Creative Computing II

Christophe Rhodes
c.rhodes@gold.ac.uk

Autumn 2010, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316
Winter 2011, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316

Filtering

Application of systems to multimedia.

- audio:
- mixing and EQ;
- acoustics;
- sound effects;
- subtractive synthesis.
- image:
- various effects
- blurring;
- edge detection;
- sharpening;
- ...

Filtering

Images, Matrices and Arrays

Previously:

- arbitrary-dimensional signals;
- audio signals as Octave vectors;
- ... so now what?

2D: Matrices.

Filtering

Images, Matrices and Arrays

Matrices:

- [1 2; 3 4];
- zeros, ones, rand;

Filtering

Images, Matrices and Arrays

Matrices:

- [1 2; 3 4];
- zeros, ones, rand;

Operations:

- scalar + matrix; matrix - scalar;
- scalar * matrix; matrix / scalar;
- matrix + matrix; matrix - matrix;
- matrix .* matrix;
- matrix * matrix;

Filtering

Images, Matrices and Arrays

Images as matrices:

- each channel is 2D signal;
- grayscale is directly representable;
- RGB images as 3D signal: array (size $\mathrm{x} \times \mathrm{y} \times 3$)
- Octave support: imread, imwrite

Note: matrix multiplication does not make sense for images-as-matrices.

Filtering

Image Synthesis

Construction of matrices:

- matrix constructors:
- zeros, ones;
- rand.

Filtering

Image Synthesis

Construction of matrices:

- matrix constructors:
- zeros, ones;
- rand.
- vector multiplication:
- if u is $p \times 1$ and v is $1 \times q$ then
- $u * v$ is $p \times q$.

Filtering

Image Synthesis

Construction of matrices:

- matrix constructors:
- zeros, ones;
- rand.
- vector multiplication:
- if u is $p \times 1$ and v is $1 \times q$ then
$-\mathrm{u} * \mathrm{v}$ is $p \times q$.
Examples:
- rand(32);
- rand(512);
- [1:512]'*ones $(1,512)$
- $\sin (10 * 2 * \mathrm{pi} / 512 *[1: 512])$) * $\sin (20 * 2 * \mathrm{pi} / 512 *[1: 512])$

Filtering

Image Synthesis

Other techniques for image synthesis:

- cellular automata;
- visualisation;
- modelling;
- raytracing;
(beyond the scope of this course)

Filtering

Image Synthesis

Other techniques for image synthesis:

- cellular automata;
- visualisation;
- modelling;
- raytracing;
(beyond the scope of this course)
Image I/O in Octave:
- imread, imwrite
- imshow
- imagesc

Filtering

Image Filtering

dscf1284.jpg-16.0 (RGB, 1 layer) 640×48					
	Edit Select View Image Layer Colours	Iools Dialogues Filters			
Q0, 0^{0}					
Preview Matrix					
		$1 \quad 1$	1	1	1
		1 l	1	1	1
		11	-24	1	1
		1 1	1	1	1
		1 1	1	1	1
		Divisor:		Offset:	
		\checkmark Normalise			

Filtering

Image Filtering

General idea:

- express desired filter as an LTI system;
- compute kernel (IR) for the system;
- apply kernel to image.

$$
\begin{gathered}
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k] \\
y[n, m]=\sum_{k, l=-\infty}^{\infty} h[k, l] x[n-k, m-l]
\end{gathered}
$$

Octave support:

- conv2
- fft2 and ifft2
- note: not fir2

Filtering

Image Filtering

Identity system:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Filtering

Image Filtering

Identity system:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Use with conv2(image, kernel, 'same')

- treats centre of kernel as the origin;
- returns a matrix the same size as image.

Filtering

Image Filtering

Shift:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Filtering

Image Filtering

Bigger shift in a different direction:

$$
\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Filtering

Image Filtering

'Echo':

$$
\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.3 & 0 & 0 \\
0 & 0 & 0.2 & 0 & 0 & 0 & 0 \\
0.2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- multiple, superposed shifts;
- scaled to add up to 1 ;
- not necessarily all the same weight.

Filtering

Image Filtering

Gaussian Blur:

- 1D Gaussian: g = $\exp (-([0: n-1] \quad-(n-1) / 2) . \wedge 2 /(2 * w)) / \operatorname{sqrt}(2 * p i * w)$;
- $\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
- 2D Gaussian: $\mathrm{g} * \mathrm{~g}$ '

Filtering

Image Filtering

Motion Blur:

$$
\frac{1}{5}\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Filtering

Image Filtering

Edge Detection:

$$
\left(\begin{array}{ccccc}
0 & -1 & -1 & -1 & 0 \\
-1 & -1 & -1 & -1 & -1 \\
-1 & -1 & 20 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 \\
0 & -1 & -1 & -1 & 0
\end{array}\right)
$$

Filtering

Image Filtering

General FIR filters:

- construct an FIR filter using fir1;
- extend to 2D using vector multiplication;

Problem:

- resulting 2D filter is not in general circularly symmetrical;
- privileged directions along image axes.

