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Abstract 
 
Self-organisation, as manifest, for example, by swarms, flock, herds and other collectives, is a powerful 

natural force, capable of generating large and sustained structures. Yet the individuals who participate 

in these social groups may not even be aware of the structures that they are creating. Almost certainly, 

these structures emerge through the application of simple, local interactions. Improvised music is an 

uncertain activity, characterised by a lack of top-down organisation and busy, local activity between 

improvisers. Emerging structures may only be perceivable at a (temporal) distance.  The development 

of higher level musical structure arises from interactions at lower levels, and we propose here that the 

self-organisation of social animals provides a very suggestive analogy. This paper builds a model of 

interactivity based on stigmergy, the process by which social insects communicate indirectly by 

environment modification. The improvisational element of our model arises from the dynamics of a 

particle swarm. A process called interpretation extracts musical parameters from the aural sound 

environment, and uses these parameters to place attractors in the environment of the swarm, after 

which stigmergy can take place. The particle positions are re-interpreted as parameterised audio events.  

This paper describes this model and two applications, Swarm Music and Swarm Granulator. 

 
1 INTRODUCTION 
 
Many animals exhibit remarkable collective behaviour. Social insects gather in large numbers – 

swarms - to forage and build nests. The ability of flocking birds to coordinate their motion in order to 

avoid obstacles and to rapidly change direction of flight is well known to us all. Surprisingly, this 

collective behaviour does not necessarily derive from central organisational control or leadership, but 

arises from the local behaviour and interaction of (relatively) simple organisms. Indeed, the ability of 

swarms, flocks, etc. to shrink and grow in population (there appears to be no upper limit to population 

size), suggests that their computational complexity is linear. In other words, each swarm member is 

only aware of other members in its immediate neighbourhood. A dramatic example is to be found with 



the huge shoals of migrating herring, sometimes up to 17 miles long and with millions of members; it is 

hard to conceive of any centralised method of communication that can account for this collective 

behaviour (Reynolds 1987). Indeed, Reynolds demonstrated that the behaviour of flocks, schools and 

swarms can arise merely from local interactions between the entities. There is no need for global 

coordination. The rules for an individual in a flock or school can be summarized as: try to move close 

to your neighbours, avoid collisions, and try to match your velocity (i.e. speed and direction) with your 

immediate neighbours. (The rules for swarms are even simpler since the requirement for velocity 

matching is dropped.) 

Compelling evidence that entities that are interacting through local rules can self-organise into large 

spatiotemporal structures comes from computer animations of animal behaviour (Reynolds 1987, 

Bonabeau, Dorigo and Theraulaz 1999). A common theme of these investigations is the desirability of 

de-centralised organisation, from the perspective of stability and adaptability. Theories of global forms 

emerging from local interactions have also been applied to the study of human systems such as 

economics and traffic flow (Resnick 1997). Self-organisation is believed to be based on four 

components: positive feedback, negative feedback, amplification of fluctuations and multiple 

interactions (Bonabeau et al 1999). In addition, an important mechanism for self-organisation,  known 

as stigmergy was proposed by Grassé (1959) to account for the nest building activity of termites. This 

mechanism has subsequently shown to be of a more general nature and many examples are explored in 

Bonabeau et al (1999). A stigmergetic interaction is a form of indirect interaction, occurring when one 

individual modifies a feature in the environment that another individual responds to at a later time.  In 

Grassé’s example, the nest building of termites is coordinated by the structure of the nest and not by the 

workers themselves; a new configuration is produced when the activity of one worker stimulates 

another (possibly different) activity by another worker. Latterly, these ideas have been applied to 

various systems, including cooperative transport by a swarm of robots (Kube and Zhang 1994). 

Natural systems interact with an uncertain, changing, complex environment. The result of this 

interaction is the high degree of diversity found in the natural world; one design does not suit all. A 

top-down, rigid design may achieve good results in a certain context, but it may struggle if the 

environment changes. Flexible, dynamic and adaptable systems, however, change with the 

environment, developing novel solutions to problems; they form an interesting model of human 

creativity (Bentley and Corne 2001). It is pertinent, therefore, to view another system – the organised 



sounds produced by human groups, commonly known as music - from this perspective. The analogy 

can be made at a formal level. If we consider, for example, musical tones to be simple individuals 

interacting with neighbouring tones through simple rules, then the question is: can self-organisation 

lead to higher-level structures (which in this case would correspond to melodies and rhythms)?  This 

idea was tested in early versions of Swarm Music, a MIDI-based system where sound events are 

represented as interacting particles moving in a three dimensional Euclidean space. The coordinates of 

each particle position correspond to pitch, amplitude and time–interval between events. The swarming 

behaviour of these particles leads to melodies that are not structured according to familiar musical 

rules, but are nevertheless neither random nor unpleasant (Blackwell 2001, and section 5.2.2).  

An analogy can also be found in freely improvised performance. An uncertain and complex musical 

environment may itself stimulate innovation where a more controlled  environment of preconceived 

ideas (i.e. top-down design) may falter. Structure arises from the temporally local interaction of 

individuals who continuously alter the environment, perhaps without prior knowledge or clear 

intention. The analogy with the natural systems of social animals is immediate. The group dynamic is, 

at least in part, stigmergetic.  

The point here is not that musicians are simple organisms but that it is possible, at some level of 

description, to explain complex collective behaviour from the assumption of relatively simple 

interactions (Bonabeau et al 1999). It is entirely possible, therefore, that computer systems can take 

part in free improvisations, contributing and responding to the musical environment: all we need do is 

to define suitable interactions between machine and humans, and ensure that the system implements the 

components of self-organisation referred to above. In the following, we shall call such a system an 

“artificial improviser”. This does not imply that an artificial improviser would operate as a human 

might but merely that it is engaging in low-level stigmergetic interactions with a dynamic musical 

environment. 

In order to build an artificial improviser a mechanism for stigmergy must be found. A very transparent 

mechanism was used in Swarm Music. The external environment consists of MIDI events (including 

audio events that have been parsed to MIDI parameters) emanating from external performers (humans 

or other swarms). These events are placed as attractors in the Euclidean space of the swarm. Particles 

are drawn towards these attractors, and the ensuing organisation of the swarm around the attractors 



produces a melodic stream influenced but not wholly determined by these events. The process of 

attractor placement and conversion of particle positions into output events is called interpretation.

