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Abstract

We outline a frameavork within which machinecompositionsnay be evaluatedobjectively. In particular the framevork
allows statementsiboutthosecompositiondo berefutedon the basisof empiricalexperimentation We considetthis to
befundamentaif we wishto evaluatethe degreeto which our programsachieze their compositionakims. Furthermore,
a review of the literaturerevealsthat this is a largely ignoredaspectof researchinto algorithmic composition. Our
frameawork involvesfour componentsspecifyingthe compositionahims;inducinga critic from a setof examplemusical
phrasesgomposingmusicthat satisfieghe critic; andevaluatingspecificclaimsaboutthe compositionsn experiments
usinghumansubjects We describea systemwhich exemplifiesthesefour stagesandwhich demonstratethe practicality
of the framework. Finally, the applicationof the framevork to the evaluationof musicalcreatvity is discussedand

directionsfor futureresearclaresuggested.

1 Introduction

Our concernin this paperis the evaluationof the music
composedry computerprograms. The crux of the prob-
lem is that Artificial Intelligenceand the Cognitive Sci-
enceg(including cognitive musicology)are scientificdis-
ciplinesfollowing a methodologywhich attemptgo eval-
uatetheoriesobjectively throughempirical experimenta-
tion. However, the evaluationof beautyor aesthetiozalue
in works of art (includingmusic)oftencomesdown to in-
dividual subjectve opinion. This, asnotedby Spectorand
Alpern (1994),“presentsaproblemfor Al scientistawvish-
ing to producecomputationahrtists: How mightwe rec-
onciletheobjectvity thatscientificmethodologyseemgo
requirewith theapparensubjectvity inherentin aesthetic
evaluationof artworks?

In fact,the problemof evaluatingthe musicgenerated
by systemdor algorithmiccompositionis onethatis typ-
ically givenlittle attentionin theliterature. It is, however,
fundamentathatsuchsystembeevaluatedbjectively on
the basisof the musicthey compose. How elsecanwe
decidewhetheror not the machinecomposeisucceedsn
fulfilling the specifiedcompositionaboals?

Suchevaluationis alsoimportant(in a wider sense)
if we areto develop “progressve researctprogrammes”
(Lakatos,1970)in the field of cognitive musicology As
notedby Desainet al. (1998)“a computationaimodelis
[not] anaim untoitself but a meango compareandcom-
municatetheoriesbetweendifferent researchcommuni-
ties” We considera commonmeansof evaluationto be
fundamentaif we areto judgemusicaltheoriesrom other
communitiesn our researctprogramme.

Therefore,it is our opinion thatarny programfor the

algorithmic compositionof music (and indeedthe gen-
erationof otherworks of art) shouldbe embeddedn a
theoreticalmodelthatallows its outputto be evaluatedin
objective terms. Thereare (at least)two waysin which
machinecomposersnight be evaluated:first, in termsof
the musicthey composeand secondon the basisof the
manneiin which they composemusic(which mayor may
not be importantdependingon the aimsof the research).
We setout hereto outline a theoreticalframework for the
formermeanof evaluationandto discussts implications.

This paperis structuredasfollows. First, we consider
notions of the demarcationbetweenscientific and non-
scientificknowledgeand how this relatesto the problem
of evaluatingmachinecompositions.In Section3 we re-
view previouswork concerninghe evaluationof machine
compositiondinding thatthelittle work donefailsto pro-
vide meansof objectivelyevaluatingcomputergenerated
compositions.Our framework for evaluationis presented
anddiscussedn Sectiond while in Section5 we describe
a systemwhich embodieghe framework. This work pro-
vided importantdirectionsfor future researchwhich are
discussedh Section6. Finally, in Section7, therelevance
of thiswork to the evaluationof the creatvity of programs
for thealgorithmiccompositionof musicis considered.

It isimportantbeforewe startto distinguishtwo differ-
entusesof the word “evaluation”. First, a compositional
systemmay evaluateits own compositiongluring various
phaseof the compositionaprocess.We labelthis evalu-
ation modulethe “critic”. The secondsenseconcernghe
evaluationof the machinecompositionsasa meanf sci-
entifically gaugingthe degreeto which the systemgener
atesmusicthat fulfills the specifiedcompositionalaims.
We call this processevaluation’



2 Scienceand Music

In an attemptto distinguishpropositionsof the scientific
disciplinesfrom the non-scientificKarl Poppemdeveloped
the approachof methodologicalfalsificationism. Scien-
tific statementsnustbe embeddedn a framewvork within

which experimentsmay be designedhatwill allow them
to berefuted:

“statements,or systemsof statements,
corvey informationabouttheempiricalworld
only if they are capableof clashingwith ex-
periencejor, moreprecisely only if they can
be systematicallyested thatis to say if they
canbesubjected.. to testswhichmightresult
in their refutation” (Popper1959)

Therefore, what distinguishesscientific from non-
scientific statementsis not formality or precision nor
weightof positive evidencebut simply whetherit is possi-
ble to carryoutanexperimentwhich mayrefutethatstate-
ment. Although not without its critics, Poppers episte-
mology of sciencehasbeenone of the mostinfluential of
thelastcentury

Cross(1998) hasconsideredthe relevanceand util-
ity of sciencefor our understandingf music’ At one
extreme he considersthe “immanentist” position which
holds that “music hasno physicalreality or locus but is
constitutedand inferred from the humancapacityto en-
dow with meaningthe contingentphenomenaf the ma-
terial world andof humaninteraction He notesthatthis
positionbothdenies'all scienceanyefficagy in respecof
music” andthatit “seemsto penadecurrentmusicologi-
cal thinking andwriting.” From this standpointhe quest
to find an objectve meansof evaluatingmachinecompo-
sitionswould clearlybeafutile task.

Proponent®f theimmanentisiew considerthat sci-
enceis irrelevantto musictheory becauseof the latter’s
interpreted cultural andintentionalnature. Cross(1998)
arguesthat this implies a (mis)conceptionof scientific
methodas positwist, of scientific knowledgeas general
(cultureindependentandthe objectsof scientificresearch
being exclusively material. In contrast,he aguesthat
a conceptionof sciencebasedon falsificationism(rather
thanpositivism) can“disposeof mary of the objectionsof
theimmanentists.

