Introduction to the Use of Computers

Christophe Rhodes
c.rhodes@gold.ac.uk

Autumn 2012, Fridays: 10:00-12:00: WTA \& 15:00-17:00: WHB 300

Processor

What is a computer?

Processor

Transistors

Wikimedia Commons (user FDominec) CC-BY-SA 3.0

Uses:

- amplifier;
- switch.

Processor

Transistors

Transistor as switch:

- if $V_{\text {in }}$ is 1 , the transistor's resistance is low;
- so $V_{\text {out }}$ is (close to) 0 .
- if $V_{\text {in }}$ is 0 , the transistor's resistance is high;
- so $V_{\text {out }}$ is (close to) 1 .

Processor

Transistor logic

Transistors as logic components:

Processor

Transistor logic

Transistors as logic components:

- if either A or B is 1 , the transistor resistance is low
- so X is (close to) 0 ;
- if both A and B are 0 , the transistor resistance is high
- so X is (close to) 1 .

Processor

Transistor logic

Transistors as logic components:

- if either A or B is 1 , the transistor resistance is low
- so X is (close to) 0 ;
- if both A and B are 0 , the transistor resistance is high
- so X is (close to) 1 .
- NOR gate

Processor

Moore's Law

Wikimedia Commons (user Wgsimon) CC-BY-SA 3.0

Processor

Transistor storage

Processor

ALU logic

Logical operations:

- identification of 0 with false and 1 with true;
- perform bitwise logic:
- bit 0 of output is result of operation on bits 0 of inputs;
- bit 1 of output is result of operation on bits 1 of inputs;
- ...
- bit 32 of output is result of operation on bits 32 of inputs.

Processor
 ALU logic

Logical operations:

- identification of 0 with false and 1 with true;
- perform bitwise logic:
- bit 0 of output is result of operation on bits 0 of inputs;
- bit 1 of output is result of operation on bits 1 of inputs;
- ...
- bit 32 of output is result of operation on bits 32 of inputs.
- list of operations supported by processor varies:
- NOT
- AND, OR, XOR
- ANDC2, ORC2
- ANDC1, ORC1
- ...

Processor

ALU arithmetic

Arithmetic operations:

- standard operations:
- NEG
- ADD, SUB
- MUL, IMUL
- DIV, IDIV

Processor

ALU arithmetic

Arithmetic operations:

- standard operations:
- NEG
- ADD, SUB
- MUL, IMUL
- DIV, IDIV
- shifting and rotating:
- SHL, SHR
- ROL, ROR

Processor

What are the inputs and outputs?

- direct access: registers
- small storage units;
- directly addressable by CPU;
- (sometimes) direct access: memory
- (usually) transparent: CPU cache

Processor

What are the inputs and outputs?

- direct access: registers
- small storage units;
- directly addressable by CPU;
- (sometimes) direct access: memory
- (usually) transparent: CPU cache

Memory operations:

- move values from RAM to registers
- move values from registers to RAM

Processor

Integer formats:

- integers in the range $\left[0,2^{32}\right)$
- variants on this theme $-\left[-2^{31}, 2^{31}\right),\left[0,2^{64}\right)$

Floating point format:

- reduce maximum number of significant figures;
- increase numeric range:
- single-precision floats: $\left[-2^{128}, 2^{128}\right]$
- double-precision floats: [$-2^{1024}, 2^{1024}$]
- (sign,mantissa,exponent):
- sign \times mantissa $\times 2^{\text {exponent }}$

Processor

FPU arithmetic

Floating point format:

- represents numbers of the form
- $\pm \frac{\left[0,2^{24}\right)}{2^{24} \times 2^{[-128,128]}}$
- (24-bit integers divided by powers of 2)

Processor

Floating point format:

- represents numbers of the form
- $\pm \frac{\left[0,2^{24}\right)}{2^{24} \times 2^{[-128,128]}}$
- (24-bit integers divided by powers of 2)

Consequences:

- many fractions can be represented:
- $\frac{1}{2}, \frac{3}{8}, \frac{17}{256}$

Processor

Floating point format:

- represents numbers of the form
- $\pm \frac{\left[0,2^{24}\right)}{2^{24} \times 2^{[-128,128]}}$
- (24-bit integers divided by powers of 2)

Consequences:

- many fractions can be represented:
- $\frac{1}{2}, \frac{3}{8}, \frac{17}{256}$
- many integers can be represented:
- $1,17,2^{24}, 2^{24}+2$