The innumerable timbral qualities of the musical environment are, however missed in a MIDI 

parameterisation, and these qualities are also likely to be important for humans. This paper addresses 

this issue by presenting a generalised scheme for an artificial improviser, abstracted from Swarm 

Music, but with far wider application.  One application of this general scheme is Swarm Granulator, 

where swarms of interacting sound grains produce self-organising timbres and textures. 

It is the purpose of this paper to present a working model of creative interaction with an artificial 

improviser. The model is split into two fundamental processes: interpretation and swarming.  Our 

interpretative model for interaction is proposed in section 3. Interpretation is a multiple stage process of 

parameterisation that determines the whole mechanism for performance interaction. An overview of 

swarming and how swarm events are generated is presented in section 4. This section presents a 

detailed specification, through a number of particle update rules, for the implementation of a particle 

swarm. Practical implementation of the two applications already mentioned (Swarm Music and 

Swarm Granulator) is explained in section 5. However, it is first worth considering briefly the very 

wide topics of improvisation, interaction and musical organisation, and how their complexities can be 

addressed.  

 
2 IMPROVISATION, INTERACTION AND MUSICAL ORGANISATION 
 
2.1 Improvisation and emergence 
 
Uncertainty surrounds any improvised performance.  The extent of this uncertainty is contingent on the 

presence (or absence) of a priori agreements, whether explicit or tacit. This is expressed as the ‘degree 

of improvisationality’ by Sawyer (2003).  ‘Ritualised’ or highly controlled improvised performance can 

be distinguished from freer creative music making in a number of ways, not least by the cultural value 

ascribed to its practice, and the extent of its apparent ‘ossification’. Aspects of performance practice are 

highly significant: an emphasis upon collective (rather than individual) improvisation suggests a less 

controlling approach, as does the avoidance of recourse to notation or other pre-existing materials. 

Such factors constrain or afford opportunities for creative input. 

Freely improvised music is concerned only with the creative contribution of participants, and is 

deliberately and self-consciously uncertain. Inevitably performers will contribute according their own 

experiences, prior learning, practices, and habits (whether individual or culturally determined) but in a 



group setting they may well have little idea of what will proceed before the first sound begins. The 

listeners’ experience is comparable.  Such music making is in marked contrast to ‘ritualised’ genres 

such as Indonesian gamelan or Indian classical music. (Jazz, in all its diverse idioms, is harder to 

classify). In existing freely improvised repertory, from Stockhausen’s Aus den Sieben Tagen to the 

diverse work of AMM, the emphasis is not upon the top-down organisational strategies of Western 

classical music but upon collective acts; interactional processes take precedence. Creative input is 

constrained chiefly by the social experience of participants.  These experiences are explored within the 

context of jazz (and all its stylistic and technical precepts) by Berliner (1994).  A much more general 

theory of interactive behaviour is offered by Katovitch (1986) and further explored by Bastien and 

Todd (1992). This theory of social interaction within a group is described as ‘becoming situated’. 

Shared goals are recognized and pursued by group members, who both assume and cast roles. This 

might result from knowledge of ‘suprapersonal social facts’ (Katovitch) that is, shared historical 

assumptions. More interestingly, a brand new shared history evolves as the cooperative experience 

develops; as players may become aware of the appropriateness of their response to others’ 

contributions they may also appraise their own ability to initiate behaviour from others. 

Comparable issues are explored in Sawyer’s ‘interactional semiotics’ of group improvisation. This is 

predicated on the notion that ensemble behaviour is greater than the sum of its parts.  During a 

collective performance any appropriate individual contribution is pragmatic, meaning that it can be 

assumed to embody the tacit agreements established by other contributions made up to that point.  This 

is known as ‘indexical presupposition’, a term used by Silverstein (1993). The same contribution 

projects; it invites consequences; it has an indexical relationship to future possible interactions (that is, 

it represents ‘indexical entailment’). An emphasis upon entailment helps again to distinguish free 

improvisation from more restricted or ritualized idioms. 

At the core of these ideas is the notion of emergent structure as proposed by Meade (1932). Here 

emergence describes the spontaneous evolution of structure and meaning in social activities, such as 

conversation or improvised music making. Meade writes ‘The emergent when it appears is always 

found to follow from the past, but before it appears it does not, by definition follow from the past’ 

(quoted in Sawyer 2003: 12). This is an eloquent description of free improvisation, which can only 

cultivate structure from the ‘bottom-up’. Viewed as a whole, an ensemble can be seen to evolve self-

organising behaviours, creating the illusion of certainty. Emergent organisation might even be found in 



the generalised structural functions of composed music, for example the ‘complementary, counteractive 

and cofunctioning relationships’ identified by Berry (1976: 7). 

Such theories offer comparably convincing and complex models of interactive improvisation, at least in 

so far as humans experience it.  However, they can only serve as metaphors for interaction that are 

complicated by a proactive artificial improviser. A precise algorithmic model is needed. Computer-

human integration has often been modelled using the prosaic language of parameter mapping.  This 

describes how human inputs can be parameterized, transformed and mapped onto control functions for 

a synthesiser for example. The synthesiser produces a response; the human might listen and decide 

what to do next. Performance (gestural) behaviour is frequently the source of parameter information; 

alternatively, data can be obtained from the analysis/processing of live audio.  

The theoretical categories of parameter mapping have been widely considered, (Hunt et al. 2000, Arfib 

et al. 2002). Our system described below could possibly be likened to an implicit or generative 

mapping mechanism in which only general mapping behaviours can be anticipated, not real output 

values. However the terminology of ‘mapping’ cannot adequately describe the integration of an 

artificial improviser into an ensemble that is becoming socially ‘situated’. The artificial voice is as 

provocative and enabling as any other; it directly participates in the emergence of group organisation. 

In our performance model the computer’s contributions are as significant indexically as any act of a 

human performer.  The machine must therefore possess strategies for interaction with real-life 

musicians.  

