
Guidelines for Preparing a Paper for the
AISB-50 Convention

Name1 Surname1 and Name2 Surname2 and Name3 Surname31

Abstract. The purpose of this paper is to show a contributor the re-
quired style for a paper for the 2014 AISB convention, AISB-50. The
specifications for layout are described so that non-LATEX users can
create their own style sheet to achieve the same layout. The source
for the sample file is available for LATEX users. The PostScript and the
PDF file is available for all.

1 PAGE LIMIT
The page limit for AISB -50 papers is no more than eight pages.

2 GENERAL SPECIFICATIONS
The following details should allow contributors to set up the general
page description for their paper:

1. The paper is set in two columns each 20.5 picas (86 mm) wide
with a column separator of 1.5 picas (6 mm).

2. The typeface is Times Modern Roman.
3. The body text size is 9 point (3.15 mm) on a body of 11 point

(3.85 mm) (i.e. 61 lines of text).
4. The effective text height for each page is 56 picas (237 mm). The

first page has less text height. It requires an additional footer space
of 3.5 picas (14.8 mm) for the copyright inserted by the publisher
and 1.5 picas (6 mm) of space before the title. The effective text
height of the first page is 51 picas (216 mm).

5. There are no running feet for the final camera-ready version of
the paper. The submission paper should have page numbers in the
running feet.

3 TITLE, AUTHOR, AFFILIATION,
COPYRIGHT AND RUNNING FEET

3.1 Title
The title is set in 20 point (7 mm) bold with leading of 22 point (7.7
mm), centered over the full text measure, with 1.5 picas (6 mm) of
space before and after.

3.2 Author
The author’s name is set in 11 point (3.85 mm) bold with leading of
12 point (4.2 mm), centered over full text measure, with 1.5 picas
(6 mm) of space below. A footnote indicator is set in 11 point (3.85
mm) medium and positioned as a superscript character.

1 University of Leipzig, Germany, email: somename@informatik.uni-
leipzig.de

3.3 Affiliation

The affiliation is set as a footnote to the first column. This is set in 8
point (2.8 mm) medium with leading of 8.6 point (3.1 mm), with a 1
point (0.35 mm) footnote rule to column width.

3.4 Copyright

The copyright details will be inserted by the publisher.

3.5 Running feet

The running feet are inserted by the publisher. For submission you
may insert page numbers in the middle of the running feet. Do not,
however, insert page numbers for the camera-ready version of the
paper.

4 ABSTRACT

The abstract for the paper is set in 9 point (3.15 mm) medium, on a
body of 10 point (3.5 mm). The word Abstract is set in bold, followed
by a full point and a 0.5 pica space.

5 HEADINGS

Three heading levels have been specified:

1. A level headings

• The first level of heading is set is 11 point (3.85 mm) bold, on
a body of 12 point (4.2 mm), 1.5 lines of space above and 0.5
lines of space below.

• The heading is numbered to one digit with a 1 pica space sepa-
rating it from the text.

• The text is keyed in capitals and is unjustified.

2. B level headings

• The second level of heading is set is 11 point (3.85 mm) bold,
on a body of 12 point (4.2 mm), 1.5 lines of space above and
0.5 lines of space below.

• The heading is numbered to two digits separated with a full
point, with a 1 pica space separating it from the text.

• The text is keyed in upper and lower case with an initial capital
for first word only, and is unjustified.

3. C level headings

• The third level of heading is set is 10 point (3.5 mm) italic, on
a body of 11 point (3.85 mm), 1.5 lines of space above and 0.5
lines of space below.

• The heading is numbered to three digits separated with a full
point, with a 1 pica space separating it from the text.

• The text is keyed in upper and lower case with an initial capital
for first word only, and is unjustified.

4. Acknowledgements
This heading is the same style as an A level heading but is not
numbered.

6 TEXT

The first paragraph of text following any heading is set to the com-
plete measure (i.e. do not indent the first line).

Subsequent paragraphs are set with the first line indented by 1 pica
(3.85 mm).

There isn’t any inter-paragraph spacing.

7 LISTS

The list identifier may be an arabic number, a bullet, an em rule or a
roman numeral.

The items in a list are set in text size and indented by 1 pica (4.2
mm) from the left margin. Half a line of space is set above and below
the list to separate it from surrounding text.

See layout of Section 5 on headings to see the results of the list
macros.

