Creative Computing II

Christophe Rhodes
c.rhodes@gold.ac.uk

Autumn 2010, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316
Winter 2011, Wednesdays:
10:00-12:00: RHB307 \& 14:00-16:00: WB316

Multimedia Information Retrieval

Numerical Features

Textual features:

- effectively binary: either a word is present or it is not;
- relevance judgments from combining many binary comparisons;
- useful when there are clear, measurable, unambiguous categories.

Multimedia Information Retrieval

Numerical Features

Textual features:

- effectively binary: either a word is present or it is not;
- relevance judgments from combining many binary comparisons;
- useful when there are clear, measurable, unambiguous categories.
Numerical features:
- analogue scale to express degree of some quality;
- relevance judgments from distance measure between features;
- useful when categories are not clear, measurable and unambiguous.

Multimedia Information Retrieval

Numerical Features: Distance Measures
Euclidean distance: usual measure of distance in space.

Multimedia Information Retrieval

Numerical Features: Distance Measures

Euclidean distance: usual measure of distance in space. For points A and B with coordinates $a_{1}, a_{2}, \ldots, a_{N}$ and $b_{1}, b_{2}, \ldots, b_{N}$:

$$
\Delta_{A B}^{(2)}=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\ldots+\left(a_{N}-b_{N}\right)^{2}}
$$

Notes:

- the distance is only defined if the two points are in the same space;
- the Euclidean distance is commutative: $\Delta_{A B}^{(2)}=\Delta_{B A}^{(2)}$;
- the triangle inequality is satisfied: $\Delta_{A B}^{(2)}+\Delta_{B C}^{(2)} \geq \Delta_{A C}^{(2)}$.

Multimedia Information Retrieval

Numerical Features: Distance Measures

Euclidean distance: usual measure of distance in space. For points A and B with coordinates $a_{1}, a_{2}, \ldots, a_{N}$ and $b_{1}, b_{2}, \ldots, b_{N}$:

$$
\Delta_{A B}^{(2)}=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\ldots+\left(a_{N}-b_{N}\right)^{2}}
$$

Notes:

- the distance is only defined if the two points are in the same space;
- the Euclidean distance is commutative: $\Delta_{A B}^{(2)}=\Delta_{B A}^{(2)}$;
- the triangle inequality is satisfied: $\Delta_{A B}^{(2)}+\Delta_{B C}^{(2)} \geq \Delta_{A C}^{(2)}$.
- default distance, used in all sorts of contexts.

Multimedia Information Retrieval

Numerical Features: Distance Measures

Euclidean distance: usual measure of distance in space. For points A and B with coordinates $a_{1}, a_{2}, \ldots, a_{N}$ and $b_{1}, b_{2}, \ldots, b_{N}$:

$$
\Delta_{A B}^{(2)}=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\ldots+\left(a_{N}-b_{N}\right)^{2}}
$$

Notes:

- the distance is only defined if the two points are in the same space;
- the Euclidean distance is commutative: $\Delta_{A B}^{(2)}=\Delta_{B A}^{(2)}$;
- the triangle inequality is satisfied: $\Delta_{A B}^{(2)}+\Delta_{B C}^{(2)} \geq \Delta_{A C}^{(2)}$.
- default distance, used in all sorts of contexts.

Multimedia Information Retrieval

Numerical Features: Distance Measures

Manhattan distance: distance between two points in blocks (aka 'city-block distance').

Multimedia Information Retrieval

Numerical Features: Distance Measures

Manhattan distance: distance between two points in blocks (aka 'city-block distance').
For points A, B :

$$
\Delta_{A B}^{(1)}=\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\ldots+\left|a_{N}-b_{N}\right|
$$

Notes:

- the distance is only defined if the two points are in the same space;
- the Manhattan distance is commutative: $\Delta_{A B}^{(1)}=\Delta_{B A}^{(1)}$;
- the triangle inequality is satisfied: $\Delta_{A B}^{(1)}+\Delta_{B C}^{(1)} \geq \Delta_{A C}^{(1)}$;
- used when spatial dimensions have distinct meanings.

Multimedia Information Retrieval

Numerical Features: Distance Measures

Manhattan distance: distance between two points in blocks (aka 'city-block distance').
For points A, B :

$$
\Delta_{A B}^{(1)}=\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\ldots+\left|a_{N}-b_{N}\right|
$$

Notes:

- the distance is only defined if the two points are in the same space;
- the Manhattan distance is commutative: $\Delta_{A B}^{(1)}=\Delta_{B A}^{(1)}$;
- the triangle inequality is satisfied: $\Delta_{A B}^{(1)}+\Delta_{B C}^{(1)} \geq \Delta_{A C}^{(1)}$;
- used when spatial dimensions have distinct meanings.