2.2 Organisational levels 
 
If self-organisation is possible within a musical context, it raises the question: organisation at what 

level?  Music is often described in terms of layers of structure, for instance building up from 

fundamental parameters (pitch, duration, loudness) to the composite and conceptual (melody, texture, 

form). Here we present merely a working method of organisational levels, leaving aside many complex 

issues. 

Levels can be understood in terms of perceptual time scales (Roads 2001). The lowest relevant time-

scale pertains to the micro(structural)-level. Grains are measured in milliseconds; heard individually 

they may sound like clicks or fragments from a recognizable source. Gabor’s theories posit the 

fundamental nature of grains (1947). We may on occasion be aware that sound comprises discreet 



events.  However there is no direct analogy between micro-level analysis (e.g. FFT or wavelet analysis) 

and the parameters of granular synthesis. 

The time-scale closest to our immediate experience is the sound event level or mini-(structural) level 

(Xenakis 1981); a time-scale measured from a few seconds down to perhaps 1/10th second. Such events 

might be considered to have static elements, in other words, fixed characteristics suggestive of the 

‘musical note’.  This traditional view of the sound event has been attacked by Wishart, who criticises 

the hegemonic three-dimensional ‘lattice’ of pitch, duration and fixed instrumental timbre (1996).  His 

criticism highlights the conceptual confinement of music when represented by Western notation. Often, 

sounds are much more complex, because they result from a physical agency or are heard to signify 

such an agency (Smalley 1992). So, although sounds may have identifiable static elements, they also 

contain properties that evolve over time. The term ‘dynamic morphology’ (Wishart 1996) emphasises 

the gestural nature of a sound event, which could be determined by attack/decay characteristics, 

fluctuations in amplitude, pitch and timbre.  Granulation tends to produce such material, so the 

alternative vocabulary of ‘sound mass’ (Varèse 1971) and ‘cloud’ (Roads 2002) is particularly relevant. 

The third relevant time-scale is the meso(structural)-level; the level at which sound events are 

experienced in relation to one another, rather than individually.  Mesostructure arises from 

permutations at the lower sound-event level.  For example, our attention might be drawn to particular 

aspects of the mini-level, overall pitch or loudness of events. 

Perhaps less usefully, the meso-level can be thought to divide up the higher macrostructural level. This 

latter scale encompasses an entire piece or performance, and its characteristics determine overall 

musical form. In improvised music, the macro-level can only be described with the benefit of hindsight 

and reflection, once the complex interactions that cause structure to emerge are complete. In fact 

structure may be thought to emanate upwards through all these levels: the character and behaviour of 

grains determines the timbral qualities (dynamic morphology) of sound events.  In turn significant 

aspects of sound events recur and evolve to form structural patterns at the meso–level, and so on.  A 

self-organising system might wish to emulate this upwards progression, and a swarming improviser 

using granular synthesis has the potential to do this. One difficulty arises because the horizons between 

these time-scale/structural levels are rarely clear in practice, and are especially problematic in the 

idioms of electroacoustic and freely improvised music (i.e. when timbre and gesture are especially 

significant concerns). Wishart’s discussion of the differences between a ‘sequence’ (i.e. a complex 



pattern of events) and ‘texture’ (a single event with complex characteristics) illustrates the point 

(1994). 

In order to create a useful working model we must first imagine a scenario in which real-life musicians 

work with a machine improviser.  At any given moment in a performance, musician A will be aware of 

the sounds making up the musical environment, and (s)he may be aware of the source of those sounds 

(resulting from performers A,B,C…etc. and our computer improviser).  Musician A must decide, 

consciously or otherwise, how to listen analytically.  Such listening can refer to perceived sources, 

structural levels, or to indexical properties perhaps.  Does the sound have prominent timbral features?  

Is it interesting because it is higher in pitch, or quieter than earlier sounds?  Is the group as a whole 

gradually becoming less rhythmically active? Listening techniques would not be objective; musician A

will have a whole set of personal and cultural values that effect his/her judgment. Musicians A and B

may have had a heated argument just before the performance started. In any case, the musician is 

entirely free to respond accordingly, and (s)he may wish to complement or contradict the perceived 

qualities or direction of the music. Unlike the human players, the artificial improviser is not subjective, 

but behaves according to its hidden algorithmic design. To resolve these complex differences, we need 

a simple algorithmic model that allows us to design a workable system. 

 
3 INTERPRETATION  
 
3.1 Motivation 

A simple process known as interpretation was proposed in the first version of Swarm Music (Blackwell 

2001, 2003) which integrates all group contributors, whether carbon or silicon-based. This process has 

now been integrated into a more general model of interaction. This interpretative model forms the 

theoretical basis of our current implementations (a new version of Swarm Music and Swarm 

Granulator). 

 
3.2 The Interpretative Model 

Figure 1 depicts interaction between two systems (human or machine-based) A and B. System A is 

listening to audio Y emanating from B. A is also producing an audio output X. If A is interacting with B,

then X must in some way depend on Y and this influence is denoted X(Y). A similar meaning is 

attached to Y(X). 

[Figure 1] 
 



Fig. 1A simple model of interaction. A is depicted here to be in interaction with another individual, B, but B
could equally well represent a sub-group of the ensemble. A similar point applies if the diagram is read from B’s 
perspective. 
 
This picture, however, hides much. Human systems will be quite selective about which parts of the 

audio environment they will use to inform their own output, and this is desirable for silicon improvisers 

too. Interactivity merely implies that A is influenced by B, and this influence can be quite weak. In 

general, we can say that A’s musical output will depend strongly on many personal, hidden variables 

hA. For humans, hA would correspond not only to operational rules but also to variables not easily 

quantifiable such as instrumental training, previous improvisational encounters and stylistic influences. 

For silicon-based improvisers, hA corresponds to the details of internal generative algorithms. Even 

without interaction, then, A would still produce an output, so the notation can be extended: X = X(Y,

hA). 

Looking now at how Y can influence X, it is clear that A must attach meaning (interpret) the input Y.