8 TABLES

Tables are set in 8 point (2.8 mm) on a body of 10 point (3.5 mm).
The table caption is set centered at the start of the table, with the
word Table and the number in bold. The caption is set in medium
with a 1 pica (4.2 mm) space separating it from the table number.

A one line space separates the table from surrounding text.

Table 1. The table caption is centered on the table measure. If it extends to
two lines each is centered.

Processors
1 2 4

Window 3 3 2 4 3 2 4
1 1273 110 21.79 89% 6717 22.42 61%
2 2145 116 10.99 50% 5386 10.77 19%
3 3014 117 41.77 89% 7783 42.31 58%
4 4753 151 71.55 77% 7477 61.97 49%
5 5576 148 61.60 80% 7551 91.80 45%

3 execution time in ticks 2 speed-up values 4 efficiency values

9 FIGURES

A figure caption is set centered in 8 point (2.8 mm) medium on a
leading of 10 point (3.5 mm). It is set under the figure, with the word
Figure and the number in bold and with a 1 pica (4.2 mm) space
separating the caption text from the figure number.

One line of space separates the figure from the caption. A one line
space separates the figure from surrounding text.

Figure 1. Network of transputers and the structure of individual processes

10 EQUATIONS

A display equation is numbered, using arabic numbers in parenthe-
ses. It is centered and set with one line of space above and below to
separate it from surrounding text. The following example is a simple
single line equation:

Ax = b (1)

The next example is a multi-line equation:

(x+ y)(x− y) = x2 − xy + xy − y2 (2)

(x+ y)2 = x2 + 2xy + y2 (3)

The equal signs are aligned in a multi-line equation.

11 PROGRAM LISTINGS

Program listings are set in 9 point (3.15 mm) Courier on a leading of
11 point (3.85 mm). That is to say, a non-proportional font is used to
ensure the correct alignment.

A one line space separates the program listing from surrounding
text.

void inc(x)
int* x;
{

*x++;
}

int y = 1;
inc(&y);
printf("%d\n",y);

12 THEOREMS
The text of a theorem is set in 9 point (3.15 mm) italic on a leading
of 11 point (3.85 mm). The word Theorem and its number are set in
9 point (3.15 mm) bold.

A one line space separates the theorem from surrounding text.

Theorem 1 Let us assume this is a valid theorem. In reality it is a
piece of text set in the theorem environment.

13 FOOTNOTES
Footnotes are set in 8 point (2.8 mm) medium with leading of 8.6
point (3.1 mm), with a 1 point (0.35 mm) footnote rule to column
width2 .

14 REFERENCES
The reference identifier in the text is set as a sequential number in
square brackets. The reference entry itself is set in 8 point (2.8 mm)
with a leading of 10 point (3.5 mm), and appears in the sequence in
which it is cited in the paper.

15 SAMPLE CODING
The remainder of this paper contains examples of the specifications
detailed above and can be used for reference if required.

16 PROGRAMMING MODEL
Our algorithms were implemented using the single program, multi-
ple data model (SPMD). SPMD involves writing a single code that
will run on all the processors co-operating on a task. The data are
partitioned among the processors which know what portions of the
data they will work on [7].

16.1 Structure of processes and processors
The grid has P = Pr × Pc processors, where Pr is the number of
rows of processors and Pc is the number of columns of processors.

16.1.1 Routing information on the grid

A message may be either broadcast or specific. A broadcast message
originates on a processor and is relayed through the network until it
reaches all other processors. A specific message is one that is directed
to a particular target processor.

Broadcast messages originate from a processor called central
which is situated in the ‘middle’ of the grid. This processor has co-
ordinates (bPr/2c, bPc/2c). Messages are broadcast using the row–
column broadcast algorithm (RCB), which uses the following strat-
egy. The number of steps required to complete the RCB algorithm
(i.e. until all processors have received the broadcast value) is given
by bPr/2c+ bPc/2c.

A specific message is routed through the processors using the find-
row–find-column algorithm (FRFC) detailed in [5]. The message is
sent from the originator processor vertically until it reaches a pro-
cessor sitting in the same row as the target processor. The message
is then moved horizontally across the processors in that row until it

2 This is an example of a footnote that occurs in the text. If the text runs to
two lines the second line aligns with the start of text in the first line.

reaches the target processor. An accumulation based on the recursive
doubling technique [9, pp. 56–61], would require the same number
of steps as the RCB requires. If either the row or column of the origi-
nator and target processors are the same then the message will travel
only in a horizontal or vertical direction, respectively (see [12]).

