Introduction to the Use of Computers

Christophe Rhodes c.rhodes@gold.ac.uk

Autumn 2012, Fridays: 10:00-12:00: WTA & 15:00-17:00: WHB 300

Bits and Bytes

A bit:

- ▶ 0 or 1; ("binary digit", or a digit in base 2)
- ▶ unit in storage or communication; (the space or time it takes to transmit something which can be either a 0 or a 1)
- ▶ information unit. (*The quantity of information to distinguish two equiprobable mutually exclusive states*)

The unit is sometimes abbreviated as 'b'.

The bit is the fundamental building block of *digital* (as opposed to *analogue*) computing.

Bits and Bytes Bytes

A byte:

- originally, simply a collection of bits
- now commonly used for specifically 8 bits ("octets")

The unit is sometimes abbreviated as 'B'.

An 8-bit byte (if interpreted as an integer, representing the number 117)

Derived units:

nybble: 4 bits

crumb: 2 bits

Units and Prefixes

SI Prefixes

Prefix	Value
kilo- (k)	$1000 = 10^3$
mega- (M)	$1000^2 = 10^6$
giga- (G)	$1000^3 = 10^9$
tera- (T)	$1000^4 = 10^{12}$
peta- (P)	$1000^5 = 10^{15}$
exa- (E)	$1000^6 = 10^{18}$
zetta- (Z)	$1000^7 = 10^{21}$
yotta- (Y)	$1000^8 = 10^{24}$

Examples:

- kilogram (one thousand grams)
- megaton (equivalent of one million tons of TNT)
- gigahertz (one thousand million per second)

Units and Prefixes

Binary Prefixes

Prefix	Value
kibi- (ki)	$1024 = 2^{10}$
mebi- (Mi)	$1024^2 = 2^{20}$
gibi- (Gi)	$1024^3 = 2^{30}$
tebi- (Ti)	$1024^4 = 2^{40}$
pebi- (Pi)	$1024^5 = 2^{50}$
exbi- (Ei)	$1024^6 = 2^{60}$
zebi- (Zi)	$1024^7 = 2^{70}$
yobi- (Yi)	$1024^8 = 2^{80}$

Effectively only used with bytes: MiB, GiB are the most common.

Storage Devices

Punch cards:

Wikimedia Commons (user Ghw)
Public Domain

Each hole position: one bit

History Storage Devices

Tape:

Wikimedia Commons (user Poil) CC-BY-SA 3.0

About 1000 bits per inch (1951), about 10⁸ (2007) Modern tape drives: low cost per bit, high capacity (1 TB)

Storage Devices

Floppy disks:

Wikimedia Commons CC-BY-SA 3.0

(user Brokensegue) CC-BY-SA 3.0

175kB (1972), 1.44MB (1987)

Now rarely used: small capacity, bulky, easily damaged.

Storage Devices

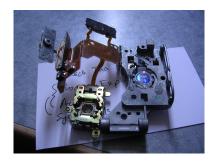
Hard disks:

WP:Dave Indesch CC-BY-SA 3.0

5MB (1980), 1GB (1995), 1TB (2007), 4TB (2012) Concern: capacity has outstripped access/seek_times

Storage Devices

Optical Media:



Wikimedia Commons (user flip619) CC-BY-SA 2.5

CD: 600MB (1985); DVD: 4.7GB (1995)

HD DVD: 30GB (2006); Blu-Ray: 50GB (2006)

(Blu-Ray won in 2008: now up to 150GB)

Storage Devices

Solid-state Drives:

Wikimedia Commons (user D-Kuru) CC-BY-SA 3.0 (Austria)

Fast, quiet

Concern: lifetime of data storage, wearing out

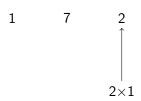
Place-value systems

We write numbers so that their relative placement indicates their value:

1 7 2

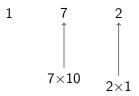
Place-value systems

We write numbers so that their relative placement indicates their value:



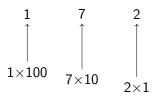
Place-value systems

We write numbers so that their relative placement indicates their value:



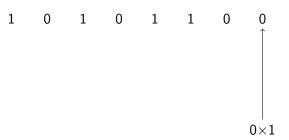
Place-value systems

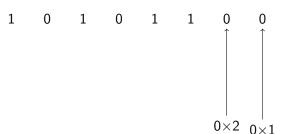
We write numbers so that their relative placement indicates their value:

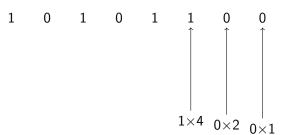


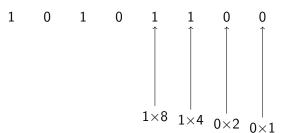
Binary representation

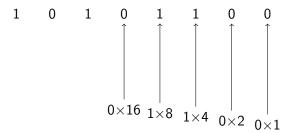
1 0 1 0 1 1 0 0

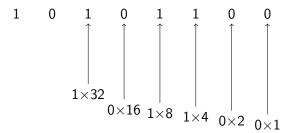


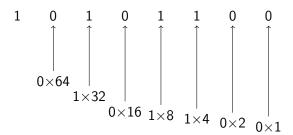


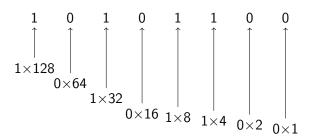












Conversion between bases

Two methods:

- Multiply out;
- Repeated division.