Then a response can be prepared based on the useful information that A has inferred. The complexities 

surrounding the many hidden processes (experience, volition, aural ability, ideology…) will be 

ignored.  Interpretation by A of the aural environment will here be represented simply as P: Y → p

where p represents some of the information that A can infer from Y. In this mathematical notation, P is 

a function, mapping audio input Y to an internal representation p. However, to use the language of the 

section 2.1, P embodies the meanings that can be understood to emerge from presupposition and 

entailment. 

 We split the preparation of output into two functions, F and Q. F represents A’s internal processing 

activities (i.e. how A processes internal representations of the environment). Q represents how A uses 

this information to actually deliver a sound, for example through playing an instrument or via control 

of some synthesizer. To be specific, F is the process F(hA): p→ q where q is an intermediate state. Q

takes the intermediate state and prepares an output: Q: q→ X. The model therefore depends on three 

functions, P, F and Q, which loosely correspond to listening, reflecting and responding; 

 
XQqhFpPY → →→ )( (1) 

 
P and Q are interpretative functions since they are responsible for the conversions of external audio Y

to the internal representation p, and from the internal representation q back to audio X. Expression (1) 

is very general, since F deals only with internal representations p and q. However, if we wish to utilise 



stigmergy and self-organisation, F will need to implement the components of self-organisation referred 

to in the introduction (positive and negative feedback, amplification and multiplicity). One choice for 

F, therefore, is to use a swarming function f;

qi = f( {xi},{p}, c). (2) 
 
In this swarming equation (2), {xi} denotes the positions of individuals within the swarm and {p} are 

features of the environment e.g. attractors. P therefore modifies the internal environment of the swarm 

in response to changes in the external audio environment. Self-organisation of the swarm {xi} around 

{p} leads to correlations in output q and hence, via mappings Q, to correlations in audio output X. The 

hidden variables are h = ({x}, c}, where the behaviour of the swarm is parameterised by constants c. A

full explanation of the swarming equation will be given in the next section. 

Although this formalism requires an internal representation p of external sounds, p does not need to be 

dynamic. For example, a fixed configuration of p will lead to non-interactive improvisations in some 

fixed region of the space of outputs, corresponding to the patterns that the swarm makes around p in N-

dimensional Euclidean space. (Such a space, denoted RN, shares the same properties of the three 

dimensional space that actual swarms move in, but the dimensionality may be greater or less.) The 

influence of Y can also be weak; P can ensure that huge changes in Y only lead to small changes in p.

Or indeed, P could be highly sensitive to small environmental changes. 

From the perspective of interpretation, the internal processes – swarming - merely transform the input 

parameterisation into modulating numbers; the details (representations and rules) of the transformations 

are hidden. Interpretation involves listening at some structural level (P) and responding at the same, or 

different level (Q). The interpretation can be ‘transparent’ with P equal to the inverse of Q, P = Q-1 

(implying a like-for-like improvisational strategy), but this is not the only option. All that matters is 

that the interpretative functions P and Q are transparent enough for interacting humans to grasp and 

use during performance - a similar point, of course, applies to successful human-human interaction 

(although interactivity alone is not a necessary condition for a successful improvisation).   

 

3.3 Dynamic Refinements 
 
So far, only a static view of the interpretation has been presented. For example, the formalism does not 

depict that audio streams X and Y are comprised of discrete audio events (on time-scales down to the 

inverse Nyquist frequency) and that p and q represent a sequence of internal representations. The term 



‘audio event’ is used here merely formally to indicate windowing of the audio streams at time scales 

∆τ, and is not meant to imply any level-dependent semantics. However, the choice of interpretation 

functions P and Q certainly is a level-based activity. Assuming that a musical level can be 

parameterised at a time-scale ∆τ, P and Q can be drawn from a set of level-dependent functions, 

labelled by an index α, {Pα (∆τ) , Qα(∆τ)}. Suppose that an audio event e(τ, ∆τ ), commencing at time 

τ and of duration ∆τ, is projected out of the stream Y by a projection operator E(τ, ∆τ ),  

e(τ, ∆τ ) = E(τ, ∆τ )Y. Then the interpretative functions can be de-composed as  

 
Pα (∆τ) = Pα E(τ, ∆τ ) (3) 

 
where Pα is a member of a suite of interpretative functions which operate on a generic event e. For 

example, the extraction of amplitude is a generic function, applicable to events on any timescale. 

Equation (1) is a general statement of stigmergy. P invokes a change to environmental variables p

experienced by a swarm, and Q embodies the swarm’s response, which is the output of environment 

variables q. However, stigmergy in nature is an indirect interaction, which means that the swarm’s 

response happens after some time delay. Therefore, the rate of flow of information through Equation 

(1) in the interpretative model is very important because, for example, if the attractors in (2) are placed 

in the swarm’s environment immediately after events are projected from Y, then X(Y) is potentially 

highly coupled in time, which will almost certainly lead to stereotyped improvisations. Alternatively, it 

will be hard for listeners to perceive any interaction at all if X(Y) is loosely coupled in time. In practise, 

a human improviser will memorize recent information p, and will be quite selective about what 

elements of p to use in the future. The p(τ) should therefore be delayed by before being sent to F (i.e. 

how A processes internal representations of the environment),  

p(τ +τdelay) = PαE(τ, ∆τ )Y . (4) 
 
Some examples of interpretative schemes are shown in Figure 2.  

[Figure 2] 
 
Figure 2. Possible interpretative schemes. In this example, P interprets at the micro-, mini- or meso-level, sending 
parameters to F which is depicted as a swarm of particles. The action of Q can be thought of as projecting particle 
coordinates onto axes denoting level-dependent parameters. At the micro-level, these axes might include grain 
amplitude and grain, at the mini-level they may include MIDI note number and velocity, and at the meso-level, 
phrase shape and variance. 
 