In particularthe sophisticatednethodolgical falsifi-
cationismof Lakatos(1970),introducesthe notion of re-
search programmesasthe basicunit of scientificachieve-
ment(in placeof isolatedhypotheses) Sufficient weight
of changein the backgroundknowledge of sucha pro-
grammemaycontributeto its successionr radicalchange.
Sincetheseresearchprogrammesconsistpartly of local
backgroundknowledgeandheuristicsfor changethey are
not unsuitablefor “cultural exegesis”(Cross,1998). Fur-
thermore the requirementhat the scientificevidencebe

1seeGould (1985), chapter6, for an elegantdemonstratiorof this
thesis.

obsenable“is no hindranceo its applicationto theinten-
tional sphere,while [this accounts] provisional and dy-
namicnatureis not dissonantvith theideathat‘there are
no genuineabsolutes™ (Cross,1998). Finally, this ac-
countseemsto characterisevell the progressof science
(Lakatos,1970) and “is anincreasinglypopularview of
changen scientifictheories”(Brown, 1989).

Sowheredoesthis leave us?lt is clearthatthefield of
cognitive musicologyis in the early stageof its develop-
mentandresearctprogrammesrestill only in theirinfant
years.Thenotionof evaluationby falsificationof theories
in theprotectivebelt (Lakatos,1970)of theseprogrammes
is crucial soasto build up a theoreticahardcore asthese
theoriescontinueto go unrefuted. Only in this manner
maywe begin to build predictive andprogressivaresearch
programmesvithin thefield of cognitive musicology The
developmentof a framework for the objective evaluation
of our modelsof musicalcompositionis a small, but nec-
essarystepin thisende&our.

3 Background

Clearly the meansof evaluatingthe compositionsggener
atedby amachinewill dependntheaimsof thedesigner
For example,somesystemsaredesignedo composenu-
sic basedon critical feedbackirom the userandin these
casesthe acceptabilityof thefinal melodicmaterialis en-
tirely upto theuser”(Ralley, 1995). Therewould seemto
be no way of objectively evaluatingthe musiccomposed
by the program.

More objective evaluationis possiblewhen, for ex-
ample,the systemis designedo composemusicaccord-
ing to critical criteriaderived from musictheoryor in the
style of acomposer An exampleof the formerapproach
is reportedby Phon-Amnuaisulet al. (1999)who devel-
oped a GeneticAlgorithm (GA) for harmonisingtradi-
tional choralemelodies. The harmonisationsvere evalu-
atedby a senioruniversitymusiclectureraccordingo the
criteria usedfor examining first year undegraduatestu-
dents’harmory. Thelatterapproachs exemplifiedby the
work of Hild etal. (1992)who developeda systemwhich
would harmonisén the styleof J.S.BachTheharmonisa-
tions producedby their systemwereevaluatedby “music
professionals’possessingxpert knowledgeof the com-
poserswork.

However, the situationbecomeanuch more compli-
catedin situationswhere the programhasa more spe-
cific musicalgoalthansimply to composesomethinghat
the userlikesor wherea formal musicaltheoryor expert
knowledgeis not available for evaluationpurposes.The
following is a brief review of previous approacheso the
problemof evaluatingmachinecompositions.

Thevastmajority of researchinto algorithmiccompo-
sition givesthe topic of evaluationshortthrift, typically
concludingwith a sentencesuchas: “Almost all of the
generatedndividualswere pleasanto listento” (Johan-
son and Poli, 1998). Suchsubjectve evaluationby the



author(s)of the systemis clearly unsatisctory not only
dueto the bias and subjectvity involved but alsodueto
thelack of anobjective criterionfor success.

An alternatie approachseemso be inspiredby nor-
mal modesof presentingmusic: thatis to organisecon-
certsanduseaudiencefeedbackas a measureof success
(Biles, 1999; Hild etal., 1992). This providesa measur
ablecriterionfor succesandremovesthe biasof the de-
veloperof the systemfrom the evaluation.It alsoattempts
to reducethe problemof subjectvity by collectingmary
judgements.

However, while a well receved performancewould
seema goodcriterionfor the evaluationof new works (as
in thecaseof Biles),in thecaseof Hild etal. (1992)whose
systemwasdesignedo harmonisen the styleof J.S.Bach
it is unsatislctory First, it is not clearthatall of the au-
diencewill be evaluatingthe patternson the basisof the
samecriteria: factorssuchasmusicaltasteandknowledge
of thegenre(aswell asanawarenesshatthecompositions
aremachinecomposedyvill have significantimpactonthe
individual judgementsnade.

Otherattemptgo evaluatemachinecompositiondave
usedcriteriadrawvn from informationtheory Conklinand
Witten (1995), for example, employed a framework in
which a context model was usedto infer the probabili-
ties of musicaleventsin a body of Bachchoraleggivena
precedingcontext. Witten et al. (1994)demonstratethat
their prediction model shoved “striking” similarity with
theexpectancie®f humanlistenersandtheir conjecturds
thatahighly predictive theory asmeasuredby its entropy;,
will alsobe a goodgeneratie theory However, Conklin
andWitten (1995)finally resortto subjectve evaluationof
anexamplechoralegeneratedby the systemsayingthatit
“seemgo bereasonablé.

A final possibility is to useformalisedrules for the
evaluationof machinecompositions. Ames (1992) sur
veys a numberof meansfor quantitatvely assessinghe
“merit” of machinecompositions.Thesemay be used‘to
asses$o whatextenta choice(anoption,aprovisionalso-
lution or afinal result)conformto a setof criteriasetforth
by acomposepr analyst’(Ames,1992).

SpectorandAlpern (1994)havetakenupthisapproach
in anattempt‘to separatéhosecomponent®f anAl sys-
temtowhichaesthetigudgementshouldapplyfrom those
to which scientificjudgementshouldapply” They have
developeda GP systenwhich takesasparameters critic
(criteriadefiningthe“fitness” of acompositionjanda cul-
ture (a prior body of works). They arguethata numberof
critical criteriafrom opposingpartiesmaybepluggedinto
the systemfor arny particularsetof musicalworks. If the
systemsucceedsn satisfyingall thesecritics thenit can
be saidto have succeededverall.

