportion of channel in the entire mix ;

I usually a slider (‘fader’) controlling a variable resistor (‘pot’).
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I gain controls;

I channel equalizers;

I (and other functionality).

Channel equalizer:
I per-channel controls for gain in particular frequency ranges:

I bass: low-frequency;
I mid-range;
I treble: high-frequency;

I digital mixing consoles use discrete LTI systems



Audio Filtering
Mixing desks

Mixing ‘console’ or ‘desk’:

I gain controls;

I channel equalizers;

I (and other functionality).

Other functionality:

I pan and balance;

I submix routing;

I talkback;

I external effects.



Audio Filtering
Finite Impulse Response Filters

Ideal low-pass filter frequency response:
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Audio Filtering
Finite Impulse Response Filters

Ideal filters are not possible.

I finiteness of impulse-response;

I Heisenberg uncertainty;

Should we just give up?
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Practical low-pass filter frequency response:
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Audio Filtering
Finite Impulse Response Filters

Practical high-pass filter frequency response:

I gain of close to 1 for high frequencies;

I gain of 1√
2

at cutoff frequency;

I rapid decline in gain at frequencies lower than cutoff;

I linear phase delay in pass-band region.



Audio Filtering
Finite Impulse Response Filters

Band-pass filter: allow through only frequencies within a certain
range.
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Practical band-pass filter frequency response:

I gain of close to 1 in pass-band region;

I gain of 1√
2

at cutoff frequencies (lower and upper);

I rapid decline in gain at frequencies outside pass-band;

I linear phase delay in pass-band region.



Audio Filtering
Finite Impulse Response Filters

Band-pass filter:

I Combination (convolution) of low-pass and high-pass filter
(with overlapping pass-band regions):

I difference between upper and lower cutoffs: bandwidth;

I ratio between centre frequency and bandwidth: quality
factor;



Audio Filtering
Finite Impulse Response Filters
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Audio Filtering
Finite Impulse Response Filters

Practical low-pass filter frequency response:

I gain of close to 1 for low frequencies;

I gain of 1√
2

at cutoff frequency;

I rapid decline in gain at frequencies higher than cutoff;

I linear phase delay in pass-band region.
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Audio Filtering
Finite Impulse Response Filters

Octave:
I filter construction with fir1 function:

I n: order parameter;
I w: band edges;
I type, window, scale parameters;

I visualization with freqz function;
I application with filter function.

I y = filter(fir1(...), 1, x)
I or use conv



Audio Filtering
Subtractive Synthesis

e.g. Moog synthesizers

I Start with a rich waveform:

f = zeros(1,44100);

f(56:55:22050) = 1;

f(44100:-1:22051) = f(1:22050);

x = real(ifft(f));

I Apply a filter to the waveform:

y = conv(h,x);

I Play the filtered waveform:

sound(y, 44100)

(cf. additive synthesis: constructing waveform from explicit
addition of partials)



Audio Filtering
Echo and Reverb

Rooms are systems too. Their impulse response can be categorized
into two parts:

I echo:
I few, discrete impulses at particular times;
I caused by first reflections of sound off one or two surfaces;
I typical timescale: ∼ 0.1s.

I reverb:
I noisy, decaying waveform;
I caused by superimposed echoes of echoes of echoes (of

echos...);
I typical timescale: ∼ 1s–10s.



Audio Filtering
Echo and Reverb

Echo:
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Audio Filtering
Echo and Reverb

Reverb:



Audio Filtering
Resampling

Resampling: changing the sample rate of a discrete-time signal
(while preserving its meaning).

Applications:

I Applying a filter to a signal with a different sample rate;

I Resampling synthesis: pitch shifting.

Octave: resample operator.

I x: signal to resample;

I p: interpolation factor;

I q: decimation factor.

Net effect is to transorm signal sampled at frequency f into the
same signal sampled at frequency p

q f .