4 SWARMING 
 
4.1 Overview 
 
This section defines a particle swarm and links the movement of this swarm to the swarming function 

of section 3. Particle swarms ultimately derive from the virtual flocks of Reynolds’ original animations 

(Reynolds 1987), but the flapping animated ‘boids’ are replaced with point-particles in N-dimensional 

Euclidean space, RN. The particles change their positions by the application of simple forces or 

accelerations. Reynolds established convincing flock animations with just three accelerations: a spring-

like attraction towards the centroid of neighbouring particles, a collision avoiding acceleration and a 

velocity matching acceleration. Typically, particle swarms use similar accelerations, except that a 

swarm does not implement velocity matching of near neighbours. Particle swarms may also use 

attractions to special positions in space, known as targets or attractors (Blackwell 2001, 2003). For the 

improvising systems proposed here, the attractors derive from external audio events, and are positioned 

in RN according to the interpretative function P. The particle accelerations determine the development 

of the swarm in time; they are presented in some detail in section 4.2.  Section 4.3 explains how 

particle positions are converted into swarm events. These swarm events, which reflect the shape of the 

swarm in Euclidean space, are mapped to actual audio events by Q.

4.2 Particle Swarms 
 
A swarm S of M particles is denoted S = { kP~ }, k = 1…M. A particle kP~ is specified by two N-

dimensional vectors, {xk, vk}, where xk and vk are the particle position and velocity. Additionally, a 

particle has access to attractor k at position pk∈ RN. Two vectors x , p ∈ RN describe global properties 

of the swarm and the attractors. The swarm position x lies at the centroid of the particle positions 

{xk}and the swarm attractor p lies at the centroid of the particle attractors {pk}.  

A time development operator U(t-1, t): S(t-1)→S(t) moves the swarm forward in time, updating each 

particle in turn, )(~)1(~ tPtP kk →− . A sweep through the whole swarm, updating each particle in turn, 

is counted by an index i. The discrete time counter t is defined by t = Mi + k (note that this is not the 

same as real time τ used in section 3.3 and in section 4.3 below).   U is specified by a set of rules, 

Equations (5) – (12). Equations (5) – (6) show the general form of the update. The three accelerations 

towards the swarm centroid, the attractor centroid and the avoidance acceleration are summed. k’s 

velocity is updated by adding the total acceleration, ak(i) to the current velocity of particle k (5 and 6) . 



The position update for particle k, equation (7), is then performed by simply adding the updated 

velocity to the current position.  

 
ak(i) = aswarm, k + aattractor, k+ aavoid, k (5) 

 
vk(i) = vk(i-1) + ak(i) (6) 

 
xk(i) = xk(i-1)+ vk(i) (7) 

 

Five scalar constants c = {vclamp, q~ , m, dcore, dlimit} parameterize U. vclamp is a clamping or limiting 

velocity which sets an upper limit to the effect of the accelerations. If the result of calculation (6) is to 

update the velocity to a magnitude |v| that is larger than vclamp, then v is rescaled by a factor || v
clampv so 

that its magnitude is vclamp. q~ is a particle charge which sets the scale for the collision avoiding 

accelerations. m is the particle mass; accelerations are inversely proportional to m. dcore is a small 

distance used to shape the inter-particle repulsion and dlimit is a perception limit. The perception limit is 

defined so that a particle at x is only aware of other particles and attractors within a box Blimit(x) = [-

dlimit , dlimit ]N centred on x.

Equations (8) to (12) explain the calculation of ak in some detail - the time arguments have been 

dropped for simplicity.  

 
aswarm, k = mk

-1 δ ( x , xk)( x - xk) (8) 
 

aattractor, k = mk
-1 δ ( p , xk) ( p - xk) (9) 

 
aattractor, k = mk

-1 δ (pk, xk) (pk - xk) (9a) 
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− , otherwise.  

δ(y, x) = 1 if yk ∈Blimit(xk)

0, otherwise 

(12) 

 
Equation (8) is a linear spring-like acceleration towards the swarm position. Equation (9) is a similar 

linear acceleration towards the swarm attractor. Equation (9a) is an alternative to (9), whereby each 



particle is attracted to its own attractor, rather than the centroid of the attracting group. This increases 

the diversity of the swarm for some attractor configurations since a particle may feel conflicting pulls 

towards the swarm, and towards an outlying attractor. From a musical perspective, (9a) will make the 

swarm as a whole more responsive to new directions in the musical environment, so that output X more 

closely follows input Y. Equation (10) is a collision-avoiding acceleration between particle k and any 

other particle within Blimit(xk). This repulsion is specified in Equation (11). The delta function δ(y, x)

occurring in these equations is defined by equation (12); it ensures that accelerations between a particle 

at x and a position y are only calculated if y is within x’s perception i.e. is in the box Blimit(x).  

Equation (11) shows that inter-particle repulsions ak,l are Coulombic repulsions between particles that 

are within the perception limit of each other, and are equal to a constant for separations less than the 

dcore. The core distance dcore limits accelerations which could otherwise become arbitrarily large for 

very small separations in the denominator of the inverse square law. x and p are always updated 

immediately before each particle update. 

The particle attractors pk(τ) are updated in real time τ in a separate process to the particle update 

thread. These attractors do not arise from the swarm, but are placed in the swarm’s environment in 

response to external audio stimulus. Storing the attractors in a buffer for a time delay τdelay before 

placing them in RN can also control the rate of flow of information through the system.    

Equations (8)-(12) differ slightly from earlier versions of Swarm Music. In particular, the spring 

constants determining the strengths of the attractions have been set at unity because the parameter with 

the dominating effect on output is vclamp (Blackwell 2003).  The Coulomb repulsion also differs slightly 

in this version because the spatial dimensions are decoupled, as specified in Equation (10). The update 

rules are merely N copies of a one-dimensional dynamical system. In the earlier version, the 

components were coupled through the Coulomb repulsion which was a function of the Euclidean 

distance |r| between particles. Dimensional coupling can still take place, but it must be handled by the 

interpretative functions (see section 5.2 for a discussion on the musical effect of dimensional 

decoupling).

4.3 From particles to events 
 
The swarmer is a software module that implements a particle swarm. The function of the swarmer is to 

use a particle swarm to provide a series of ‘swarm events’ q(τ).  This is accomplished with two timing 



functions which operate on two components of a particle position vector. The other components of the 

position vectors provide event parameters. The timing information for event start and end is therefore 

internally derived from the swarm thus allowing for temporal organisation of events due to spatial 

organisation of the particle positions. In order to explain how the swarmer can do these things it is 

helpful to consider the swarming equations (5)-(12) in terms of a state machine. The state of this 

machine is the current swarm configuration S(t) and the transition function consists of M time-

development operators, U =(U1, U2… UM), where each Uk updates particle k according to the rules (5)–

(12). The swarmer as a state machine is illustrated in Figure 3. 

