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PSO from above

I’ve lost it.

It should be here, or at least somewhere close
to here.

Can you help me? Could your friends help me
as well?

How do we share information, and what do we
do with it?

My current position xi.

My best, pi; my helpers bests, pj; informer
neighbourhood Ni.
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PSO as second order stochastic difference
equation

for each particle i = 1 . . . N

for each dimensiond = 1 . . . D

xt+1,id = −atxt,id − btxt−1,id + ct(Ni)

end for

!pt+1 = BEST(!xt+1, !pt)

end for

Underlying assumption: BEST has some struc-
ture (nearer is better).
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Examples: Clerc-Kennedy

The Clerc-Kennedy formulation has become
the de facto standard PSO:






at = −(1 + w) + 1
2(Φ1 +Φ2)

bt = w

ct(p) = 1
2(Φ1p1 +Φ2p2)

where Φ ∼ U [0, φ], p1 = pi, and p2 is the best
informer in Ni (the same Φk appear in a and
b).

It is written more conventionally as

xt+1 = xt + wvt +
Φ1

2
(p1 − xt) +

Φ2

2
(p2 − xt).
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Examples: Discrete Recombinant

Peña’s Discrete Recombinant PSO has an up-
date rule:






at = −(1 + w) + 1
K

∑K
k=1 φk

bt = w

ct(p) = 1
K

∑K
k=1 φkP̂k(p)

where φk are real constants and P̂k is a selec-
tion operator over K informers p.
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Examples: Discrete Recombinant Model 3

Various other recombinant PSOs were studied
by Bratton and Blackwell including a reduced
version known as Model 3,






a = −1+ φ

b = 0

c = φ U{p1, p2}

which is a first order SDE (i.e. a particle up-
date without velocity). Denoting the d’th com-
ponent of the recombinant informer as r (=
p1d or p2d), Model 3 is simply written as

xt+1 = xt + φ(r − xt).
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Examples: Bare Bones

Bare Bones PSO, originally formulated by Kennedy:






at = 0

bt = 0

ct(p) = N(µ(p), σ2(p))

where N is the Normal distribution.

In Kennedy’s formulation, N has mean µ =
p1+p2

2 and variance σ2 = (p1 − p2)2.
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Focus

〈xt+1〉+ 〈at〉〈xt〉+ 〈bt〉〈xt−1〉 = 〈ct〉

where the random variables a, b, c are indepen-
dent of x.
Order-1 stability condition is found by solving the ho-
mogeneous equation for xt = λt, |λ| < 1. The conditions
for real and imaginary roots within the unit circle are

−1− 〈b〉 < 〈a〉 < 1+ 〈b〉
(real roots, a2 > 4b)

and

〈a〉2

4
< 〈b〉 < 1

(imaginary roots, a2 < 4b)

with fixed point

〈x〉 =
〈c〉

1+ 〈a〉+ 〈b〉
.

〈x〉 is the mean position generated by iterating
the SDE; it a focus of the search at fixed p.
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Focus - examples

CK, DR:

〈x〉 =
1

K
〈
∑

P 〉 = 〈P̄ 〉,

demonstrating that the search (at stagnation)
focuses around the centroid of the neighbour-
ing attractors P̄ (CK) and around the expec-
tation value of the centroid (DR).

BB:

〈x〉 = 〈N〉 = µ.
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Spread

The variance in x is obtained from 〈δx2〉 =
〈(x− 〈x〉)2〉.

〈δx2〉 =
〈d2〉

1− 〈a2〉 − 〈b2〉+
(
2〈ab〉〈a〉
1+〈b〉

).

This equation gives the standard deviation of
the general PSO, when order-2 stable, in terms
of averages over the random variables a, b and
c.
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Spread - examples

CK, DR:
√
〈δx2〉 = γ

√
〈δ̂P2〉

where

γ =

√
〈∑Φj〉2

C
C = 2(1− w)〈

∑
Φ〉

− 〈(
∑

Φ)2〉+
2w

1+ w
〈
∑

Φ〉2.

and δP̂j = P̂j − 〈x〉

√
〈δ̂P2〉 is a measure of the spread of the in-

former group.

BB:

〈δx2〉 = σ2
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Spread - examples - summary

The standard deviations for CK, DR and BB
follow a common form,

√
〈δx2〉 = α|p1 − p2|

with

αCK = 1.042

αDR = 0.612

αBB−Kennedy = 1.0
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Stability






1+ < a > + < b > %= 0 Order 1

1− 〈a2〉 − 〈b2〉+
(
2〈ab〉〈a〉
1+〈b〉

)
> 0 Order 2.

CK: 2K(1− w2)− 7
6φ+ 5

6wφ ≥ 0

DR (model 3): 0 < φ < 2.

