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Pattern = repetition + variation = regularity + randomness

But wherein lies complexity?
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Reich’s clapping
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Clapping looks simple (although could be perceived as highly detailed in perfor-
mance).

The pattern is obvious - very repetitive, variation occurs through the phased su-
perposition of the two parts.

How simple is the formal pattern?
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The structure, without accents, can be described in a few dozen words.

A claps 111011010110 × 12 in 13 repeats. B claps the same pattern, beginning
one beat displaced at each repeat.
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It can also be described by a short program.
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195 characters in shortened Java code

3744 digits in beat sequence 111011010110...

≈ 340 characters in score (13 symbols in 13 bars, + rep 12× instruction)

0.0710 dictionary words per symbol after LZ compression.
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Ferneyhough’s Lemma Icon Epigram
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The first bar is split into 12 + 8 + 8 hemi-demi-semi quavers.

The first group of 12 is split into (11 hdsq + 1 hdsq rest) played in the time of
8 hdsq and then a semiquaver rest (= 4 hsdq rests), making 12 hdsq in total.
This gives 11 notes of value 8/12 hdsq plus a rest of value 1/12 hdsq (together
giving 8 hdsq) and a 4 hdsq rest.

Denoting a note a rest by 〈〉 and a fractional duration of an hdsq by (), then the
first group is
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The second group has 11 hdsq played in the time of 8 hdsq.
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The final group has 4 hdsq plus a hdsq rest played in the time of 4 hdsq which
itself is 4/10 of 8 hdsq. This is followed by a 8/10 hdsq rest and then 6 hdsq
played in the time of 4 hdsq, played in the time of 4/10 of 8 hdsq. Finally a hdsq
rest in the time of 10/8 hdsq.
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In total, the rhythm of the first bar is
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Simplifying (i.e. algebraically!),
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Expressing in the lowest factor, namely 1
825 of an hdsq,
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23100 digits in beat sequence 1

824︷ ︸︸ ︷
00 . . . 0 1

824︷ ︸︸ ︷
00 . . . 0 . . . where each beat is 1

825 hdsq

334 characters in Java program (shortened version, but could do better by re-
placing some shorter loops with direct assignments)

About 60 characters needed to specify rhythm.. Of these, about 10 different
symbols.

665 characters in English description

0.0102 dictionary words words per symbol after LZ compression
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But the coding in 1
825 hdsq is far removed from what we perceive. Each 1

825 hdsq
beat occupies

60

400 ∗ 825
= 1.818× 10−4 s = 8 samples at 44100 Hz

A performer needs to play to an accuracy of 8 samples, or 1/10 millisecond!
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Use a more musical representation

hdsq beats prefaced by a time signature
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codify in blocks (fractional duration in hdsq) beat pattern
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In order to distinguish the time signature from the pattern, double up on the
binary digits in the fraction and the pattern and use 01 as a separator:

2
3 = 11 00 01 11 11 01

11 beats =

22︷ ︸︸ ︷
11 . . . 1
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Finally

2, 3, 11〈1〉, 1, 1, 〈4〉, 8, 11, 2, 16, 33, 3, 8, 11, 1, 12, 11, 4,

16, 25, 4〈1〉, 4, 5, 〈1〉, 8, 15, 6, 4, 5, 〈1〉 =

11000111110111111111111111111111110001

110111010000000001

11000000011100111101111101

1100000000011100000000110111111101

110000000111001111011101

111100000111001111011111111101

110000000001111100001101111111110001

11000001110011010001

1100000001111111110111111111111101

11000001110011010001
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280 digits in sequence
0.207 dictionary words per symbol

(A decoding program should be added to the sequence)

The clapping beat sequence has a complexity of 0.0710 words per symbol.
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Messiaen’s Turangalila symphony

Hook proposes an algebra of rhythm to facilitate discussion of Maesiaen’s ap-
proach to rhythm, especially in the context of the Turangalila symphony.
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Hook argues that Messiaen’s approach to rhythm was highly unusual (in the
West, and for its time) and individual. He was influenced by Indian rhythms
and to ametrical structures without regular repetition. He was also particularly
attracted to rhythmic palindromes.

28



Some passages in Turangalila have ‘intricate constructions involving many si-
multaneous rhythmic processes, each synchronised to its own clock, revolving in
repetition; the resulting sensation has been described as an “image of constant
uniformity and constant change” ’.
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Messiaen himself described some principles of his use of rhythm in The Tech-
nique of My Musical Language (1944): added values, exact and inexact augmen-
tations and diminutions, rhythmic pedals and rhythmic superposition. However
the descriptions remain simple and Turangalila was composed several years after
publication of the book.
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Hook attempts an algebraic descriptive language:

is represented, in units of semiquavers, by a sequence

x = 2 3 4 4 〈4〉.