[Figure 3] 
 
Figure 3. Swarmer as a state machine. The machine has inputs p(τ) and c, an output q(τ), and current state S(t). 
 

In order to extract temporal information from the spatial information x, two timing functions are 

introduced, g1 and g2. The swarmer pauses for a time δτt = g1(x(t).e1) upon generation of state x(t), 

where e1 is the unit vector along direction 1. The required output from the swarmer is a stream of 

swarm events q1, q2, q3… commencing at times τ1, τ2, τ3… Events, however, must have a beginning 

and an end. A second timing function g2(x(t).e2) extracts an interval δτt, event from xk, where δτt, event is 

the duration of event qt i.e. qt ends at τt +δτt, event. The event timing information δτt and δτt, event is 

packaged in the N dimensional event vector qt = (δτi, δτi, event, xk.e3, xk.e4…xk.eN). The connection 

between the real timeτ and discrete time index t is  

τt = ∑−=

=

1

1

ts

s
sδτ . (13) 

 

Note that the focus on discrete events does not limit the generality of the swarmer. Event frequencies 

can be increased right up to the Nyquist frequency of the digital–to–analogue converter in order to 

provide near–continuous modulation of an output stream. Any module accepting swarm events is not, 

of course obliged to use δτt, δτt, event, although it will certainly need to store δτt, event if it is to 

parameterise audio events, because the module will need to know when to terminate the audio event 

triggered by the reception of  qt, and audio events will overlap if δτt, even  > δτt.

In summary, the swarmer produces a set of discrete swarm events qt at times τt. These events are 

generated by particle movement which is determined, in turn, by a set of particle update rules. These 



rules calculate an acceleration for each particle due to nearby attractors and other particles. The 

strength of these accelerations is determined by a set of particle update constants. The swarm attempts 

to organise itself around the attractors, which themselves are dynamic. The functionality of the 

swarmer can be conveniently written using timing functions Gk = (g1, g2, I3…IN), were each component 

of Gk acts on component xk.ea of particle k, and Ia is the identity function. The swarming equation, 

Equation (2) of section 3.2 can then be expressed as 

 
qt = ( ){ }( ) ( )1, −• tScUG kk τp . (14) 

 

4.4 Self-organisation and interpretative swarms 

It is worth considering whether particle swarms in interpretative interaction with external musical 

sources (this is the ‘improvising system’) might self-organise. According to Bonabeau (Bonabeau et al 

1999), the necessary ingredients are positive and negative feedback, multiple interactions and the 

amplification of fluctuations.  

The improvising system does have the possibility of positive feedback; attractors representing external 

events Y lead to swarming around p, and a correlated output X = Q(q). This reinforcement of events in 

the audio environment will grow if the external collaborators continue the loop. However, the external 

improvisers may be inclined not to perpetuate this musical direction, and indeed the inter-particle 

repulsion has a similar damping effect, producing swarm events which will be interpreted at some 

distance from the musical attractor. Hence the improvising system contains negative feedback. In 

addition, the repulsions and chaotic motion of the particles introduce fluctuations, which may be 

amplified by the external collaborators, or by the swarm itself through the inter-particle coupling to the 

swarm centroid. There are multiple direct interactions between the particles (Equations (8) and (10)) 

and multiple indirect interactions between the particles and external events (mediated by stigmergetic 

attractor placement, Equations (1) and (9)). Furthermore, colonies of swarms known as multi-swarms 

(described below) implement multiple stigmergetic internal interactions. These multiple interactions, in 

partnership with the other three ingredients, therefore have the potential to lead to the self-organisation 

of musical events and the spontaneous generation of structure. 

 



5 APPLICATIONS 
 
5.1 System Overview 
 
The working model of self-organising swarm-based improvisers has been explained in sections 3 and 4. 

This section explains how this theoretical scheme can be fleshed out to provide realisations of self-

organising swarm-based improvisers. Figure 4 is a modular diagram for our artificial improviser. 

[Figure 4] 
 
Figure 4. Modular view of the system. A separate software module, a swarmer and interpreter, is dedicated to each 
process (swarming and interpretation). 
 
One possibility for the implementation of F is the use of multi-swarms. A multi-swarm is a colony of 

particle swarm Si interacting stigmergetically (Blackwell 2003). Particle positions from one swarm are 

added to the attractor buffers of the other swarms, where they join attractors emanating from the 

external audio environment. In order to provide different external behaviour, swarm events from each 

swarm can be interpreted using separate functions Qi.

Each swarm can be thought of as a separate musical individual. In this case the Qi would be very 

different, leading to quite distinct output streams Yi. This is almost equivalent to numerous versions of 

systems comprising a single swarm, except that inter-swarm attractor placement in the multi-swarm 

takes place before interpretation. The coupling between swarms in a multi-swarm is therefore stronger 

than between separate swarms because swarm events do not have to compete with audio events from 

other external systems or musicians.  

Alternatively, the multi-swarm can be compared to a single musical personality. The swarm events qi

from each swarm can be interpreted and mixed by the Qi before outputting a single stream X. This is 

useful when X can be conceptualised as the superposition of parameterisations,  

 ∑= iQQ , ∑= iXX . (15) 
 
Another design choice rests with the parameters c of Equations (5)–(12). Although some 

simplifications have been made, there are still five free parameters which determine responsiveness 

(vmax, m), diversity (particle charge, dcore) and awareness (dlimit). Additionally, these parameters can be 

different for different swarms in the multi-swarm, and for different directions in RN.

In general, the coordinate space of the swarmer itself has design implications. Apart from fixing the 

dimensionality of mappings P and Q, the extent of the coordinate space needs to be decided. Although 

it would be possible to allow particles to move without restrictions in RN, it is more manageable if 



motion is restricted to a finite subspace, TN ⊂ RN. Furthermore, the behaviour at the boundaries of TN

must be specified for any implementation. In the two applications discussed below, T = [0, 128] and 

particles simply reflect at the boundary of T.