However, suchcritical criteriamaynot be usedfor the
objective evaluationof machinecompositionssincethey
would be tainted by the subjectvity of the programmer
who designedthem. Essentially this model simply re-
placesthe humancritic in an IGA with a humancritic’'s

personalchoiceof formalisedcritical evaluationcriteria.
FurthermoreSpectorandAlpern (1994)noteof their sys-
tem that while “the responsepleasesthe critic, it does
not pleaseus (the authors)very well.” It wason the ba-
sis of subjectve considerationsuchas thesethat Spec-
tor and Alpern (1995) extendedtheir framework to usea
trainedmulti-layer perceptrorcritic. Ultimately thenthis
approaclreturnsto the subjectve evaluationwe aretrying
to escapdrom.

It is clearfrom this review that previous approaches
have eitherfailedto evaluatethe musiccomposedy the
systemor failedto do soin objectveterms.

4 The Proposed Framework

4.1 Overview

The proposedramework for the algorithmiccomposition
of musicandevaluationof thosecompositionsuilds and
improvesonthesepreviousapproaches two generaivays.
First,it providesa meansf objectiely evaluatingthede-
greeto whichthemusiccomposedy the systensucceeds
in attainingthe compositionalgoals. Secondjt placesno
limitationsonthetypesof computationaimethodsisedfor
the compositionof music.

Thereare four essentialelementsin the frameawork:
specifyingthecompositionahims;inducingacritic froma
corpusof data;composingnusicwhich satisfieghecritic;
andevaluatingthe musiccomposedy the system.

42 Aims

First, the aims of the researchein developinga compo-
sitional systemshouldbe clearly stated.While this seems
obviousit is oftenoverlookedwith researcherseingvague
aboutthe goalsof their research.This factbegs a deeper
analysisof whatexactly thereis to be specified!

A generaldistinctioncanbe madebetweernthosesys-
temswhich are designedto composewithin a particular
genreof musicor in the style of a particularcomposer
andthosewhich designedo allow the generatiorof new
styles(essentiallyan artistic pursuit). Ames (1992)calls
these“empirical style modelling” and “active style syn-
thesis” respectiely and our framework is designedwith
the formeractiity in mind. Giventhis generalaim there
still existswide varietyin the specificaimsof researchers.
Are we modellingamusicalgenreor the style of aparticu-
lar composerAre we dealingwith entirecompositionr
compositionasubcomponent®.g.,harmonisation;hyth-
mic developmentandsoon)?How strictly do we wantour
systemto adhereto the style beingmodelled?And mary
otherissueswvhich mustbe specifiedn detailascomposi-
tional aimsof theresearch.



4.3 Inducing the Critic

In the secondphasea critic is inducedfrom a setof pat-
ternsrepresentinghe relevant musicalgenreusingsome
machinelearningtechnique.In theory ary suitablecom-
putationaltechniquesnay be usedfor this - the appropri-
ate methodologyis likely to dependon the musicaldo-
main. The useof a particulartechniqueshouldhowever
be clearlyjustifiedin termsof the compositionakndaca-
demicgoalsof theresearch.

This methodis preferreddueto thedifficulty of gener
atingacomprehensie setof rulesfor musicalgenredack-
ing a well developedformal theory’(especiallythe prob-
lemsof capturingall the exceptionsto rules). An under
specifiedrule basewill notonly fail to describethe genre
adequatelhput will alsosuffer from biasintroducedby the
selectionof rulesby theknowledgeenginee(Conklinand
Witten, 1995). Finally, thefailureto includethenecessary
rule exceptionsmay leadto a lack of diversity or rigidity
in themusiccomposed.

When using machinelearning techniques,however,
therealso exist several sourcesof potentialbias. These
include the selectionof training data, the representation
languagausedandthelevel of abstractioremployed(Wid-
mer, 2000). Therefore,“any musicologicalassumptions
that influencedthesechoicesmust be madeexplicit, as
they alsodeterminevhatconclusionsnaybelegitimately
be drawvn from the resultsof the experiments”(Widmer,
2000).

4.4 Composition

Thethird phaseof the framawork involvesthe generation
of musical compositionswhich satisfy the critic. Once
againary appropriateomputationainethodsnay; in prin-
ciple, be usedfor this process.The mechanisnfor com-
positionmay be the sameasthat usedto inducethe critic
in the caseof, for example,a grammar However, asin
the caseof the critic the choice of computationaimech-
anismshould be justified in termsof the compositional
andacademigoalsandary music-theoreti@assumptions
madeexplicit.

45 Evaluation

Finally, the generatednusic can be evaluatedby asking
human subjectsto distinguish compositionstaken from
the dataset from thosegeneratedy the system. If the
systemcomposegiecesaremisclassifiecashumancom-
posedwith afrequeng thatmaynotbedistinguishedsta-
tistically) from randomselectiorwe canconcludethatthe
machinecompositionsare indistinguishablérom human

2However, SpectorandAlpern (1994)find workingin adomaingov-
ernedby formalisedvaluation criteria unsatishctory for threereasons.
First, the existing formalisationsare often “dead forms” and therefore
not suitablefor the productionof creatve works. Secondthey notethat
adherenceo rules may not be a good indicator of aestheticvalue. Fi-
nally, work with rulesin onegenremaynotgeneralisevell to otherareas
wherecritical criteriaarenot souniformly accepted.

composedpieces. As will be seenin Section5.4 simi-
lar experimentscan be devisedto evaluatethe degreeto
which a systerfulfills othercompositionahims.

It will be clearthatthis experimentalprocedurebears
a certainresemblancéo the famous‘imitation game” of
Turing (1950). It is, however, worth noting several differ-
ences:

1. While the Turing test is designedto test for
the presence of machine-thinking (intelli-
gence/consciousnessur test simply determines
the (hon-)membershipf a machinecompositionin
asetof humancomposeiecesof music.

2. While theinterrogatorin the Turing testmay inter-
actwith themachinejn ourtestthesubjectsaresim-
ply passie listenersithereis nointeractionwith the
machine.

Therefore,our discriminationtestis only analogous
to the Turing testin thatin both casesa behaioural test
(ratherthan one which analyseghe structureof the pro-
cessesinderlyingbehaviour) is usedto decidewhethera
behaiiour may be includedin a set: the setof intelligent
behaiours on the onehandandthe setof musicalpieces
in a particularstyle on the other We arguein Section4.6
thatthis providesavery powerful tesg.

