
.

Introduction to the Use of Computers

Christophe Rhodes
c.rhodes@gold.ac.uk

Autumn 2012, Fridays: 10:00–12:00: WTA & 15:00–17:00: WHB 300

c.rhodes@gold.ac.uk

.

Operating System
Overview

Architecture overview:

..

kernel

.

firmware

.

hardware

.

standard library

.

shell

.

system tools

.

applications

.

Operating System
Overview

Architecture overview:

..

kernel

.

firmware

.

hardware

.

standard library

.

shell

.

system tools

.

applications

.

Operating System
Overview

Architecture overview:

..

kernel

.

firmware

.

hardware

.

standard library

.

shell

.

system tools

.

applications

.

Operating System
Overview

Architecture overview:

..

kernel

.

firmware

.

hardware

.

standard library

.

shell

.

system tools

.

applications

.

Operating System
Overview

Architecture overview:

..

kernel

.

firmware

.

hardware

.

standard library

.

shell

.

system tools

.

applications

.

Operating System
Overview

Architecture overview:

..

kernel

.

firmware

.

hardware

.

standard library

.

shell

.

system tools

.

applications

.

Operating System
Firmware

Half-way between ‘hard’ware and ‘soft’ware:
▶ embedded computer program running on bare hardware;
▶ updatable by software under special circumstances;

Examples:
▶ Basic Input/Ouptut System (BIOS):

▶ PC functionality at startup;
▶ variants: OpenFirmware, Extensible Firmware Interface;

▶ recording / playback devices:
▶ keep up to date with technological and legal changes;

▶ wireless network cards:
▶ conform to different local regulations on same hardware.

.

Operating System
Firmware

Half-way between ‘hard’ware and ‘soft’ware:
▶ embedded computer program running on bare hardware;
▶ updatable by software under special circumstances;

Examples:
▶ Basic Input/Ouptut System (BIOS):

▶ PC functionality at startup;
▶ variants: OpenFirmware, Extensible Firmware Interface;

▶ recording / playback devices:
▶ keep up to date with technological and legal changes;

▶ wireless network cards:
▶ conform to different local regulations on same hardware.

.

Operating System
Firmware

Half-way between ‘hard’ware and ‘soft’ware:
▶ embedded computer program running on bare hardware;
▶ updatable by software under special circumstances;

Examples:
▶ Basic Input/Ouptut System (BIOS):

▶ PC functionality at startup;
▶ variants: OpenFirmware, Extensible Firmware Interface;

▶ recording / playback devices:
▶ keep up to date with technological and legal changes;

▶ wireless network cards:
▶ conform to different local regulations on same hardware.

.

Operating System
Kernel

▶ provides basic services:
▶ open a file;
▶ create a directory;
▶ connect to a network host.

▶ mediates access to hardware:
▶ manages bus (and other resource) contention;
▶ provides illusion of multiple tasks on a single processor.

Many special-purpose kernels optimized for particular aspects:
▶ space (embedded devices: e.g. PalmOS);
▶ reliability (no-access environments: e.g. VxWorks);
▶ real-time response (guidance systems: e.g. QNX);
▶ scalability (mainframes, supercomputers: e.g. z/OS).

.

Operating System
Kernel

▶ provides basic services:
▶ open a file;
▶ create a directory;
▶ connect to a network host.

▶ mediates access to hardware:
▶ manages bus (and other resource) contention;
▶ provides illusion of multiple tasks on a single processor.

Many special-purpose kernels optimized for particular aspects:
▶ space (embedded devices: e.g. PalmOS);
▶ reliability (no-access environments: e.g. VxWorks);
▶ real-time response (guidance systems: e.g. QNX);
▶ scalability (mainframes, supercomputers: e.g. z/OS).

.

Operating System
Kernel

▶ provides basic services:
▶ open a file;
▶ create a directory;
▶ connect to a network host.

▶ mediates access to hardware:
▶ manages bus (and other resource) contention;
▶ provides illusion of multiple tasks on a single processor.

Many special-purpose kernels optimized for particular aspects:
▶ space (embedded devices: e.g. PalmOS);
▶ reliability (no-access environments: e.g. VxWorks);
▶ real-time response (guidance systems: e.g. QNX);
▶ scalability (mainframes, supercomputers: e.g. z/OS).

.

Operating System
Kernel

Resource Management:
▶ Device manager:

▶ manage bus contention;
▶ handle device interrupts;

▶ Process manager (scheduler):
▶ which task should be run next?
▶ how long should it be allowed to run?

▶ Memory manager:
▶ maintain association between physical and virtual memory;
▶ handle out of memory conditions.

.

Operating System
Kernel

Resource Management:
▶ Device manager:

▶ manage bus contention;
▶ handle device interrupts;

▶ Process manager (scheduler):
▶ which task should be run next?
▶ how long should it be allowed to run?

