Creative Computing II

Christophe Rhodes
c.rhodes@gold.ac.uk

Autumn 2010, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316
Winter 2011, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316

Multimedia Information Retrieval

Textual Distance Measures

Levenshtein distance:

- define a set of permitted operations and associated costs:
- insert (cost ins);
- delete (cost del);
- substitute (cost sub);
- Levenshtein distance between two words is the minimum cost to transform one word into another.

Multimedia Information Retrieval

Textual Distance Measures

```
\(d \leftarrow d_{\text {Levenshtein }}(x, y)\)
    \(I_{x} \leftarrow\) length \((x) ; I_{y} \leftarrow\) length \((y)\)
    if \(I_{x}=0\) then
        \(d \leftarrow l_{y}\)
    else if \(I_{y}=0\) then
        \(d \leftarrow I_{x}\)
    else
        \(d_{\text {del }} \leftarrow d e l+d_{\text {Levenshtein }}\left(x_{2: l_{x}}, y\right)\)
        \(d_{\text {ins }} \leftarrow i n s+d_{\text {Levenshtein }}\left(x, y_{2: l_{y}}\right)\)
        if \(x_{1}=y_{1}\) then
        \(d_{\text {sub }} \leftarrow d_{\text {Levenshtein }}\left(x_{2: l_{x}}, y_{2: l_{y}}\right)\)
        else
        \(d_{\text {sub }} \leftarrow \operatorname{sub}+d_{\text {Levenshtein }}\left(x_{2: l_{x}}, y_{2: l_{y}}\right)\)
        end if
        \(d \leftarrow \min \left(d_{d e l}, d_{i n s}, d_{s u b}\right)\)
    end if
```

This computation is $O\left(L^{L}\right)$ for strings of length L

Multimedia Information Retrieval

Textual Distance Measures

```
\(d \leftarrow d_{\text {Levenshtein }}(x, y)\)
    \(I_{x} \leftarrow\) length \((x) ; I_{y} \leftarrow\) length \((y)\)
    if \(I_{x}=0\) then
        \(d \leftarrow l_{y}\)
    else if \(I_{y}=0\) then
        \(d \leftarrow I_{x}\)
    else
        \(d_{\text {del }} \leftarrow d e l+d_{\text {Levenshtein }}\left(x_{2: l_{x}}, y\right)\)
        \(d_{\text {ins }} \leftarrow i n s+d_{\text {Levenshtein }}\left(x, y_{2: l_{y}}\right)\)
        if \(x_{1}=y_{1}\) then
        \(d_{\text {sub }} \leftarrow d_{\text {Levenshtein }}\left(x_{2: l_{x}}, y_{2: l_{y}}\right)\)
        else
        \(d_{\text {sub }} \leftarrow \operatorname{sub}+d_{\text {Levenshtein }}\left(x_{2: l_{x}}, y_{2: l_{y}}\right)\)
        end if
        \(d \leftarrow \min \left(d_{d e l}, d_{i n s}, d_{s u b}\right)\)
    end if
```

This computation is $O\left(L^{L}\right)$ for strings of length $L \ldots$ but we can do better: "Dynamic Programming".

Multimedia Information Retrieval

Textual Distance Measures

```
\(d \leftarrow d_{\text {Levenshtein }}(x, y)\)
    for \(i\) from 0 to \(I_{x}\) do
        \(d_{i, 0} \leftarrow i \times d e l\)
    end for
    for \(j\) from 0 to \(l_{y}\) do
        \(d_{0, j} \leftarrow j \times\) ins
    end for
    for \(i\) from 1 to \(I_{x}\) do
        for \(j\) from 1 to \(l_{y}\) do
            if \(x_{i}=y_{j}\) then
            \(d_{i, j}=d_{i-1, j-1}\)
        else
            \(d_{i, j}=\min \left(d_{i-1, j}+d e l, d_{i, j-1}+i n s, d_{i-1, j-1}+s u b\right)\)
            end if
        end for
    end for
    \(d \leftarrow d_{l_{x}, l_{y}}\)
```

This computation is $O\left(L^{2}\right)$ for strings of length L.

Multimedia Information Retrieval

Textual Distance Measures

$$
\begin{gathered}
d(\text { choose }, \text { choose })=0 \\
d(\text { choose }, \text { chose })=d e l \\
d(\text { choose }, \text { chives })=2 \times \text { sub }+d e l+i n s \\
d \text { (professor, proffessor })=i n s \\
d(\text { professors }, \text { proffessor })=i n s+d e l
\end{gathered}
$$

- Often an appropriate measure to use for comparing words;
- Models ways of making mistakes;
- $O\left(L^{2}\right)$ time is practical for distances between words (but not between whole documents).

Multimedia Information Retrieval

Textual Document Retrieval

Term-Frequency-Inverse-Document-Frequency (tf-idf):

- intuition:
- term frequency: the more often a term is in a document, the more relevant it is;
- inverse document frequency: the more documents a term is in, the less discriminating it is;
- Therefore, maximize a measure combining the term frequency and the inverse document frequency.

Multimedia Information Retrieval

Textual Document Retrieval

Term-Frequency-Inverse-Document-Frequency (tf-idf):

- intuition:
- term frequency: the more often a term is in a document, the more relevant it is;
- inverse document frequency: the more documents a term is in, the less discriminating it is;
- Therefore, maximize a measure combining the term frequency and the inverse document frequency.
$-\mathrm{tf}_{i j}=\frac{n_{i j}}{\sum_{k} n_{k j}}$

Multimedia Information Retrieval

Textual Document Retrieval

Term-Frequency-Inverse-Document-Frequency (tf-idf):

- intuition:
- term frequency: the more often a term is in a document, the more relevant it is;
- inverse document frequency: the more documents a term is in, the less discriminating it is;
- Therefore, maximize a measure combining the term frequency and the inverse document frequency.
$-\mathrm{tf}_{i j}=\frac{n_{i j}}{\sum_{k} n_{k j}}$
- idf $_{i}=\log \frac{|D|}{\left|d_{j}: n_{i j}>0\right|}$

