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Multimedia Information Retrieval
Numerical Features

Textual features:

I effectively binary: either a word is present or it is not;

I relevance judgments from combining many binary
comparisons;

I useful when there are clear, measurable, unambiguous
categories.

Numerical features:

I analogue scale to express degree of some quality;

I relevance judgments from distance measure between features;

I useful when categories are not clear, measurable and
unambiguous.
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Multimedia Information Retrieval
Numerical Features: Distance Measures

Euclidean distance: usual measure of distance in space.
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Multimedia Information Retrieval
Numerical Features: Distance Measures

Euclidean distance: usual measure of distance in space.
For points A and B with coordinates a1, a2, ..., aN and
b1, b2, ..., bN :

∆
(2)
AB =

√
(a1 − b1)2 + (a2 − b2)2 + ... + (aN − bN)2

Notes:

I the distance is only defined if the two points are in the same
space;

I the Euclidean distance is commutative: ∆
(2)
AB = ∆

(2)
BA;

I the triangle inequality is satisfied: ∆
(2)
AB + ∆

(2)
BC ≥ ∆

(2)
AC .

I default distance, used in all sorts of contexts.
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Manhattan distance: distance between two points in blocks (aka
‘city-block distance’).
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Numerical Features: Distance Measures

Manhattan distance: distance between two points in blocks (aka
‘city-block distance’).
For points A, B:

∆
(1)
AB = |a1 − b1|+ |a2 − b2|+ ... + |aN − bN |

Notes:

I the distance is only defined if the two points are in the same
space;

I the Manhattan distance is commutative: ∆
(1)
AB = ∆

(1)
BA;

I the triangle inequality is satisfied: ∆
(1)
AB + ∆

(1)
BC ≥ ∆

(1)
AC ;

I used when spatial dimensions have distinct meanings.
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Manhattan distance: distance between two points in blocks (aka
‘city-block distance’).
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∆
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AB = |a1 − b1|+ |a2 − b2|+ ... + |aN − bN |
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Multimedia Information Retrieval
Numerical Features: Distance Measures

p-norm distance: generalizes Manhattan and Euclidean. For points
A, B:

∆
(p)
AB = p

√
|a1 − b1|p + |a2 − b2|p + ... + |aN − bN |p

Notes:

I the distance is only defined if the two points are in the same
space;

I the p-norm distance is commutative: ∆
(p)
AB = ∆

(p)
BA;

I the triangle inequality is satisfied only if p ≥ 1:

∆
(p)
AB + ∆

(p)
BC ≥ ∆

(p)
AC .

I particular case: Chebyshev distance, when p →∞.
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Multimedia Information Retrieval
Numerical Features: Distance Measures

Kullback-Liebler divergence is a measure of ‘distance’ between
probability distributions. For distributions P and Q

∆
(KL)
PQ =

∑
i

pi log
pi
qi

Notes:

I the distance only makes any sense if the two distributions are
over the same events, and neither has a zero probability for
any event that the other has a non-zero probability for;

I the KL divergence is not commutative;

I the KL divergence does not satisfy the triangle inequality;

I nevertheless, it gets used when features resemble probability
distributions.



Multimedia Information Retrieval
Perceptual Features

Perceptual features:

I intended to capture (usually numerically) some aspect of the
perception of a multimedia item;

I can be scalar (single number) or vector (multiple numbers);

I need a distance measure to be able to compare features for
similarity;

I (usually) arrange so that the features are comparable with
Euclidean distance.



Multimedia Information Retrieval
The CIE LAB Colour Space

Problem with CIE XYZ:

I ‘distances’ in colour space are not perceptually relevant;

I (just like RGB, HSB)

Solution:

I transform CIE XYZ into a colour space where distances
correlate with perceived colour differences

I CIE L∗a∗b∗ (CIELAB)

I (different spaces with the same aim: CIE Luv, Hunter Lab)

I L∗ matches lightness (not the same as brightness);
I a∗ and b∗ are chromaticity components:

I a∗: red/magenta vs green;
I b∗: yellow vs blue.
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Multimedia Information Retrieval
The CIE LAB Colour Space

CIE XYZ → CIE LAB:

I define f (t) =

{
3
√
t t >

(
6
29

)3
1
3

(
29
6

)2
t + 4

29 otherwise

I L∗ = 116f
(

Y
Y0

)
− 16

I a∗ = 500
[
f
(

X
X0

)
− f

(
Y
Y0

)]
I b∗ = 200

[
f
(

Y
Y0

)
− f

(
Z
Z0

)]
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Multimedia Information Retrieval
The CIE LAB Colour Space

CIE LAB → CIE XYZ:

I define f −1(z) =

{
z3 z > 6

29(
z − 4

29

)
3
(

6
29

)2
otherwise

I fy = L∗+16
116

I fx = fy + a∗

500

I fz = fy − b∗

200

I X = X0f
−1(fx)

I Y = Y0f
−1(fy )

I Z = Z0f
−1(fz)
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Multimedia Information Retrieval
Perceptual Features: Image

I Luminance:
I expresses the perceptual aspect related to brightness or ‘how

much light’;
I non-linear transformation of energy into CIE LAB space;

I L = 116f
(

Y
Y0

)
− 16, where

I f (t) =

{
3
√
t t >

(
6
29

)3
1
3

(
29
6

)2
t + 4

29 otherwise

I Colour:
I expresses the overall perception of colour;
I non-linear transformation of linear colour space into CIE LAB;

I a∗ = 500
[
f
(

X
X0

)
− f

(
Y
Y0

)]
;

I b∗ = 200
[
f
(

Y
Y0

)
− f

(
Z
Z0

)]
;

I designed so that Euclidean distance corresponds
(approximately) to experimentally-determined perceptual
distance.
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Multimedia Information Retrieval
Perceptual Features: Animation

I Difference features:
I compute how much of the image changes between successive

frames;
I calculate by (for example) taking the mean absolute CIE LAB

colour distance over all image pixels;
I small value: very similar image; large value; completely

different image;
I use for shot detection: when does the scene or camera

change?

I problem: this measure will be a noisy signal; we will want to
filter or otherwise denoise it.
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Multimedia Information Retrieval
Perceptual Features: Audio

I Loudness:
I a measure of the overall perceived energy in the audio;
I proper implementation would use loudness curves:
I (L =

∑N
i wi (|fi |2)) with wi derived from ISO 226:2003;

I in practice people simply take the logarithm of the average of
the squared displacement:

I L = log
(

1
N

∑N
i x2i

)
.

I Spectrum:
I a measure of what kind of sound is there;
I treat the squared magnitude of the Fourier Spectrum bins

directly as a vector feature;
I fails to work as a perceptual feature (too much sensitivity at

high frequencies);
I still useful for fingerprinting.



Multimedia Information Retrieval
Perceptual Features: Musical Audio

I Constant-Q spectrum:
I start with the squared magnitude of the Fourier spectrum bins,

but then combine into logarithmically-spaced bins;
I intended to mimic the sensitivity of the basilar membrane;
I captures the notion of musical pitch;
I does not capture octave invariance (application-dependent

whether that is a problem)
I Chromagram

I (usually) starts with a constant-Q spectrum, 12 bins per
octave;

I ‘folds’ the octaves over: adds values in bins with the same
(octave-invariant) pitch;

I captures the pitch-name content of the audio.
I Cepstrum

I starts (approximately) with a constant-Q spectrum expressed
in decibels;

I take the Fourier transform of that object.
I captures the idea of the ‘timbre’ of the sound.