In general x = x1 x2 . . . xn, n = |x|.
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Retrograde xR = xn xn−1 . . . x1
(2 3 4 4 〈4〉)R = 〈4〉 4 4 3 2

Augmentation, diminution x× q = q × x1 q × x2 . . ..
(2 3 4 4 〈4〉)× 2 = 4 6 8 8 〈8〉.

Concatenation xy = x1 x2 . . . x|x| y1 y2 . . . y|y|.

Ellision x ◦ y =
(
x|x| == y1 ? x1 x2 . . . x|x| y2 y3 . . . y|y| : xy

)
.

2 3 4 4 〈4〉 ◦ (2 3 4 4 〈4〉)R = 2 3 4 4 〈4〉 4 4 3 2
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Notation for repetitions: x = pq =
q times︷ ︸︸ ︷

p p p . . . p .

The composite rhythm x ∗ y of two rhythms x and y is the rhythm heard when
x and y are presented simultaneously. In the case that

∑
xi 6=

∑
yi, rests are

padded onto the end of the shorter rhythm.

33



Hook isolates two sequences from Turangalila,

x = 4 4 4 2 3 2

= (13 × 4)(2 3 2)

y = 4 4 4 2 3 2 2 2 2 3 3 3 1 2 3 4 8

= x (13 × 2)(13 × 3)(1 2 3 4 8)

Hook observes that many of Messiaen’s rhythms grow from initial segments
(seeds) by a systematic process.
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Indefinite repetition X = x̄ = x x x . . .. The period of repetition is |x|. The
period might not align with the bar lines and simultaneous repetitions might have
different periods. They might eventually abruptly end, being cut-off mid-cycle or
even in mid-duration.

Expanding, contracting progression A seed of a single duration is incremented or
decremented (chromatically if the increment/decrement is 1). For example

X = 7 8 9 10 11

Y = 48 47 46 45 44

Complex generation (i)The seeds might have more than one interval (ii) the in-
crements might vary cyclically (iii) the rules change at each iteration.
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The cyclic increment occurs in 〈2〉3 5 8 9 11 14 15 17, or 〈2〉 3(= 2 + 1) 5(=
3 + 2) 8(= 5 + 3) 9(= 8 + 1) . . ., i.e xi+1 = xi + 1 + (i mod 3).

An example of expansion of a more complex seed is

(1 4 7 6 5 3 2)(8 11 14 13 12 10 9).
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Hook also identifies

Recursion, pattern shifting, interruptions, irregularities and relationship to pitch
structures
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Figure 1: Julian Hook, ‘Rhythm in the Music of Messiaen: An Algebraic Study and an Application in the
Turangalla Symphony’, Music Theory Spectrum, Vol. 20, No. 1 (Spring, 1998), pp. 97-120
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[Listeners] will be responsive to [complexity] the day their ears are accustomed
to it. It’s not essential for listeners to be able to detect precisely all the rhythmic
procedures of the music they hear, just as they don’t need to figure out all the
chords of classical music. That’s reserved for harmony professors and professional
composers. The moment [listeners] receive a shock, realise that it’s beautiful,
that the music touches them, the goal is achieved!
Messiaen, Music and Color, 83.
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Measuring complexity

The fundamental insight is that the description length (in Java, English or in
dictionary words) sets a scale from simplicity (repetition: repeat 1111 32 times)
to pure variation (a sequence of 128 random 1’s and 0’s that itself occupies about
128 characters.)

Complexity is assumed to lie between these extremes; a regime of balanced rep-
etition and variation.
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Complexity can be classified into the complexity of the artefact (or of the ensem-
ble of which artefact is typical), or the complexity of the process producing that
artefact (or of representative from the corresponding ensemble). A third class
which intersects the previous is the degree of organisation.

1. Difficulty of description Information, randomness, entropy, minimum descrip-
tion length, Kolomogorov complexity, Code length, fractal dimension, com-
pressibility.

2. Difficulty of creation. Computational complexity (time and/or space), logical
depth.

3. Degree of organisation Fractal dimension, excess entropy, statistical com-
plexity.

Seth Lloyd, ‘Measures of complexity: a non-exhaustive list’. Control systems, vol
4, pp 7 - 8, 2001.

Lloyd lists over 40 measures and considers (and that was in 2001) the list to be
incomplete.
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Another fundamental divide is between statistical measures and those that con-
sider a single instance.