BB: Since a = b = 0, stability is immediately
satisfied.
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General Bare Bones

Bare bones is simplest PSO in the sense that
a = b = 0.

Not a difference equation at all; unsuccessful
trials x are ignored.

Kennedy: µ = p1+p2
2 , σ = |p1 − p2|.

Hidden parameter α: σ = α |p1 − p2|.

In general, mean and informer separation can
be chosen from the neighbourhood informers:

x = µ(p) + αδ(p)N(0,1).
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A problem - collapse

First (DR) and second order (CK) PSOs have
stability conditions that help us chose param-
eters φ and w.

The bare bones swarm cannot become unsta-
ble, but it may collapse.
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Collapse, which is undesirable, is to be con-
trasted to convergence.

In arbitrary precision arithmetic, convergence
means that the swarm best informer, pg, ap-
proaches, but does not reach, a limit point x∗.

Suppose the swarm is stable and the best in-
former g is approaching x∗.

The dimensionless variable σ̄ = σ
|g−x∗| measures

the standard deviation of the sampling distri-
bution in units of the separation from the op-
timum.
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There are two scenarios.

(1) σ̄ → 0 with σ → 0 faster than g → x∗

and the swarm collapses and progress towards
x∗ slows until the swarm stagnates at a finite
distance from x∗.

(2) σ̄ → const and the swarm converges on x∗.

This is the most desirable scenario; without
the constraints of numerical precision, the g

will become as close to x∗ as we care to specify.

A consideration of collapse must, unlike the
stability analysis mentioned above, consider in-
former movement.
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Analysis of simple model with informer
movement

O g p

O gp

Two possible configurations for a Bare Bones
particle interacting with an effective particle.
The effective particle represents the effects that
N−1 particles have on the single particle. The
informers are placed at g and p; either p or g

can be regarded as the effective informer. The
optimum is at O and g, which is closer to O,
is the better informer.
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〈g〉 = g +
∫ g

−g
(x− g)ρg,σ2dx

= g −
σ√
2π

(1− e
−2g2

σ2 ).
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Expected value of g after a single update from
g = 1, plotted as a function of standard devi-
ation σ = α|δ|. The minimum of 〈g〉 is 0.64 at
σ = 1.26.
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〈δ〉 = δ +

(∫ −g

−|p|
+

∫ |p|

g

)

(x− p)ρg,σ2dx

−
∫ g

−g
(x− g)ρg,σ2dx

= δA+ σB

where

A = 1−
∫ b

a

ρ0,1dx−
∫ c

0

ρ0,1dx

B =
1

√
2π

(
2+ e−

1
2a

2 − e−
1
2c

2)

+
1

√
2π

(
−2e−

1
2b

2)

and

a =
−|p| − g

σ

b = −
2g

σ

c =
|p| − g

σ
.
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




〈g〉R = g
〈g〉〈g〉 = 1

〈δ〉R = g
〈g〉〈δ〉 =

〈δ〉
〈g〉.

The rescaled system can be viewed as a dy-
namical system. Since g = 1, there is a single
state δR ≡ 〈δ〉R(t) with dynamics

δR(t+1) = 〈δR(t)〉
〈g〉 ≡ F (δR(t))

Self consistent condition (fixed points of F ):

〈δ〉R = δ.
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Expected value of δ after rescaling. The straight
line is drawn at < δ >R= δ.

α ≥ 0.65: There are two attractors, δ∗b > 0 and δ∗− < −2. Repeller
at 0. States close to 0 are driven further away; the system resists
collapse.

α < 0.65: Attractor at 0. States close to 0 are driven towards 0
and the systems collapses.
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Empirical test of α = 0.65
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Conclusions - BB
In tests over Yao et al and CEC2005 benchmarks, global
and local focus BB at α = 0.65 performs as well as
PSO-CK and DR-Model 3 at their standard parameter
setting.

All PSO’s use information sharing to guide exploration.
The focus and spread are determined by the dynamics,
i.e. by the 2nd order SDE.

How important are the dynamics?

Second order SDE’s with multiplicative stochasticity have
bursts, but not first or zero order SDE’s (Blackwell and
Bratton). Bursts enable exploration of the whole search
space at any stage. A simple jump mechanism improves
BB performance in some cases.

The shape of the distribution itself may have a small
effect, but since the distribution scales with the swarm,
it does not allow distant exploration.
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Conclusions - PSO

An understanding of the general properties of
Particle Swarm Optimisation would help inte-
grate the knowledge gained by the seemingly
limitless exploration of new models. Search
focus and spread, swarm stability and collapse
and feasibility can be explored using simplified
algorithms, and with the adoption of new tech-
niques such as the mean field approximation,
permitting analysis of informer, as well as of
particle, movement. It is hoped that a theory
of the particle swarm paradigm as a whole will
emerge from these studies.
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