4.6 Why isthe Framework Useful?

This framework hasseveral attractve features. First, the
critic (which determineghe value of a compositioninter-
nally within the system)s extractedfrom examplesof the
compositionalgenreusingaccepteccomputationaimeth-
odsratherthanrelyingonhumanexpertiseto generatesets
of rules. We are,in generalnotoriouslyunreliablein for-
malisingour expertknowledge.

Secondthe final machinecompositionsareevaluated
objectively within aclosedsystemwhichprovidesnoplace
for subjectve evaluationof aesthetianerit. The systemis
intendedo modela style of music(representetly its cor-
pusof training examples)andits compositionsareevalu-
atedby comparisorwith exactly thatsetof examplesrom
whichits critical knowledgewasextracted.

A third attractve featureis the use of experiments
(which areintegral to the framework) thatwill potentially
allow claims aboutthe compositionalcapabilitiesof the
systemto be refuted. Questionssuchas: “Is this music
good?” arebeingturnedinto statementsuchas“People
cannotdistinguishthe machinecomposednusicfrom hu-
mancomposednusic” which may berefutedthroughem-
pirical experimentation.In effect, we have a framework
within which statement®f the type: “I cansaywith cer
tainty that [the generatednusicalphrasestival the care-
fully preparedlemosequencedistributedwith mostdrum
machines!”"(Horowitz, 1994)mayberefutedon objective
grounds.

3Theuseof a Turing testasa procedureor evaluatingmachinegen-
eratedmusichasbeencriticisedby Marsden(2000).



It is worth noting that, althoughsimple, the discrimi-
nationtestdescribedabove is very powerful. In fact, the
succes®f apieceof machinecomposednusiconthistest
would meanthat thereare absolutelyno percevablefea-
turespresenbr absenin themusicwhich allow expertsto
identify it asbeingcomposedy a machineratherthana
humancomposerThesefeaturesmay betakento include
suchelusive notionsasaesthetiquality or percevablecre-
ativity.

Finally, theframeworkis generaln threerespectsfirst,
examplesfrom ary style/type/genr@f musiccanbe sup-
plied as parametersto the system;second experiments
canbedevisedto evaluatea rangeof compositionakhims;
andfinally, it placesno restrictionson the typesof com-
putationaltechniquesisedfor the critic andthe composi-
tional modules.

5 A Preiminary Study

This sectiondescribesa systembasedon a geneticalgo-
rithm which embodieghe framevork outlinedin Section
4. Thefour stagesn the developmentof this systemare
describedn turn (seePearce2000,for full detailsof this
research).

51 Aims

The compositionalaims were to develop a systemthat
would generataedrum patternsconformingto the follow-
ing criteria:

1. They shouldbe in the style of “drum and bass”
(henceforthd&b).

2. They shouldbe comparablevith humangenerated
patternsn this style.

3. The composedpatterns should shov a certain
amountof variation both within and betweenruns
of thesystem.

5.2 TheCritic

The critic consistedof a multilayer perceptron(MLP)
trainedon a setof positve andnegative examplesof this
style. A MLP was chosenover and above other ma-
chinelearningtechniquesiueits capacityfor generalisa-
tion and toleranceof noise and contradictorydata (Toi-
vianen,2000). The former propertywas consideredde-
sirabledueto the potentialto allow a degreeof flexibility
in the critic andthereforegreaterdiversity in the gener
ateddrumpatternsThelattercapacityseemedppropriate
sinceit seemedinlikely thatd&b patternscould be easily
describeddy arny consistensetof rules.

The useof a trainedMLP asthe critic in evolution-
ary compositionakystemshasproved problematidn pre-
vious researchseeTodd and Werner,1999, for a recent

41t could perhapsbe extendedto cover the machinegenerationof
othertypesof artwork suchaspaintingsor stories.

review of evolutionaryapproacheso algorithmiccompo-
sition). An attemptwasmadehereto improve uponthese
approache# two main areas:the selectionof the posi-
tive andnegative trainingdataandthenumberof instances
usedto train the network (Pearce2000).

The network learnedto classifythe training datawith
a final RMS error of 0.1476and a classificationrate of
93% on the test set, demonstratinghat its classification
performanca@eneralisedavell to unseerdata.

5.3 Composition

A generationalGA with probabilisticbinary tournament
selectionwas usedto evolve drum patternsusing the
trainedMLP asa critic. Thesystememployedsinglepoint
cross@erwithin instrumentandthreemutationoperators:
onewhich changeda geneto a randomlyselectedvalue;
one which rotatedeachinstrumentabouta randomly se-
lectedquaver timestep;and onewhich reversedthe entire
chromosome.

It becameapparenthatthe MLP wasproviding impre-
ciseevaluationof the chromosomesFor example,dueto
therandominitialisation of the chromosomdar too mary
notesappearedn demisemiqueer subdvisions. How-
ever, the MLP still gave thesechromosomesigh fitness.
An informal analysisof the network weights suggested
that thosecorrespondingo thesetimestepstendedto be
small and thereforeexertedlittle influenceon the classi-
fication of a drum pattern. It is suggestedhat this was
dueto afailureto coverthis aspecof drumpatternsn the
negative trainingdata. The network wasalsoimprecisein
otherareasandthis is likely alsoto have beena conse-
guenceof the negative training setfailing to cover a large
enoughareaof the spaceof negative featuresf thestyle.

Althoughamoresophisticatedhitialisationof thechro-
mosomesand the addition of four rulesto the critic im-
provedthe quality of the generatedirum patternsthe de-
velopmenbf appropriatéechniquegor inducingcriticsin
compositionabystemdrom examplemusicalpiecess an
areathatwarrantsurtherinvestigation(seeSection6.1).

5.4 Evaluation
5.4.1 Introduction

Three evaluation experimentswere performedusing the
systemcompositionscorrespondindo the compositional
aims setout in Section5.1. The first was our discrim-
ination test (section5.4.2); the secondasked subjectsto
classifythe patternsaccordingto style (section5.4.3);and
thefinal experimentasled for judgementof the diversity
presenin groupsof threesystemgenerateghatterngaken
from both betweerandwithin runs(section5.4.4).
Theexperimentaverecarriedoutusing19 humansub-
jects from the School of Artificial Intelligenceat Edin-
burgh University. All experimentsvereconductedn one
sessionwith all 19 subjectspresentin orderto maintain
extraneousdnfluencesconstantacrosssubjects.The ques-



tionspertainingo experimentoneandtwo wereanswered
with respecto thesamesetof drumpatternsn anattempt
to reducethe amountof listeningthe subjectsvould have
to do. As notedby Biles (1999), subjectsfind active lis-
teningandcriticism of musicanextremelytiring task. The
subjectswereasledto stateon a scaleof betweemought
and five their knowledge and experienceof the musical
stylesinvolved.