A piece of music, as with a work of art, is a single artefact. However are there
broad categories that we slot the artefacts into? Are there many versions of clap-
ping, each different in detail but employing the same algorithmic (generative)
scheme, and does each version seem roughly as complex as any other version?
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Insight from psychology

Berlyne: hedonic value is a sum of reward and pleasure. High arousal is aversive
(negative hedonic value) and any stimulus that reduces arousal will be rewarding
and pleasant. Any stimulus that produces a moderate increase in arousal will be
rewarding and pleasant.
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When a complex stimulus becomes more familiar and less novel, the observer
moves from C to B. Something that is high in novelty and low in complexity
will have medium arousal (region B) and progressive loss of novelty will invoke a
move to region A.
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This is often simplified to a camel hump between simple (region A) and complex
(region C) with a peak in the middle representing maximum pleasure (or interest).

This is all in the eyes (and ears) of the observer. Do objects have an intrinsic
complexity? Can this be measured? Does it correspond to perceived complexity?
And of so, does this correspond to our interest/pleasure in a piece of music? And
does this interest change in time?
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Complexity science

Many systems in the physical, biological, social and mathematical world appear to
have something in common: they are ‘complex’. This vaguely means that they
appear to have properties beyond the sum of their parts, they show emergent
behaviour and typically self organisation.

(Or, more conservatively, analysis based on weak interactions between constituent
components fails. The systems often exhibit non-linearity which, even in systems
with a few components, can lead to intractability.)
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Complexity measures - requirements

How can we measure something that is not defined? It’s like measuring the ‘bi-
ology’ in something.

According to the current creed a qualitative measure of complexity would be zero
at the limits of order and randomness and with a camel hump between them -
the inverted U.
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A unique measure that can characterise many systems from different domains?

The measure has one hump? This is a very poor requirement for a property since
many functions are hump shaped.

However a definition of complexity might follow the adoption of a measure.

There already exists measures of randomness (Shannon and Kolmogorov). The
fact that they do not have a hump doesn’t matter, they still form a measure. For
example complexity might exist for Kolmogorov complexity in range 0.3 - 0.5.
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Some thoughts

Complexity is something between order and randomness.

Something that is repetitive and entirely predictable holds little interest. It is
perfectly understood.

Something that appears entirely random and defies our efforts to understand is
also ultimately boring.

In fact the random becomes repetitive in the sense that the statistical qualities
(as perceived)become predictable.

So the entirely predictable and the seemingly random, although opposites, be-
come equally unsatisfying.
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A complexity measure would be very useful. Two applications that spring to mind
are evolutionary music and live algorithms.

The fitness bottleneck makes user fitness evaluation problematical. A measure
could act as a tuneable fitness function.
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Complexity, or better still a measure of ‘information’ might serve as a machine
aesthetic. This would enable live algorithms to assess their own patterning, and
they would not have to base their decisions on what we might want from them.
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What might alien music look or even sound like? We might have to reduce it to
a suitable representation and consider alien music in terms of information streams.

Huge application scope for automatic accompaniment of games, music composi-
tion for a target market etc. etc.
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Although it seems very unlikely that music, which lives in both cognitive and
social domains, can be expressed by a single number, perhaps some aspects of
music can.

We hope for a principle for the generation and the evaluation of computer music.
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Kolomogorov complexity

Better thought of as a measure of randomness.

The length (in bits) of the shortest program that would generate the object in
question. The underlying assumption is that all objects can be represented by
strings s of symbols, and indeed by binary strings. Technically the K complexity
is the shortest encoding of the Turing machine that outputs s and stops.

The program is clearly a description of s and the shortest program provides a
minimal description.
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Suppose that a string s has 1000000 symbols, each either A or B.

Then s = AAA . . . AAA can be produced by the minimal program

repeat 1000000 times: print A

and another string s′ = AABBABABABBBAAABABBBAB . . . where each
symbol is random cannot be produced by any program shorter than

print ‘‘AABBABABABBBAAABABBBAB...’’

Although s has 1000000 symbols, it has K complexity of about 30 (in this en-
coding); s′ however has a K complexity of about 1000000.
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K complexity is not computable, but a series of upper bounds is computable.

Compressibility provides an upper bound and is easily computable using the LZ78
algorithm:

w = ""

while(more input)

s = next symbol

if ws in dictionary

w = ws

else

add ws to dictionary

w = " "
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Li and Vitanyi have suggested the information distance as a substitute for the
unknowable K complexity. The information distance between two strings x, y is
the length of the shortest program that computes x given y or vice versa. It is
equal to max{K(y|x), K(x|y)}

It is also non-computable, and not normalised. But the normalised information
distance

d(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
varies between 0 and 1 for strings of any length . The K complexities can be
estimated by the length of the compressed string.
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Shannon entropy

This is another randomness or entropy measure, but this time it is statistical in
nature.