Conversion between bases

Multiply out:

- already seen binary to decimal
- example: convert decimal 42 to binary:

$$(42)_{10} = (4)_{10} \times (10)_{10} + (2)_{10}$$

$$= (100)_2 \times (1010)_2 + (10)_2$$

$$= (101000)_2 + (10)_2$$

$$= (101010)_2$$

Conversion between bases

Repeated division:

$$(42)_{10} = 2 \times (21)_{10}$$
 remainder 0
 $(21)_{10} = 2 \times (10)_{10}$ remainder 1
 $(10)_{10} = 2 \times (5)_{10}$ remainder 0
 $(5)_{10} = 2 \times (2)_{10}$ remainder 1
 $(2)_{10} = 2 \times (1)_{10}$ remainder 0
 $(1)_{10} = 2 \times (0)_{10}$ remainder 1

Read off the remainders in sequence, right to left.

Hexadecimal notation

- Binary notation is wasteful of space;
- Long strings of digits hard to understand;
- Often convenient to use hexadecimal instead.

dec	hex	bin	dec	hex	bin
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	а	1010
3	3	0011	11	b	1011
4	4	0100	12	С	1100
5	5	0101	13	d	1101
6	6	0110	14	е	1110
7	7	0111	15	f	1111

Binary arithmetic

Arithmetic Tables

Addition:

+	0	1
0	0	1
1	1	10

Binary arithmetic

Arithmetic Tables

Subtraction:

_	0	1
0	0	-1
1	1	0

Binary arithmetic

Arithmetic Tables

Multiplication:

×	0	1
0	0	0
1	0	1

Binary Arithmetic

Examples

Binary Logic

Binary logic operates on binary numbers:

- 0 is conventionally 'false'; 1 is 'true';
- operations can have 1 or more inputs
- outputs are logical operations on the inputs

Binary Logic

Binary logic operates on binary numbers:

- 0 is conventionally 'false'; 1 is 'true';
- operations can have 1 or more inputs
- outputs are logical operations on the inputs

Logic circuits are built from components called logic *gates*, implementing logical or Boolean operations:

- common elements: AND, OR, NOT
- primitives: NAND, NOR

Binary Logic

Logic Gates: NOT

NOT relation implemented by a logic gate:

Notation: $X = \neg A$; \overline{A} ; A'

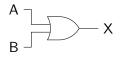
AND relation implemented by a logic gate:

$$A \longrightarrow X$$

Α	В	Х
0	0	0
0	$\mid 1 \mid$	0
1	0	0
1	1	1

Notation: $X = A \wedge B$; $A \cdot B$; $A \times B$

OR relation implemented by a logic gate:



Α	В	Х
0	0	0
0	$\mid 1 \mid$	1
1	0	1
1	1	1

Notation: $X = A \vee B$; A + B

Binary Logic

Logic Gates: XOR

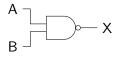
XOR relation implemented by a logic gate:

$$A \longrightarrow X$$

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	0

Notation: $X = A \oplus B$

NAND relation implemented by a logic gate:



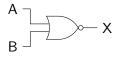
Α	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

Notation: $X = \overline{A \wedge B}$

Binary Logic

Logic Gates: NOR

NOR relation implemented by a logic gate:

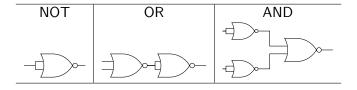


Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

Notation: $X = \overline{A \vee B}$

Binary Logic

Logic Gates: NOR as primitive

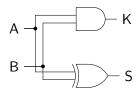


Sum and Carry: Half Adder

Α	В	S	K
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Sum and Carry: Half Adder

Α	В	S	K
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

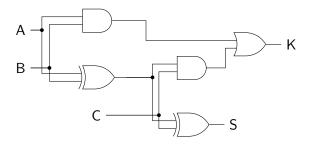


Sum and Carry: Full Adder

Α	В	С	S	K
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- ► S & K...
 - ▶ S is 1 if there are an odd number of 1s in A,B,C
 - K is 1 if there are two or more 1s in A,B,C
- or...
 - ightharpoonup S is A \oplus B \oplus C
 - \blacktriangleright K is $(A \land B) \lor ((A \oplus B) \land C)$

Sum and Carry: Full Adder



Sum and Carry: Full Adder

