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Multimedia Information Retrieval
Perceptual Features: Musical Audio

I Constant-Q spectrum:
I start with the squared magnitude of the Fourier spectrum bins,

but then combine into logarithmically-spaced bins;
I intended to mimic the sensitivity of the basilar membrane;
I captures the notion of musical pitch;
I does not capture octave invariance (application-dependent

whether that is a problem)
I Chromagram

I (usually) starts with a constant-Q spectrum, 12 bins per
octave;

I ‘folds’ the octaves over: adds values in bins with the same
(octave-invariant) pitch;

I captures the pitch-name content of the audio.
I Cepstrum

I starts (approximately) with a constant-Q spectrum expressed
in decibels;

I take the Fourier transform of that object.
I captures the idea of the ‘timbre’ of the sound.



Multimedia Information Retrieval
The Short-Time Fourier Transform

Fourier transform operates on (conceptually) infinite signal

I Transform corresponds to all times at once

I Music / speech / sound not usually a stationary process

Time-localisation: multiply signal by window function



Multimedia Information Retrieval
The Short-Time Fourier Transform

Previously:

I the Fourier Transform of a convolution is the Hadamard
product of the individual Fourier Transforms

I used (with the Fast Fourier Transform) in efficient
implementation of LTI systems

Also:

I Fourier Transform of Hadamard product is the convolution of
the individual Fourier Transforms

I Implies design choices for the window function:
I Rectangular (Dirichlet)
I Hann
I Hamming
I ...



Multimedia Information Retrieval
Constant-Q spectrum

Short-Time Fourier Transform parameters:

I hop size

I window size

Constant-Q binning parameters:

I low-frequency edge

I high-frequency edge

I bins per octave

The central frequency of bin k is

fk = f0 × 2
k

bpo

The bandwidth of bin k is approximately

fk × (2
1

bpo − 1)

(so Q = 1

2
1

bpo−1
= 17.3 for bpo = 12.



Multimedia Information Retrieval
Chromagram

Chromagram parameters:

I as STFT and Constant-Q parameters

I bins per octave (almost always) set to 12

I some applications will want 24 or 36

combine / ‘fold’ octave-equivalent bins together
Both the constant-Q and chromagram features can be calculated
using Matrix multiplications of the magnitude spectrum.



Multimedia Information Retrieval
Cepstrum

I start with constant-Q spectrum

I take logs of bin values

I take power spectrum of resulting vector

Represents ‘timbre’, captures some forms of pitch

I particularly useful in voice / speech recognition

I applications in music retrieval

(More silly names): quefrency, cepstral alanysis, liftering.



Multimedia Information Retrieval
MIR Systems

The overall architecture:

I a collection of items;

I some set of queries that will be supported;

I some user interface for specifying queries and retrieving
results;



Multimedia Information Retrieval
MIR Systems: Precision and Recall

Two kinds of error in an MIR system:

I false positive;

I false negative.

relevant irrelevant

retrieved TP FP
rejected FN TN

Measures of performance:
I precision:

I what proportion of retrieved results are relevant?
I TP

TP+FP
I recall:

I what proportion of relevant items did I find?
I TP

TP+FN
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Multimedia Information Retrieval
MIR Systems: Small Collections

Given an existing database, a query item, and some kind of query
specification:

I compute some feature of the query item;
I for each database item

I compute the same feature for the item;
I compare the query and database item features with an

appropriate distance measure;
I if the distance is sufficiently small, retrieve the item, otherwise

reject it;

I return the collection of retrieved items.

Refinements:

I limit the number of retrieved items (by removing
larger-distance items from the retrieved set);

I cluster the retrieved set in some way for visualisation;

I infinite possibilities...
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Multimedia Information Retrieval
MIR Systems: Large Collections

The algorithm in the previous slide is O(N) in the size of the
database: the feature for each database item is computed and
compared.

I precompute database features (easy)

I precompare features with query (index, usually hard)

For a scalar feature:

I precomparison is in fact easy: binary tree (for example);

I finding the nearest neighbour is O(logN).

For a vector feature:

I precomparison is difficult in general;

I spatial trees, locality-sensitive hashing, probabilistic
algorithms;

I (beyond the scope of this course: current research!)
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