The patternsusedin the experimentswere generated
usingthe samesystemparametersAll MIDI drum parts,
bothhumanandsystemgeneratedwereonebarin length
andrecordedatatempoof 150BPM usingthe GSRoland
909drumset. It wasexplainedto the subjectghatall pat-
terns(both humanand systemgeneratedjvere quantised
andrecordedusingelectronicdrumsounds.

All threeexperimentsnvolvetestinghypotheseabout
meansand due to the small samplesizesinvolved the t-
testwasused. In the caseof a one-samplé-testN was
calculatedasthe numberof subjectsminusone,while in
the caseof the two samplet-testit was calculatedasthe
numberof subjectsminustwo®.

A generaliscussiorof theseexperimentakesultscan
befoundin Section6.2.

54.2 Experiment 1

In this testthe subjectawvereasledto discriminatesystem
generategbatternsandhumangenerateghatternfrom the
trainingset. Thesystemwasconsideredo have succeeded
if the subjectavereunableto distinguishsystemfrom hu-
mangenerategbatterns.

A setof drum patternswas constructectontaining10
systemgenerategbatterngakenfrom differentrunsof the
GA and 10 humangeneratedchatternsrandomlyselected
from the MLP trainingset. These20 patternswvereplayed
in a randomisedrderto the subjectswho were asled to
statefor eachpatternheardwhetherthey thoughtit was
systemor humangenerated.Subjectswerealsoasledto
stateat the endof the experimenton whatbasisthey were
discriminating.

The proportionsof systemand humangenerategat-
ternscorrectlyclassifiedverecalculatedrom theobtained
resultsandthefollowing hypothesetestedvith aonesam-
ple t-testagainstthe known meanof 0.5 (that expectedif
subjectswverediscriminatingrandomly).

o Null hypothesione:themeanproportionof human
generateghatternscorrectlyclassifieds thesameas
thatexpectedf the subjectsnvereansweringat ran-
dom.

e Null hypothesigwo: themeanproportionof system
generateghatternscorrectlyclassifieds thesameas
thatexpectedf the subjectsnvereansweringat ran-
dom.

Theresultsof this experimentareshavn in Table1 6

SForfurtherreadingCohen(1995)is anexcellenttext onexperimental

| [ Mean| SD |[DF| t | p |
Human || 0.516| 0.224| 18 | 0.311| 0.241
System|| 0.679| 0.181| 18 | 4.241 | 0.999

Tablel: Resultsof Experimentl

The resultsprovided two statisticalresultsusing95%
confidencentervals. First,we couldretainnull hypothesis
one and second,we could reject null hypothesistwo in
favour of thefollowing hypothesis:

e Hypothesigwo: thesamplemeanproportionof sys-
temgenerategbatternscorrectlyclassifieds greater
thanthatexpectedf the subjectsvereansweringat
random.

This resultallows us to refute the claim that the system
generateghatternsareindistinguishabldrom humangen-
eratedpatterngn the samestyle.

5.4.3 Experiment 2

This experimentwas designedto evaluate whetherthe
generatedpatternswere in the intendedstyle by asking
subjectsto specify a style for systemand humangener
atedpatterns.If the proportionof systemgenerategat-
ternscorrectly classifiedaccordingto style was equalto
or greaterthan the proportion of humangeneratedat-
terns correctly classifiedthen the systemgeneratedpat-
ternscould be consideredo bein thecorrectstyle.

A setof drum patternswasconstructectontaining10
systemgenerategbatterngakenfrom differentrunsof the
GA, 10 humangenerategbatterngandomlyselectedrom
the ANN training setand 10 humangeneratedtechno”
drumpatterns.Technowaschosersinceit is adistinctmu-
sicalstylefrom d&b but typically hasasimilar, fasttempo.
These30 patternavereplayedin arandomisedarderto the
subjectswho were asked to statefor eachpatternheard
the style of the patternfrom a choice of “drumé&bass”,
“techno”and“other”.

Themeanproportionsof humanandsystemgenerated
patternscorrectlyclassifiedaccordingto stylewerecalcu-
latedfrom theexperimentallataandthefollowing hypoth-
esiswastestedwith atwo samplé-test.In thecaseof sys-
temgenerategbatterns'correctly classifiedrefersto clas-
sificationin theintendedstyle (d&b). The option“other”
wascountedasanincorrectclassificatiorin all cases.

¢ Null hypothesisithereis no differencein the mean
proportionsof humanandsystengenerategatterns
correctlyclassifiedaccordingto style.

Theresultsof this experimentareshavn in Table2.

methodsn Al.

61n this descriptionof our resultsthe degreesof freedomaredenoted
by “DF”, the standad deviation is denotedby “SD”, “t” is thet statistic
and“p” is the probabilitythatthe samplemeanscomefrom two popula-
tionswhosetrue meandiffer.



| HumanMean | SystemMean|[DF | t [ p |
[ 0729 | 0568 | 17]2.181]0.978]

Table2: Resultsof Experiment: againstsystemmean

Within a confidenceanterval of 95%, we could reject
thenull hypothesisn favour of thefollowing hypothesis:

e Hypothesisone: the meanproportionof correctly
classifiedhumangenerategatternds significantly
higherthan the meannumberof systemgenerated
patterns.

Given this resulta further one-samplé-testwas run
againstthe known mean0.33 (the expectedresultassum-
ing the subjectavereansweringat random)usingthe null
hypothesis:

e Null hypothesis:the meanproportionof correctly
classifiedsystempatternsis equalto the meanex-
pectedf subjectsvereansweringatrandom.

Theresultof this testis givenin Table3.

| SystemMean | KnownMean | DF | t | p |
[ 0568 | 0333 | 18| 3.474] 0.999]

Table3: Resultsof Experiment2: againsknown mean

We could, therefore,within a confidenceinterval of
0.99, rejectthe null hypothesisn favour of the following
hypothesis:

e Hypothesisone: the meanproportionof correctly
classifiedsystemgenerategatternsis greaterthan
theproportionexpectedf thesubjectavereanswer
ing randomly

Thesestatisticalresultsallow usto refutethe proposathat
thesystenmgenerategatternsarein theintendedstyle(Ta-
ble 2) althoughthey also suggestthat the set of system
generateghatternsdoesoverlapwith the setof patternsin

the styleof d&b (Table3).