Processor

FPU arithmetic

Floating point format:

- represents numbers of the form
- $\pm \frac{\left[0,2^{24}\right)}{2^{24} \times 2^{[-128,128]}}$
- (24-bit integers divided by powers of 2)

Consequences:

- many fractions can be represented:
- $\frac{1}{2}, \frac{3}{8}, \frac{17}{256}$
- many integers can be represented:
- $1,17,2^{24}, 2^{24}+2$
- some numbers can't be represented:
- $2^{24}+1$
- $\frac{1}{3}$
- $\frac{1}{10}, \frac{1}{100}$

Processor

FPU arithmetic

FPU arithmetic:

- perform floating point computations:
- addition, subtraction
- multiplication, division
- square root, logarithms, trigonometric functions

Processor

FPU arithmetic:

- perform floating point computations:
- addition, subtraction
- multiplication, division
- square root, logarithms, trigonometric functions
- when answer cannot be exactly represented, rounding happens:
- 0.1×0.1

Processor

FPU arithmetic:

- perform floating point computations:
- addition, subtraction
- multiplication, division
- square root, logarithms, trigonometric functions
- when answer cannot be exactly represented, rounding happens:
- 0.1×0.1
- answers may not be what you expect:
- 0.01×10

Processor

Machine code:

- binary encoding of instructions;
- binary encoding of data.

Processor

Machine code:

- binary encoding of instructions;
- binary encoding of data.

Central Processing Unit:

1. fetches next instruction;
2. executes instruction

- possibly interacting with data;
- possibly altering cpu state;

3. returns to step 1.
(Fetch-Execute cycle)

Processor

Input devices:

- keyboard;
- mouse;
- network card, camera, microphone, ...
- usb ports, serial ports, firewire, ...
- storage.

Output:

- screen;
- printer;
- network card;
- usb ports, serial ports, firewire, ...
- keyboard, headphones;
- storage.

Operating System

Input and Output

Operating System

Input and Output

Operating System

Input and Output

Operating System

Computer Buses
System Bus:

- simplified model;
- common in 1970s and 1980s.

Operating System

Computer Buses
System Bus:

- simplified model;
- common in 1970s and 1980s.

Operating System

Computer Buses
System Bus:

- simplified model;
- common in 1970s and 1980s.

Operating System

Computer Buses

System Bus:

- simplified model;
- common in 1970s and 1980s.

Operating System

I/O Modules

Strategies for I/O:

- programmed I/O:
- CPU tells device to perform task;
- CPU pauses until task is complete.

Operating System
 I/O Modules

Strategies for I/O:

- programmed I/O:
- CPU tells device to perform task;
- CPU pauses until task is complete.
- (problem: high CPU latency while waiting)
- interrupt-driven I/O:
- CPU tells device to perform task;
- Device accesses memory directly;
- CPU may perform other work;
- Device interrupts CPU when task is complete
- Direct memory access provided by DMA controller.

Operating System
 I/O Modules

Strategies for I/O:

- programmed I/O:
- CPU tells device to perform task;
- CPU pauses until task is complete.
- (problem: high CPU latency while waiting)
- interrupt-driven I/O:
- CPU tells device to perform task;
- Device accesses memory directly;
- CPU may perform other work;
- Device interrupts CPU when task is complete
- Direct memory access provided by DMA controller.
- (problem: potential for Bus contention)

Operating System
 I/O Resource Management

Resource Management:

- I/O Devices accept coded input messages;
- inputs will only make sense if they are delivered whole;
- overlaying or interleaving requests will not work.

Operating System
 I/O Resource Management

Resource Management:

- I/O Devices accept coded input messages;
- inputs will only make sense if they are delivered whole;
- overlaying or interleaving requests will not work.

Operating System:

- since Leo III (1961), multiple tasks on one computer;
- kinds of multitasking:
- cooperative multitasking (Windows 3, Mac OS 9);
- preemptive multitasking (Windows 95, Mac OS X).
- potential for multiple tasks to make requests of same device.

Operating System
 I/O Resource Management

Resource Management:

- I/O Devices accept coded input messages;
- inputs will only make sense if they are delivered whole;
- overlaying or interleaving requests will not work.

Operating System:

- since Leo III (1961), multiple tasks on one computer;
- kinds of multitasking:
- cooperative multitasking (Windows 3, Mac OS 9);
- preemptive multitasking (Windows 95, Mac OS X).
- potential for multiple tasks to make requests of same device.
- OS acts as resource manager for multiple tasks.