17 DATA PARTITIONING

We use data partitioning by contiguity, defined in the following way.
To partition the data (i.e. vectors and matrices) among the processors,
we divide the set of variables V = { i }Ni=1 into P subsets {Wp }Pp=1

of s = N/P elements each. We assume without loss of generality
that N is an integer multiple of P . We define each subset as Wp =
{(p− 1)s+ j}sj=1 (see [11], [4] and [2] for details).

Each processor p is responsible for performing the computations
over the variables contained in Wp. In the case of vector operations,
each processor will hold segments of s variables. The data partition-
ing for operations involving matrices is discussed in Section 18.3.

18 LINEAR ALGEBRA OPERATIONS

18.1 Saxpy

The saxpy w = u + αv operation, where u, v and w are vectors
and α is a scalar value, has the characteristic that its computation is
disjoint elementwise with respect to u, v and w. This means that we
can compute a saxpy without any communication between proces-
sors; the resulting vector w does not need to be distributed among
the processors. Parallelism is exploited in the saxpy by the fact that
P processors will compute the same operation with a substantially
smaller amount of data. The saxpy is computed as

wi = ui + αvi, ∀i ∈ {Wp}Pp=1 (4)

18.2 Inner-product and vector 2-norm

The inner-product α = uT v =
∑N

i=1
uivi is an operation that in-

volves accumulation of data, implying a high level of communication
between all processors. The mesh topology and the processes archi-
tecture used allowed a more efficient use of the processors than, for
instance, a ring topology, reducing the time that processors are idle
waiting for the computed inner-product value to arrive, but the prob-
lem still remains. The use of the SPMD paradigm also implies the
global broadcast of the final computed value to all processors.

The inner-product is computed in three distinct phases. Phase 1 is
the computation of partial sums of the form

αp =
∑

∀i∈{Wp}

ui × vi, p = 1, . . . , P (5)

The accumulation phase of the inner-product using the RCA algo-
rithm is completed in the same number of steps as the RCB algorithm
(Section 16.1.1). This is because of the need to relay partial values
between processors without any accumulation taking place, owing to
the connectivity of the grid topology.

The vector 2-norm α = ||u ||2 =
√
uTu is computed using

the inner-product algorithm described above. Once the inner-product
value is received by a processor during the final broadcast phase, it
computes the square root of that value giving the required 2-norm
value.

18.3 Matrix–vector product

For the matrix–vector product v = Au, we use a column partitioning
of A. Each processor holds a set Wp (see Section 17) of s columns
each of N elements of A and s elements of u. The s elements of u
stored locally have a one-to-one correspondence to the s columns of
A (e.g. a processor holding element uj also holds the j-th column of
A). Note that whereas we have A partitioned by columns among the
processors, the matrix–vector product is to be computed by rows.

The algorithm for computing the matrix–vector product using col-
umn partitioning is a generalization of the inner-product algorithm
described in Section 18.2 (without the need for a final broadcast
phase). At a given time during the execution of the algorithm, each
one of P − 1 processors is computing a vector w of s elements con-
taining partial sums required for the segment of the vector v in the re-
maining ‘target’ processor. After this computation is complete, each
of the P processors stores a vector w. The resulting segment of the
matrix–vector product vector which is to be stored in the target pro-
cessor is obtained by summing together theP vectorsw, as described
below.

Each processor other than the target processor sends its w vector
to one of its neighboring processors. A processor decides whether
to send the vector in either the row or column direction to reach the
target processor based on the FRFC algorithm (see Section 16.1.1).
If a vector passes through further processors in its route to the target
processor the w vectors are accumulated. Thus the target processor
will receive at most four w vectors which, when summed to its own
w vector, yield the desired set of s elements of v.

18.4 Matrix–vector product—finite-difference
approximation

We now consider a preconditioned version of the conjugate-gradients
method [7]. Note that we do not need to form A explicitly. This im-
plies a very low degree of information exchange between the pro-
cessors which can be effectively exploited with transputers, since the
required values of u can be exchanged independently through each
link.

The preconditioning used in our implementations is the polyno-
mial preconditioning (see [10], [6], [1] and [8]), which can be imple-
mented very efficiently in a parallel architecture since it is expressed
as a sequence of saxpys and matrix–vector products.