5.4.4 Experiment 3

This experimentwas designedo evaluatethe amountof
musicalvariationin thepatterngeneratedothwithin one
run andbetweerrunsof the GA comparedo the amount
of variationin the training data. Perceved variationwas
choserasmoremusicallyrelevantthanan analysisof the
patternsthemseles (usingHammingdistance for exam-
ple). An intermediatelegreeof variationwasdesiredsince
too muchwould take the patternsout of theintendedstyle.
Thevariationin thetraining datawaschoserasa reason-
ableindicationof a desirableamount.

A setof drum patternswas constructectontaining20
groupsof three patterns. Five of thesegroupsof three

wereconstructedrom patterngakenfrom within individ-
ual runsof the GA, anotheffive from patterngakenfrom
differentruns of the GA andthe final ten from patterns
randomly selectedfrom the training set. Subjectswere
playedthese20 groupsof patternsin a randomisecbrder
andasledto indicateon a scaleof oneto five how much
variationthey consideredhereto be within eachgroup.
The total amountof variationfor the human,the within-
run andthe between-rurgroupswas calculatedfor each
subjectand corvertedto a fraction betweennoughtand
one by dividing it by the maximumpossiblescore. The
meanof thesevaluesacrosssubjectavasthencollected.

Themeanvariationof thewithin-run andbetween-run
groupswascomparedo the meanvariationof the human
groupsin a two samplet-testwith the following null hy-
potheses:

e Null hypothesisone: thereis no differencebe-
tweenthe meanperceved variation of the within-
run groupsandthe humangroups.

e Null hypothesigwo: thereis no differencebetween
the mean perceved variation of the between-run
groupsandthe humangroups.

Table4 shows the resultsfor machinegenerategatterns
takenfrom within runsof the systemwhile Table5 shavs
theresultsfor thosetakenfrom differentruns.

| HumanMean | SystemMean|[DF| t [ p |
[ 0601 | 0502 | 17 | 3.055] 0.996]

Table4: Resultsof Experiment3: Within Run

| HumanMean | SystemMean|[DF| t [ p |
[ 0601 | 0502 | 17 3.055] 0.996]

Table5: Resultsof Experiment3: BetweenRun

Thesestatisticalresultsshavedthatwithin a99%con-
fidenceinterval we could reject both null hypothesesn
favour of thefollowing hypotheses:

e Hypothesione:themeanpercevedvariationof the
humangroupsof patternds greaterthanthatof the
within-run groupsof systemgenerategbatterns.

e Hypothesidwo: themeanpercevedvariationof the
humangroupsof patternds greaterthanthat of the
between-rurgroupsof systemgenerategbatterns.

Theseresultsindicate that the systemgeneratecat-
ternsfail to reachthecriterionlevel of percevedvariation.
We have refutedthe assertiorthatthereareequalamounts
of variationin the systemgenerategatternsandthe hu-
mangenerategbatterns.



6 FutureDirections

Thisresearclhasdemonstratethe practicalityof the pro-
posedframenork and also highlightedseveral areasthat
areworthy of furtherdevelopment.

6.1 InducingtheCritic

Thefailure of this studyto achieve its aimswasattributed
largely to problemswith usinga MLP to learnto classify
musicalsequencesven whenstepsweretakento ensure
thattherewasa sufficientamountof trainingdataandthat
positive training datacamefrom an internally consistent
source. The major obstacleseemdo be finding a set of
negative training instanceghatwill sufficiently cover the
spaceof musicalphrasesot in the target classification.
This is a seriousproblemandonethat mustbe dealtwith
if this methodis to be usedin the compositionof music.
Since the proposedframework is general,however,
other machinelearningtechniquescan be appliedto in-
ducea critic (seePapadopoulosindWiggins, 1999, for a
recentreview of techniquedor algorithmiccomposition).
For example thereis abodyof researcltoncerningheuse
of recurrentMLPs for the generatiorof music(e.g., Todd
andLoy, 1991;Griffith andTodd,1999).In this paradigm,
the recurrentnetwork is trainedto predictthe noteon a
particulartimestepgiven a previous sequencef notesas
a context. However, an inability to extract higher level
featuresof musicseemso be a problemthathasdogged
mostattemptgo composewith recurrenineuralnetworks.
Mozer(1994)commentghat:

“While the local contoursmade sense,the
pieceswere not musically coherent,lacking
thematicstructureandhaving minimal phrase
structureandrhythmicorganisatiori.

Oneexceptionis HARMONET (Hild etal.,1992).The
aim of this studywasto approximatehefunctionmapping
choralemelodiesontotheirharmonisationusingatraining
setof 400four-partchoralescomposedy J.S.BachThey
approachetheproblemby decomposingt into sub-tasks:
generatinga skeletonstructureof the harmory basedon
local context; generatinga chordstructureconsistentvith
the harmonicskeleton;andfinally addingornamentatjua-
versto the chordskeleton.Neuralnetworks wereusedfor
the first and third tasksand a symbolic constraintsatis-
factionapproachwasappliedto the secondsub-task.The
resulting harmonisationsvere judgedby an audienceof
“music professionalsto be onthelevel of animprovising
organist. Theauthorsconcludethat:

“By usingahybridapproactweallow thenet-
worksto concentrat®n musicalessentialén-
steadof on structuralconstraintsvhich may
behardif learnedby a network but easyif ex-
pressedgsymbolically”

While thenetworksin thesecompositionakystemses-
sentiallyperformthefunctionsof bothcritic andcomposer

in theaboveframework, they arestill amenabléo theeval-
uatory system. Furthermore recurrentMLPSs requireno
setof negativetraininginstances.

Anotherpossibilityis to useunsupervisetearningtech-
nigueswhich alsorequireonly positive data. Burton and
Vladimirova(1997)usedanunsupervisedRT network to
developclusterscorrespondingo drum patternsrom dif-
ferentstylesof music(rock, funk, disco,latin andfusion)
from a setof training examples. The fitnessof candidate
patterngeneratedby a GA wasgivenby their propinquity
to the desiredcluster However, the ART network critic
seemedo producea certainhomogeneityin thegenerated
patterngBurton,1998).