Further important choices have to be made for the interpretive functions P and Q which in many ways 

define the character of the system. Swarm Music, for example, is MIDI based; Q operates at the 

ministructural level, turning swarm events into MIDI events which are rendered by a synthesizer. 

Furthermore, Swarm Music is transparent: P = Q-1. On the other hand, Q for the Swarm Granulator 

operates at the microstructural level, mapping swarm events to grain events which are rendered by a 

granular synthesizer. 

It has previously been remarked in section 4.2 that p(τ) can be delayed  before being placed in TN. This 

delay, τdelay, might be fixed, or might depend on the rate of flow of information into the system. The 

second option can be achieved by storing p in a queue of fixed size. When the queue is full, attractors 

are taken from the head of the queue and placed in TN upon arrival of new attractors at the tail of the 

queue. τdelay therefore depends on the length of the queue and the rate of flow of new attractors to the 

queue’s tail. The queue is a simple implementation of a memory buffer, and this is important for 

stigmergetic interactions which are not instantaneous. 

 

5.2 Swarm Music 
 
The current version of Swarm Music is now six dimensional. In previous versions, the interpreter 

parsed incoming audio/MIDI for interval between events (component 1), event pitch (component 2)

and loudness (component 3). The same parameters were used for interpretation back into audio so the 

system operates purely at the mini-structural level. This version has been extended by adding event 

duration (i.e. δτi, event, component 4) and two meso-level parameters, chord number and sequence 

number.  

Attractor component 5, p.e5, corresponds to the number of pitches sounding within a short (user-

specified) time δτchord. An attractor component is then placed in this dimension, and a swarm chord 

number at the start of each iteration is derived from the swarm centroid, nchord = x .e5. nchord can vary 

between 1 and M, the size of the swarm; if nchord > 1, δτ’ s for the first nchord swarm events are set to 

zero.  



The number of simultaneous chord tones is a mesostructural property of the swarm as a whole. The 

sequence number nsequence, which can vary between –M and M, is another meso-level parameter and is 

determined by the component of the swarm centroid along this dimension, x .e6. The sequence number 

has the effect of forcing the first |nsequence| swarm events at each iteration particles to be sorted into 

ascending/descending pitches for nsequence> (<) 1. 

The interpreter extracts another two parameters. These are mode and tonic. To begin, the interpreter 

assumes a mode (major, minor, pentatonic, diminished, wholetone or chromatic) and tonic. Then, thirds 

and fifths of incoming MIDI events are inspected for agreement. A number of disagreements are 

tolerated before change is instigated to a mode that includes the errant note. A note histogram is also 

maintained to determine a tonic. Pitch interpretation of q is then dependant on the current mode and 

tonic. This simple algorithm allows for harmonic interaction and the results can be quite unpredictable, 

but emergent organisation is not produced by swarming. Instead, the modal and tonic parameters are 

passed directly to Q as parameters, Q = Q( ptonic, pmode). The actual pitch of the interpreted note from 

particle k is then determined by splitting the 2 axis into equal intervals based on the current 

parameterisation, and finding the interval corresponding to component xk.e2. For example, if Q is 

parameterised in C Major, the 2 axis, which runs from 0 to 128, is split into intervals of width 

7.17
12 ≈ so that middle C corresponds to components in the interval [60, 61.7], D to components in the 

interval [61.7, 63.4] and so on. 

It was noted in section 4.2 that the current version of Swarm Music implements dimensional 

decoupling. This is preferable from a musical perspective since there is no a priori reason to correlate 

components. For example, if pitch and loudness components were correlated, then swarming around a 

new attractor that only differed from the previous attractor by a change in the pitch component would 

lead to a change in the dynamic output. 

5.2.1 Swarm Music in performance 

Swarm Music has performed with human improvisers at a number of events, including the Music and 

the Mind Festival, University College London, 2003 (Taylor 2003) and at The Big Blip Science/Arts 

Festival 2003 (Garland–Jones 2003) where a five particle 2-swarm took part in a piano duet with one of 

the authors. Some performer feedback on early Swarm Music performances has been reported in 

Blackwell (2003). Young (as pianist at the Big Blip concert) writes: ‘You were definitely aware of a 



response, and a performance loop emerging.  Extremes of material seemed to work best – soft chords 

played slowly would soon change the kind of material coming from the swarm, after fast loud single 

lines for instance. The question was how to respond again – join in and reinforce the conditions the 

swarm ‘wants’, or always keep moving on to something new?’ 

The system can be autonomous in performance, but an operator may also intervene. The user interface 

allows real time control of each parameter c, the size of TN and the mode/tonic interpretation can be 

overridden. The effect on the swarm is not unlike the conducted improvisation techniques of John Zorn 

(Bailey 1992: 75-78) or Butch Morris’‘conduction’ (http://www.conduction.us). Some Swarm Music 

improvisations, including conductions, can be downloaded from the website 

http://www.timblackwell.com.

5.2.2 Cooperation amongst swarms 

The following three figures illustrate the cooperative effects between the two swarms in a 2-swarm. 

Each figure shows a Cubase edit screen. In these plots, time τ runs from left to right, and pitch 

vertically, so that the Figures show three parameters of each event, δτ, δτevent and MIDI note number   

nMIDI. Figure 5 shows the output of a five particle 2-swarm, where the particles are re-positioned at 

random within TN at each particle update. Figure 5 shows that δτ, δτevent and nMIDI vary uniformly 

within TN over strips (τ, τ + ∆τ).  Figures 6 and 7, however, show plots for each swarm where the 

particles are interacting through Equations (5) – (12). Correlations between the swarms can be easily 

seen in each dimension. Rather than randomness, the plots show that δτ, δτevent and nMIDI occupy 

smaller regions of TN for each strip. Two further features of Figures 6 and 7 are worthy of comment. 