Multimedia Information Retrieval

Numerical Features: Distance Measures
p-norm distance: generalizes Manhattan and Euclidean. For points A, B :

$$
\Delta_{A B}^{(p)}=\sqrt[p]{\left|a_{1}-b_{1}\right|^{p}+\left|a_{2}-b_{2}\right|^{p}+\ldots+\left|a_{N}-b_{N}\right|^{p}}
$$

Multimedia Information Retrieval

Numerical Features: Distance Measures

p-norm distance: generalizes Manhattan and Euclidean. For points A, B :

$$
\Delta_{A B}^{(p)}=\sqrt[p]{\left|a_{1}-b_{1}\right|^{p}+\left|a_{2}-b_{2}\right|^{p}+\ldots+\left|a_{N}-b_{N}\right|^{p}}
$$

Notes:

- the distance is only defined if the two points are in the same space;
- the p-norm distance is commutative: $\Delta_{A B}^{(p)}=\Delta_{B A}^{(p)}$;
- the triangle inequality is satisfied only if $p \geq 1$:

$$
\Delta_{A B}^{(p)}+\Delta_{B C}^{(p)} \geq \Delta_{A C}^{(p)}
$$

Multimedia Information Retrieval

Numerical Features: Distance Measures

p-norm distance: generalizes Manhattan and Euclidean. For points A, B :

$$
\Delta_{A B}^{(p)}=\sqrt[p]{\left|a_{1}-b_{1}\right|^{p}+\left|a_{2}-b_{2}\right|^{p}+\ldots+\left|a_{N}-b_{N}\right|^{p}}
$$

Notes:

- the distance is only defined if the two points are in the same space;
- the p-norm distance is commutative: $\Delta_{A B}^{(p)}=\Delta_{B A}^{(p)}$;
- the triangle inequality is satisfied only if $p \geq 1$: $\Delta_{A B}^{(p)}+\Delta_{B C}^{(p)} \geq \Delta_{A C}^{(p)}$.
- particular case: Chebyshev distance, when $p \rightarrow \infty$.

Multimedia Information Retrieval

Numerical Features: Distance Measures

Kullback-Liebler divergence is a measure of 'distance' between probability distributions. For distributions P and Q

$$
\Delta_{P Q}^{(K L)}=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}
$$

Notes:

- the distance only makes any sense if the two distributions are over the same events, and neither has a zero probability for any event that the other has a non-zero probability for;
- the KL divergence is not commutative;
- the KL divergence does not satisfy the triangle inequality;
- nevertheless, it gets used when features resemble probability distributions.

Multimedia Information Retrieval

Perceptual Features

Perceptual features:

- intended to capture (usually numerically) some aspect of the perception of a multimedia item;
- can be scalar (single number) or vector (multiple numbers);
- need a distance measure to be able to compare features for similarity;
- (usually) arrange so that the features are comparable with Euclidean distance.

Multimedia Information Retrieval

The CIE LAB Colour Space

Problem with CIE XYZ:

- 'distances' in colour space are not perceptually relevant;
- (just like RGB, HSB)

Multimedia Information Retrieval

The CIE LAB Colour Space

Problem with CIE XYZ:

- 'distances' in colour space are not perceptually relevant;
- (just like RGB, HSB)

Solution:

- transform CIE XYZ into a colour space where distances correlate with perceived colour differences
- CIE $L^{*} a^{*} b^{*}$ (CIELAB)
- (different spaces with the same aim: CIE Luv, Hunter Lab)
- L* matches lightness (not the same as brightness);
- a^{*} and b^{*} are chromaticity components:
- a^{*} : red/magenta vs green;
- b^{*} : yellow vs blue.

Multimedia Information Retrieval

The CIE LAB Colour Space

CIE XYZ \rightarrow CIE LAB:

- define $f(t)= \begin{cases}\sqrt[3]{t} & t>\left(\frac{6}{29}\right)^{3} \\ \frac{1}{3}\left(\frac{29}{6}\right)^{2} t+\frac{4}{29} & \text { otherwise }\end{cases}$

Multimedia Information Retrieval

The CIE LAB Colour Space

CIE XYZ \rightarrow CIE LAB:

- define $f(t)= \begin{cases}\sqrt[3]{t} & t>\left(\frac{6}{29}\right)^{3} \\ \frac{1}{3}\left(\frac{29}{6}\right)^{2} t+\frac{4}{29} & \text { otherwise }\end{cases}$
- $L^{*}=116 f\left(\frac{Y}{Y_{0}}\right)-16$
- $a^{*}=500\left[f\left(\frac{X}{X_{0}}\right)-f\left(\frac{Y}{Y_{0}}\right)\right]$
- $b^{*}=200\left[f\left(\frac{Y}{Y_{0}}\right)-f\left(\frac{Z}{Z_{0}}\right)\right]$

Multimedia Information Retrieval

The CIE LAB Colour Space

CIE LAB \rightarrow CIE XYZ:

- define $f^{-1}(z)= \begin{cases}z^{3} & z>\frac{6}{29} \\ \left(z-\frac{4}{29}\right) 3\left(\frac{6}{29}\right)^{2} & \text { otherwise }\end{cases}$

Multimedia Information Retrieval

The CIE LAB Colour Space

CIE LAB \rightarrow CIE XYZ:

- define $f^{-1}(z)= \begin{cases}z^{3} & z>\frac{6}{29} \\ \left(z-\frac{4}{29}\right) 3\left(\frac{6}{29}\right)^{2} & \text { otherwise }\end{cases}$
- $f_{y}=\frac{L^{*}+16}{116}$
- $f_{x}=f_{y}+\frac{a^{*}}{500}$
- $f_{z}=f_{y}-\frac{b^{*}}{200}$

Multimedia Information Retrieval

The CIE LAB Colour Space

CIE LAB \rightarrow CIE XYZ:

- define $f^{-1}(z)= \begin{cases}z^{3} & z>\frac{6}{29} \\ \left(z-\frac{4}{29}\right) 3\left(\frac{6}{29}\right)^{2} & \text { otherwise }\end{cases}$
- $f_{y}=\frac{L^{*}+16}{116}$
- $f_{x}=f_{y}+\frac{a^{*}}{500}$
- $f_{z}=f_{y}-\frac{b^{*}}{200}$
- $X=X_{0} f^{-1}\left(f_{x}\right)$
- $Y=Y_{0} f^{-1}\left(f_{y}\right)$
- $Z=Z_{0} f^{-1}\left(f_{z}\right)$

Multimedia Information Retrieval

Perceptual Features: Image

- Luminance:
- expresses the perceptual aspect related to brightness or 'how much light';
- non-linear transformation of energy into CIE LAB space;
- $L=116 f\left(\frac{Y}{Y_{0}}\right)-16$, where
- $f(t)= \begin{cases}\sqrt[3]{t} & t>\left(\frac{6}{29}\right)^{3} \\ \frac{1}{3}\left(\frac{29}{6}\right)^{2} t+\frac{4}{29} & \text { otherwise }\end{cases}$

Multimedia Information Retrieval

Perceptual Features: Image

- Luminance:
- expresses the perceptual aspect related to brightness or 'how much light';
- non-linear transformation of energy into CIE LAB space;
- $L=116 f\left(\frac{Y}{Y_{0}}\right)-16$, where
- $f(t)= \begin{cases}\sqrt[3]{t} & t>\left(\frac{6}{29}\right)^{3} \\ \frac{1}{3}\left(\frac{29}{6}\right)^{2} t+\frac{4}{29} & \text { otherwise }\end{cases}$
- Colour:
- expresses the overall perception of colour;
- non-linear transformation of linear colour space into CIE LAB;
- $a^{*}=500\left[f\left(\frac{X}{X_{0}}\right)-f\left(\frac{Y}{Y_{0}}\right)\right]$;
- $b^{*}=200\left[f\left(\frac{Y}{Y_{0}}\right)-f\left(\frac{Z}{Z_{0}}\right)\right]$;
- designed so that Euclidean distance corresponds (approximately) to experimentally-determined perceptual distance.

Multimedia Information Retrieval

Perceptual Features: Animation

- Difference features:
- compute how much of the image changes between successive frames;
- calculate by (for example) taking the mean absolute CIE LAB colour distance over all image pixels;
- small value: very similar image; large value; completely different image;
- use for shot detection: when does the scene or camera change?

Multimedia Information Retrieval

Perceptual Features: Animation

- Difference features:
- compute how much of the image changes between successive frames;
- calculate by (for example) taking the mean absolute CIE LAB colour distance over all image pixels;
- small value: very similar image; large value; completely different image;
- use for shot detection: when does the scene or camera change?
- problem: this measure will be a noisy signal; we will want to filter or otherwise denoise it.

Multimedia Information Retrieval

Perceptual Features: Audio

- Loudness:
- a measure of the overall perceived energy in the audio;
- proper implementation would use loudness curves:
- $\left(L=\sum_{i}^{N} w_{i}\left(\left|f_{i}\right|^{2}\right)\right)$ with w_{i} derived from ISO 226:2003;
- in practice people simply take the logarithm of the average of the squared displacement:
- $L=\log \left(\frac{1}{N} \sum_{i}^{N} x_{i}^{2}\right)$.
- Spectrum:
- a measure of what kind of sound is there;
- treat the squared magnitude of the Fourier Spectrum bins directly as a vector feature;
- fails to work as a perceptual feature (too much sensitivity at high frequencies);
- still useful for fingerprinting.

Multimedia Information Retrieval

Perceptual Features: Musical Audio

- Constant- Q spectrum:
- start with the squared magnitude of the Fourier spectrum bins, but then combine into logarithmically-spaced bins;
- intended to mimic the sensitivity of the basilar membrane;
- captures the notion of musical pitch;
- does not capture octave invariance (application-dependent whether that is a problem)
- Chromagram
- (usually) starts with a constant- Q spectrum, 12 bins per octave;
- 'folds' the octaves over: adds values in bins with the same (octave-invariant) pitch;
- captures the pitch-name content of the audio.
- Cepstrum
- starts (approximately) with a constant- Q spectrum expressed in decibels;
- take the Fourier transform of that object.
- captures the idea of the 'timbre' of the sound.