Alternatively, symbolic machinelearningtechniques
mightbeusedto extracta critic from a setof musicaldata.
Typically, this hasinvolvedthe useof oneof two Al tech-
niguesto extractamusicaltheoryfrom a corpusof musical
examples.First, Markov modelshave beenusedto extract
contet basednote transitionprobabilitiesfrom a corpus
of data(e.g.,Conklin andWitten, 1995). However, these
approachesnceagainsuffer from the problemsof anin-
ability to extracthigherlevel structurein music.A second
approachthasbeento extractgrammarghroughstatistical
analysisof asetof musicalpieceqe.g.,Cope,1991;Pons-
ford etal., 1999). Amongthemaindrawbacksof theseap-
proachesare dealingwith ambiguity and the potentialto
generatdarge numbersof stringsof questionablejuality
(PapadopouloandWiggins,1999).

The appropriatemethodgo usewill dependcrucially
on the musicaldomainbeingmodeled. However, we be-
lieve thatanapproachhatappliesdifferentAl techniques
to thosecritical andcompositionakubtaskgo which they
arebestsuited(asin HARMONET) is likely to prove most
fruitful.

6.2 Experimental Design

The experimentsperformedto evaluatethe drum patterns
generatedy the systemprovedinadequaten several re-
spects. It is interestingto note thatin Experimentl the
subjects classificationperformanceon the humangener
atedpatternavasnobetterthanrandom.Thissuggestswo
things: thatthe subjects familiarity with the domainwas
low; anda biastowardsclassifyingthe patternsassystem
generated.

Thefirst suggestioris supportedy the the low aver
age experienceand knowledgeof d&b professedoy the
subjects(two out of five) andalsoby the low meanpro-
portion of humangeneratedoatternscorrectly classified
accordingto style in Experiment2. The subjects self-
professedack of knowledgeof the relevantmusicalgen-
resmadetheir judgementshardto evaluate. Ideally such
experimentsshouldbe madewith subjectsvho arehighly
familiar with the genreof music beingcomposedy the
systend.

7 Although the subjectsmust not be familiar with the humancom-
posedpiecesusedin thetest



The secondproblemconcernsthe bias towardsclas-
sifying drum patternsas systemcomposed. Somerea-
sonsfor thisbiasweresuggestethy aninformal collection
of the criteria usedby the subjectsto distinguishsystem
andhumangenerategatterns.It seemedhatthey were,
in general,looking out for negative feature§ of the pat-
ternswhich would classifythemas systemgenerated A
sensahatthey werebeingasledto “catchthesystenout”
may have leadthemto overclassifythe patternsassystem
generated.Thosesubjectswho werelooking for features
of humangeneratecatternssearchedor “smoothness”,
“cohereng”, “largescalestructure”,“subtleties”’andsuch
featuresaswhetherit qualifiedaspart of a songor simi-
larity to rhythmsthey hadheardin songs.Giventhatthe
drum patternswere short,lacking musicalcontext andin
anunfamiliar style for mostsubjectsthe useof thesecri-
teriamayhaveleadto thebiastowardsclassifyingpatterns
assystemgenerated.

Urwin (1997),in a similar experiment,asked subjects
to assumehata patternwashumangeneratedf they were
unsure(andobtained85% misclassificatiorof the system
generatedatterns). However, this is likely to have pro-
duceda biasin the oppositedirection. Therearetwo ob-
vious meansof counteringthesekinds of biases.Thefirst
would beto useacontrolexperimentin which subjectsare
given a setof humancompositions.The proportionmis-
classifiedas machinegeneratedould thenbe taken asa
baselineto be factoredinto the statisticalanalysisof the
actual experiments. A secondsolution would be to in-
form thesubjectdhatthe setof musicalphrasegontained
equalproportionsof machineandhumangenerateatom-
positions. An extensionof this ideawould be to present
the subjectswith a setof compositiononly oneof which
is be machinegenerated The taskwould thenbecometo
decidewhich compositionhasbeencomposedy the ma-
chine.

A further possibility would be to setup the testin a
mannermore akin to the Turing test. A computerinter-
facecould be designedvhich presentedwo buttons,one
of whichwould play compositiongandomlyselectedrom
the training setwhile the otherwould play compositions
randomlyselectedrom the setof machinecompositions.
The subjectswould have to decidewhich button corre-
spondedo the systemgeneratedcompositions.Statistics
suchasthe numberof timeseachbutton waspressednd
soon couldbe collectedfor eachsubject.

Finally, a few points madeby the subjectsconcern-
ing the experimentsare worth noting. First, it was sug-
gestedhatthe shortdurationof the patterngjustonebar)
mayhaveforcedsubjectdo quickandunreliabledecisions
while the lack of musical contet for the drum patterns
madethe evaluationdifficult. Secondthe meming of ex-

8Examplesof thesefeatureswerelack of originality, randomnesgor
how chaoticthe patternsseemed)predictabilityand mechanicalitylead
to classificationas systemgenerated.lt is interestingto note that both
extremeconformity to the prototypeof a style andextremerandomness
in a patternclassifiedit assystemgeneratedn the eyes(or ears)of the
subjects.

perimentsoneandtwo may have leadto unreliabledeci-
sionssincesubjectshadto answertwo differentquestions
(relatingto whetherthe patternwassystemor humangen-
eratedand what style it wasin) aboutthe samepattern.
Onceagain,this may have forced hurriedand unreliable
responsefrom the subjects.

Thereforesomesuggestionfor betterdesigneaxper
imentswould be to useseparatexperimentsfor eachin-
dividual test,to usemore knowledgeablesubjectsandto
uselonger patterns. Finally, the problemof the biasto-
wardsclassifyingpatternsas systemgeneratedghouldbe
addressed.

6.3 What dothe ResultsMean?

Thediscriminationtestby itself simplytellsuswhetherthe
systemgenerategatternsareperceptuallydistinguishable
from humangeneratedoatternsin the samestyle. This
tells us nothing aboutwhich subcomponentsf the sys-
temandits behaiour arein needof further development.
However, thisinformationis veryimportantf ourresearch
programmesreto be progressie asdescribedn Section
2.