▶ Memory manager:
▶ maintain association between physical and virtual memory;
▶ handle out of memory conditions.

.

Operating System
Kernel

Resource Management:
▶ Device manager:

▶ manage bus contention;
▶ handle device interrupts;

▶ Process manager (scheduler):
▶ which task should be run next?
▶ how long should it be allowed to run?

▶ Memory manager:
▶ maintain association between physical and virtual memory;
▶ handle out of memory conditions.

.

Operating System
Kernel

Three different designs:
▶ monolithic (e.g. Linux);

▶ microkernel (e.g. GNU Hurd);
▶ hybrid (e.g. NT, XNU);

..hardware.

kernel

.

software

.

Operating System
Kernel

Three different designs:
▶ monolithic (e.g. Linux);
▶ microkernel (e.g. GNU Hurd);

▶ hybrid (e.g. NT, XNU);

..hardware.

kernel

.

software

.

software

.

software

.

kernel

.

server

.

server

. device. device

.

Operating System
Kernel

Three different designs:
▶ monolithic (e.g. Linux);
▶ microkernel (e.g. GNU Hurd);
▶ hybrid (e.g. NT, XNU);

..hardware.

kernel

.

software

.

software

.

software

.

kernel

.

server

.

server

. device. device

.

Operating System
Booting

Booting (from bootstrapping)
▶ processors fetch and execute instructions from memory;
▶ RAM is uninitialized when the computer is turned on...

..

ROM

.

ffff:0000

.

Operating System
Booting

Booting (from bootstrapping)
▶ processors fetch and execute instructions from memory;
▶ RAM is uninitialized when the computer is turned on...

..

ROM

.

ffff:0000

.

disk

.

Operating System
Booting

Booting (from bootstrapping)
▶ processors fetch and execute instructions from memory;
▶ RAM is uninitialized when the computer is turned on...

..

ROM

.

ffff:0000

.

disk

.

chainloader

.

Operating System
Booting

Booting (from bootstrapping)
▶ processors fetch and execute instructions from memory;
▶ RAM is uninitialized when the computer is turned on...

..

ROM

.

ffff:0000

.

disk

.

chainloader

.

kernel

.

Operating System
Operating Environment

Components:
▶ OS kernel;
▶ System libraries, providing

▶ stable programmer interface for kernel services;
▶ common functionality for applications;

▶ one or more ‘shells’ for user interaction;
▶ system tools for easy access to system functionality.

Loosely: the common features of all installations of a particular
OS.

.

Operating System
Standard Library

System library:
▶ Mac OS X: /usr/lib/libSystem.dylib
▶ Windows: C:/windows/system32/kernel32.dll
▶ Linux: /lib/libc.so.6

Many other libraries installed by default on each OS.
▶ graphics
▶ networking
▶ security
▶ device handling

.

Operating System
Shell

User-interface to computer’s services:
▶ permits the user to:

▶ inspect the running state of the system;
▶ perform file and device manipulation;
▶ launch new processes.

▶ examples:
▶ Windows Explorer, Finder
▶ cmd.exe, bash

.

Operating System
Shell

Launching new processes:
▶ Similar to booting:

▶ find program code on disk;
▶ load program code into memory;
▶ start executing code in memory;

▶ return control to the shell.
▶ new processes:

▶ applications
▶ system tools
▶ (no clear distinction between these)

.

Operating System
Shell

Launching new processes:
▶ Similar to booting:

▶ find program code on disk;
▶ load program code into memory;
▶ start executing code in memory;
▶ return control to the shell.

▶ new processes:
▶ applications
▶ system tools

▶ (no clear distinction between these)

.

Operating System
Shell

Launching new processes:
▶ Similar to booting:

▶ find program code on disk;
▶ load program code into memory;
▶ start executing code in memory;
▶ return control to the shell.

▶ new processes:
▶ applications
▶ system tools
▶ (no clear distinction between these)

.

Operating System
Shell

New processes:
▶ identify program by name;
▶ identify command-line arguments;
▶ execute program, passing it its arguments.

Example: more file.txt
▶ program is ‘more.exe’ (Windows) or ‘more’ (OS X, Linux);
▶ command-line argument is ‘file.txt’
▶ execute more program, passing it the string ‘file.txt’

▶ more is a program which displays a file on the terminal with
some user interface;

▶ more attempts to open the file named ‘file.txt’
▶ if successful, more displays the file’s contents.

.

Operating System
Shell

New processes:
▶ identify program by name;
▶ identify command-line arguments;
▶ execute program, passing it its arguments.

Example: more file.txt
▶ program is ‘more.exe’ (Windows) or ‘more’ (OS X, Linux);
▶ command-line argument is ‘file.txt’
▶ execute more program, passing it the string ‘file.txt’
▶ more is a program which displays a file on the terminal with

some user interface;
▶ more attempts to open the file named ‘file.txt’
▶ if successful, more displays the file’s contents.

	Operating System