An information source produces a stream of symbols. Each symbol is a discrete
random variable with an associated probability distribution p(x).

The information associated with each symbol is log 1/p = −log p. Information
relates directly to the minimum description length of messages: use the more
probable symbols for the more probable events. The logarithm ensures that in-
formation is additive (the underling probabilities of independent events multiply
together).
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Alternatively, the surprise of receiving a symbol is the inverse probability of that
symbol.

Suppose we want to report on a search. Then A might encode ‘Not found, not
found’ and ’B’ might encode ‘I’ve found it!’. We send AAAAAAAAAAAAAAAAAAAAAB.
B is very improbable, but has a significant interpretation. We might try a coding
where any symbol other than A is insignificant, but all symbols are equally prob-
able, but then we would need a huge alphabet.
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The entropy of a sequence is

H = −
∑
i

pi log(pi)

where pi is the probability of the ith symbol. The entropy rate h = limL→∞H/L
is an extensive quantity (L = sequence length) and ranges from 0 (complete
order) to 1 (all symbols equally likely).

However H and h are not sensitive to the order of symbols and hence are of little
use of complexity measures. A quantity that has been discovered several times
and has several different names, does however give an indication of complexity:
the excess entropy.
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The excess entropy is the subextensive part of the entropy: limL→∞H(L) ∼
E + hL.

Suppose a sequence is periodic. Then for any L larger than the period, H(L) =
0 (= h) since we can replace the repeating subsequence by a single symbol.
However for L less than the period, H > 0 since as each symbol is revealed we
do not yet where we are in the subsequence and hence each symbol carries an
uncertainty (and hence a finite entropy).

A similar argument can be made for non-periodic information sources, except that
h > 0; E is how much more uncertain a sequence is compared to an unstruc-
tured sequence that is composed of the same symbols occurring with the same
probability. This excess of entropy is due to structure i.e. correlations between
the symbols.
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There are many other measures in the literature that relate to E and to the
mutual information between subsequences, I(X;Y ) = H(X)−H(X|Y ).

For example, the recent predictive information rate of Abdallah and Plumley,

b = I(Xt;
→
Xt|

←
Xt)

which can be interpreted as the mutual information between the present symbol

Xt and the future (
→
Xt) given the past (

←
Xt).

In fact b = H(
→
Xt|

←
Xt)−H(

→
Xt|Xt,

←
Xt) which is small for random sequences where

each symbol is independent of each other (both terms are equal), or for regular
(constant or periodic) sequences (the terms are equal). It seems to possess the
expected attributes of a complexity measure.

63



The redundancy or multi-information rate

ρ = I(
←
Xt;Xt) = H(Xt)−H(Xt|

←
X)

measures the reduction in uncertainty of the current symbol once the past is
taken into account. Abdullah et al 2012 define a 2D information space spanned
by h and ρ. It turns out that b peaks at intermediate values of h and ρ.
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They then constructed their melody triangle. A user could navigate through
information space, listening to melodies that are generated according to the co-
ordinates. They conducted preliminary trials with a very small group of people
and recorded which areas of information space were frequented most often.

Unfortunately it seemed that subjects steered clear of the centre of the space -
high b, complex melodies - and aimed for a corner corresponding to repetitive
melodies of just one note!

65



Other measures

Logical depth: The runtime (or similar resource) of the smallest program (or
amount of time needed for the formational processes to complete). Some quali-
fication is needed since a slightly longer program might run in much less time.

Suppose a string solves a problem that is quite simple to pose, and the string
itself is quite short. If it takes a long time to compute this string, the string is
‘deep’.
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Schmidhuber’s theory of aesthetics

Beauty is directly related to an observer’s ability to compress i.e. to the descrip-
tion length the artefact, based on the observer’s compressor, which itself might
change in time. The compressor represents the observer’s past experience.

No matter how beautiful something is, repeated exposure may render it boring.
Interestingness is the rate of change of beauty. When previously random parts
of the artefact are compressed by the observer (as the observer’s algorithm im-
proves), the subjective beauty increases, and as long as this process continues,
we remain interested. Remaining interested is the driving force, both of creators,
and of the observers.
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Schmidhuber’s definition is really just a computational model of Wundt/Berlyne.
In particular, the model provides a mechanism for the change of interest over
time - movement from right to left along the Wundt curve.

But some music is appealing time after time, just as a favourite meal continues
to satisfy us even of we can predict the taste. In fact the mere prediction of the
taste can cause us to salivate! Some aspects of our need for music are similar to
appetite.