The swarms interact stigmergetically so that the positions of particles in Swarm A become attractor 

positions in Swarm B and vice versa. The result is that a movement of the note component of the 

centroids of each swarm show a similar pattern: over the first 4-5 time units there is centroid movement 

down in pitch, followed by a small fluctuation up and then downwards again. Then, for time units 5 – 

18 the plots show joint movement up in pitch with both swarms descending again at τ = 12. It is 

impossible to say which swarm provoked this cooperative behaviour, and which swarm followed. The 

2-swarm is acting as a single entity where cause and effect are not helpful descriptors.  

[Figure 5] 
 
Figure 5. Particle positions, interpreted as MIDI events, for two five particle swarms. The particles are randomly 
distributed at each update.  

http://www.timblackwell.com/
http://www.conduction.us/


[Figure 6] 
 
Figure 6 Particle positions, interpreted as MIDI events for one swarm (A) in an interacting 2-swarm. The swarms 
implement the full update equations (5)-(12). 
 

[Figure 7] 
 
Figure 7. Particle positions, interpreted as MIDI events, for the second swarm of the interacting 2-swarm depicted 
in Figure 6. The horizontal time axis is the same in both plots. 
 

5.3 Swarm Granulator 
 
The overall system has three modules; interpreter, swarmer and granulator. In granulation, or granular 

synthesis, grains are generated by multiplying an envelope (window) of given amplitude, duration and 

shape with a waveform. Synthesis is achieved by iterating grains either synchronously or 

asynchronously. The result is a stream of sound with potentially very diverse timbral characteristics.  

Many grain-event level parameters affect these perceptual features; the various approaches to this 

technique are explored in detail by Roads (2001). 

Our implementation uses a dual cross-platform system; interpretation and granulation on a 500 MHz 

Apple G4 and swarming, written in Java, runs on a 1.7GHz PC. The two machines communicate using 

our own implementation of the Open Sound Control protocol for Ethernet communication 

(http://www.cnmat.berkeley.edu/OpenSoundControl/). Granulator and interpreter modules (see Figure 

8) are written in Max/MSP, with objects from the Granular Toolkit by Nathan Wolek 

(http://www.nathanwolek.com) and analysis objects including Miller Puckette’s fiddle~. 

Analysis P operates at the sound-event level (e.g. with fiddle~) and Q operates at the micro-(grain) 

level, and a transparent mapping is made from extracted parameters to grain parameters. Specifically, P

extracts four sound-event parameters; pitch, amplitude, duration and duration between successive 

sound-events.  Amplitude data is extracted continuously when events are detected.  Q determines audio 

buffer transposition (= pitch), amplitude (A), duration (δTgrain), time between successive grains (δT) and 

grain attack and decay time (δTatt and δTdec). The swarmer, therefore, operates in N = 6 dimensional 

coordinate space with the attractor components representing grain attack and decay times fixed.   

An incoming sound stream from performers is repeatedly recorded into a buffer~ object. Grains are 

produced by looking up the audio buffer and shaping the result with a Hanning window.  The 

generation of grains is not periodic; their start and end points are controlled by swarm particles.  This 

contrasts to conventional implementations of granular synthesis, such that δTgrain = δTatt + δTdec + x,

http://www.nathanwolek.com/
http://www.cnmat.berkeley.edu/OpenSoundControl/


where x is unknown at the onset of the grain. The grain amplitude window is often distorted as a result, 

with an elongation at the loudest point.  The audio buffer entry point is determined by the operator.  

Prior to this, the buffer contents are analyzed such that only regions below an acceptable amplitude 

level are filtered out. This procedure moderates the somewhat unpredictable nature of this type of 

granular synthesis, more accurately described perhaps as “granular reconstruction” (Wishart 1994).   

The result is a stream of audio varying from sparse and irregular bursts to highly dense clouds of sonic 

material, slowly or rapidly evolving in pitch and amplitude range and in timbre. The characteristics of 

this are clearly dependent on the recorded audio. To widen the potential range of textural density, three 

simultaneous grain streams are used, i.e. the swarmer implements a 3-swarm.  

Swarm Granulator has performed with three acoustic musicians at The Big Blip. For this event, each 

swarm had 10 particles and, for additional texture, each swarm had different parameter settings c.

Some accounts of the performance from the musicians’ perspective are reported in (Blackwell and 

Young 2004), and some excerpts for the concert are available on he website 

http://www.timblackwell.com.

[Figure 8] 
 
Figure 8. A modular view of the granulator, showing grain parameterisation from the swarm events q.

6 DISCUSSION 
 
The inspiration behind the work presented here is the compelling analogy between self-organisation in 

nature and improvised music. We suggest here that the emergence of structure in improvised 

performance can be understood from the perspective of self-organisation. The paper outlines a model 

of how these ideas can be embodied in an artificial improviser. This interpretative model uses the idea 

of indirect environment-mediated interaction (stigmergy); attractors, which are parameterisations of 

external events, are placed in the environment of a particle swarm. The organised patterns of the swarm 

around the attractors provide parameters which modulate audio output. Two systems have been 

implemented, one based on swarming grains, and one on swarming MIDI events. These systems have 

been tested in performance where they have pro-actively engaged with human performers. 

Both systems are still being developed. In particular, the interpretative functions, which operate at 

specific musical levels, are the subject of ongoing research. The ultimate aim is for a single-level, 

http://www.timblackwell.com/


unified system which is transparent to both the performers and the audience.  The ideal form of 

transparency might begin with the extraction and mapping of micro-level parameters (e.g. by wavelet 

analysis).  Currently, parameters are extracted at mini– and meso-levels. There is a tantalising 

possibility that interpretation could take place only at the smallest perceivable level, the micro-level, 

and that musical structure at every level upwards could arise through self-organization. 

Since organisation at higher and higher levels would be expected to take place with diminishing 

frequency, it could be that a hybrid multi-level approach is preferable. In which case, interpretation of 

dynamic elements such as timbral change, vibrato and attack/decay characteristics should be added to 

the static parameters so far implemented. Spectral characteristics of incoming audio can be explored, 

for instance by FFT analysis, enabling the automation and subsequent swarming of buffer entry points 

(which in turn determine the waveform used for grains). 

Ultimately, the integration of Swarm Granulator and Swarm Music into a single system that listens, 

swarms, and modulates output at the micro, mini and meso-levels, could lead to a formidable artificial 

improviser.  
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