We have l rows and columns in the discretization grid, which we
want to partition among a Pr × Pc mesh of processors. Each pro-
cessor will then carry out the computations associated with a block
of bl/Prc + sign (l mod Pr) rows and bl/Pcc + sign (l mod Pc)
columns of the interior points of the grid.

The matrix–vector product using the column partitioning is highly
parallel. Since there is no broadcast operation involved, as soon as a
processor on the boundary of the grid (either rows or columns) has
computed and sent a wp vector destined to a processor ‘A’, it can
compute and (possibly) send a wp vector to processor ‘B’, at which
time its neighboring processors may also have started computing and
sending their own w vectors to processor ‘B’.

At a given point in the matrix–vector product computation, the
processors are computing w vectors destined to processor A. When
these vectors have been accumulated in the row of that processor
(step 1), the processors in the top and bottom rows compute and send
the w vectors for processor B, while the processors on the left and
right columns of the row of processor A send the accumulated r vec-
tors to processor A (step 2). Processor A now stores its set of the re-

sulting v vector (which is the accumulation of the w vectors). In step
3, the processors in the bottom row compute and send the w vectors
for processor C while the processor at the left-hand end of the row of
processor B sends the accumulated w vectors of that column towards
processor B. The next steps are similar to the above.

In our implementation, we exploit the geometry associated with
the regular grid of points used to approximate the PDE. A geometric
partitioning is used to match the topology and connectivity present
in the grid of transputers (Section 16.1).

The discretization of the PDE is obtained by specifying a grid
size l defining an associated grid of N = l2 interior points (note
that this is the order of the linear system to be solved). With each
interior point, we associate a set of values, namely the coefficients
C,N, S,E and W .

19 CONCLUSION
We have shown that an iterative method such as the preconditioned
conjugate-gradients method may be successfully parallelized by us-
ing highly efficient parallel implementations of the linear algebra
operations involved. We have used the same approach to parallelize
other iterative methods with similar degrees of efficiency (see [4] and
[3]).

ACKNOWLEDGEMENTS
We would like to thank the referees for their comments which helped
improve this paper.

REFERENCES
[1] L. Adams, ‘m-Step preconditioned Gradient methods’, SIAM Journal

of Scientific and Statistical Computing, 6, 452–463, (1985).
[2] P. Atkin. Performance maximisation. INMOS Technical Note 17.
[3] R.D. da Cunha and T.R. Hopkins, The Parallel Solution of Partial Dif-

ferential Equations on Transputer Networks, 96–109, Transputing for
Numerical and Neural Network Applications, IOS Press, Amsterdam,
1992. Also as Report No. 17/92, Computing Laboratory, University of
Kent at Canterbury, U.K.

[4] R.D. da Cunha and T.R. Hopkins, The Parallel Solution of Systems of
Linear Equations using Iterative Methods on Transputer Networks, 1–
13, Transputing for Numerical and Neural Network Applications, IOS
Press, Amsterdam, 1992. Also as Report No. 16/92, Computing Labo-
ratory, University of Kent at Canterbury, U.K.

[5] U. de Carlini and U. Villano, Transputers and parallel architectures –
message-passing distributed systems, Ellis Horwood, Chichester, 1991.

[6] S.C. Eisenstat, ‘Efficient implementation of a class of preconditioned
Conjugate Gradient methods’, SIAM Journal of Scientific and Statisti-
cal Computing, 2, 1–4, (1981).

[7] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, 2nd edn., 1989.

[8] O.G. Johnson, C.A. Micchelli, and G. Paul, ‘Polynomial precondition-
ers for Conjugate Gradient calculations’, SIAM Journal of Numerical
Analysis, 20, 362–376, (1983).

[9] J.J. Modi, Parallel Algorithms and Matrix Computation, Oxford Uni-
versity Press, Oxford, 1988.

[10] Y. Saad, ‘Practical use of polynomial preconditionings for the Conju-
gate Gradient method’, SIAM Journal of Scientific and Statistical Com-
puting, 6, 865–881, (1985).

[11] C.F. Schofield, Optimising FORTRAN programs, Ellis Horwood Pub-
lishing, Chichester, 1989.

[12] G.D. Smith, Numerical Solution of Partial Differential Equations: Fi-
nite Difference Methods, Oxford University Press, Oxford, 3rd edn.,
1985.