Sounds have have an emotional quality (a scream, a sob. . . ). Can we become
inured to an emotional message?
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Incompressible music - or at least music that cannot be compressed any further -
can still allow our minds to wonder, to freely associate. An underlying structure
might be present, but also an intrinsic ambiguity and lack of clarity provokes
speculation.

We are not trying to compress the work any further, we are happy with our
current level of comprehension; we enjoy the springboard into the unknown, the
opportunity to form juxtapositions in other (not directly related to the work)
domains.
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Anticipated problems

Measures may take a large sequence to stabilise on a value - but we might react
to a piece of music after just several events.

Symbol streams are timeless, yet the temporal relationship of events is important
to human appreciation of music. Music is not a static pattern, but is a moving
pattern.

Correlations between events that are distantly separated in time may be lost to
us because of our limited memory and concentration, and patterns that quickly
fly past may escape our attention.
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To some extent a symbol sequence does have a near and a far time - near and
far symbols, and this may affect any finite calculation of complexity since a large
separation symbol group may not occur often enough in a finite sample to count
much in the calculation.

However just one or two repetitions of a theme might strike us as significant and
be very memorable, although their contribution to the complexity measure could
be small.
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We are also tolerant of imperfections in the pattern.

AAAABBBAAABAABBBAAABAAAAABBBAAAAAABAAA

might be heard as

...BBB...B...BBB...B...BBB...B

i.e. as

XBBBXBXBBBXBXBBBXB

(On the other hand the observation that the X’s are of uneven duration might
strike us as delightful, as interesting, and this would be captured by a complexity
measure such as compressibility.)
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We focus on the pattern - BBBXBY - and ignore the randomness represented by
X and Y. We manage to pick out a pattern; it has more significance than the
background randomness.

If the string is very long, then the measures will find this pattern since eventually
there will be repetition. The dictionary will contain words BX, BY, BBBZ etc
where X, Y and Z are all different, and eventually the dictionary will contain
BXBBBY for all occurring X and Y.
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Empirical studies

Povel and Essens 1985. Reproducibility of temporal patterns. Subjects had to
listen to the patterns and then tap them out. Thul and Tossaint 2008 derive a
measure of performance reproducibility based on the results - the rhythm perfor-
mance complexity.

Shmulevich and Povel 2000, using the same data set as PE 1985, compiled a
table of perceptual complexity based on an empirical study with musicians.
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Essens 2005. A repeat of PE 1985 but with a different set of patterns this time.
Performance and perceptual complexity.

Fitch and Rosenfeld 2007. A beat tracking study. A pattern set of various syn-
copations.

Thul 2008, masters thesis. Compiled tables of the above studies. They took
a large number of complexity measures, many of which have been deliberately
designed for measuring rhythmic complexity, and compared the calculated com-
plexities with the empirical results.
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None of the measures were found to reflect the difficulty humans have in per-
forming rhythm patterns, but they did manage to predict to some extent how
well people recognise a rhythmic metrical structure.

Thul and Toussaint 2008, in an extension to Thul’s work, found that measures
based on statistical properties of onset intervals were less reliable measures of
performance complexity and that mathematical measures of perceptual complex-
ity performed better than performance complexity for the purpose of predicting
human perception complexity.
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Thul concludes that half of the 55 complexity measures correlated quite well
(r∗s > 0.5) with the empirical measure of complexity. There appears to be
evidence that complexity measures are reflecting human perception of rhythm
complexity.

(Apart from rhythm studies, it is worth noting Streich’s 2006 PhD thesis where
complexity measures for audio were developed. He asked subjects to rate music
and a comparison with the measures was made, but no strong correlation was
found.)
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In summary, with regard to the four empirical studies, domain specific measures
are better predictors, there is evidence that, in general, theoretical measures are
capturing salient features of music complexity. The better performing seem to
be those that have been hand crafted to so the job.

However the studies are limited and feature isolated rhythm patterns rather than
actual music.

In addition, the use of music derived measures, is questionable for reasons of
circularity.
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Is it complicated enough yet?

Repeat experiments but using more realistic exemplars.

The Hook algebra is a way of generating patterns and is based on music practice.

Production rules in general need infinite memory - the excess entropy is infinite.
Would need non information based measures, but K complexity based measures
are non-computable.
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Interesting music might lie closer to order than to randomness. Different more
sensitive measures needed to magnify this regime.

The problem of time.

The problem of human judgement based on quite short excerpts.

The problem of human patterning from imperfect information.
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Thank you for listening. On a scale of 1 to 10, how complicated was it for you?
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