Theotherexperimentsiescribedereweredesignedo
be ableto refuteotherspecificclaimsaboutthe drum pat-
ternscomposedy the system Experiment2 would allow
usto refutetheclaimthatthe patternsverein theintended
style. However, sincemembershipf a stylistic groupis
probablynota discreteconcepta betterexperimentmight
have asledfor judgement®f the degreeto which the pat-
ternswereconsideredi&b patterns.

Experiment3 would allow usto refutethe claim that
there existed as much perceptualdiversity in the system
generateghatternsasin the humangeneratedraining set.
Another experimentwhich asled subjectsto distinguish
systemgeneratedpatternsfrom humangeneratedexam-
ples of the style which were not includedin the dataset
could also be usedto testthe claim that the knowledge
possessetly the systemwas generalisedo the style un-
der consideratiorratherthan reflectingonly the training
corpus.

It canbe seenthat experimentscould be designedo
testclaims aboutmary other aspectof the systemgen-
eratedpatterns. For example,the outputof creatve sys-
temsmaybeevaluatechotonly in termsof setmembership
but alsousingqualitatve measuresTherefore an experi-
mentaskingfor anaesthetievaluationof a setof patterns
containingmachineandhumancomposednusicmightbe
helpful in determiningnot only whetherthe systemgen-
eratedpiecesare comparabldo humancomposedoieces
andin the correctstyle but alsohow “good” they arecon-
sideredto be within the style. It would be interestingto
seehow muchconsensutherewould be betweersubjects
onsuchaesthetianatters.

Sowhatdo the resultsof theseexperimentsmean?It
shouldbe notedthat theseexperimentsare not intended
asreplacementfor the commentf musiciansandmusi-



cologistswhich may be extremelyinsightful andusefulin
termsof improving our computationamodelsof compo-
sition. However, theseexperimentsdo allow usto make
scientific(refutable)claimsaboutthe musicgeneratedy
our compositionakystems Neverthelessmary questions
remain. Are we justified in assumingthatif a group of
knowledgeablesubjectsmisclassifiedb0% of the system
generatedpatternsas humangeneratedhenthey canbe
takento be answeringat random?Canthe claim of indis-
tinguishabilityberefutedby a singlecorrectclassification
of apatternassystemgenerated?

7 Evaluating Musical Creativity

No mentionhasyetbeenmadeof musicalcreatvity —does
our framework have ary relevanceto the evaluationof the
creatvity of machinecomposers?The framework is de-
signedfor the evaluationof machinecompositionswithin
aspecifiedstyle. It mightthereforebe objectedhatthere-
ally creatve musicalactsinvolve the founding of a new
style or genre. However, as noted by Garnham(1994)
mostcreative achiezementin the artsdoesnot follow this
form: “the origins of the sympholy arelostin historyand
its majortriumphsarethework of composersvho did not
inventthe basicsymphonicform.” Most creatve work is
carriedoutwithin stylesor genres.

Creatvity canbe definedin two ways: what Boden
(1990) calls the PsychologicabndHistorical (P- andH-)
formsof creatvity. Theformerrefersto the generatiorof
a creatve productthatis novel for theindividual while the
latter indicatesthat somethingnever beforeconceved of
by mankindhasbeengeneratedSinceH-creatiity canbe
seenasa subsebf P-creatvity dependingalsoon histori-
calaccidentandsocialfashion(Boden,1990),our concern
hereis with P-creatvity.

How mightwe go aboutevaluatingthe P-creatvity of
our compositionalsystem?Therewould seemto be two
aspectof the systemto be subjectedo evaluation. First,
the musiccomposedndsecondthe internalworkingsof
the systemitself.

Regardingtheformer(which hasbeenthemajorfocus
of this paper),we have arguedthat the systemgenerated
compositionswill only succeedn our discriminationtest
if thereareabsolutelynopercevablefeaturesvhichcanbe
usedto distinguishthe setof machinecompositiondrom
thesetof humancompositionsl!f it is possibleto perceve
creatvity in music(or to infer the P-creatvity of thecom-
poser)thenthis would be amongthesefeatures.

In fact,thepercevedcreatvity of awork of artor piece
of musicis likely to be closelyrelatedto its percevedaes-
theticvalueandit is possiblethatthis wasconsideredy
the subjectsin their attemptsto discriminatehumanand
systemgenerategbatterns This conjecturds supportedo
somedegreeby thecommentof the subjectsn the exper
imentsdescribedabove: both extremeconformity to the
prototypeof a style andextremerandomnesn a pattern
asindicativethatit hadbeenmachinegeneratedThis sug-

gestghatguidedexplorationof thespaceof possibledrum
patternsvasconsideredndicative of humancomposition.
This, in turn,accordswith thenotionthatcreatve products
mustbebothoriginal (p-novel) and“appropriate”(Boden,
1990).

Theotherexperimentsn theresearcliescribedn Sec-
tion 5 mayalsobe pertinenthere. The secondexperiment
ensureghatthe patternsarein the correctstyleandthere-
fore“appropriate”.Finally, thethird experimentwaslook-
ing at the ability of the systemto continually and thor-
oughly explore its the spaceof drum patternsin a non-
repetitve manner Similarly, we would expectcreatie in-
dividualsto consistentlyandcontinuallygeneratereative
products.

Otherexperimentxouldbedevisedalongsimilarlines
to probeotheraspect®f creative composition.For exam-
ple, by obtainingjudgementsof the perceptualdistance
betweenpairs of training examplesand training exam-
ple/systengenerategbairsit would be possibleto evaluate
how far the programexploresaway from the experienced
musicalexamples.

It might be suggestedhatevaluationof machinecom-
positionsthemseles cantell us only so muchaboutthe
creatvity of a compositionalsystem: we would want to
know aboutthe internalworkingsof the system(its com-
positionalprocessed)eforewe calledit creatve. As noted
by Boden(1990)this appeardo be animportantcriterion
by which peoplearereluctantto attribute creatvity to ma-
chines. Furthermore,Cohen(1999) refusesto attribute
Aaron (his programfor the generatiornof artworks) with
creatvity althoughit generatepiecest hasnever painted
beforeand hasa uniqueand characteristicstyle. This is
largely becauséne doesnt believe it is creatingthe paint-
ingsin theright way.

While it would seemimportantto complementbe-
havioural evaluation of our creatve systemswith what
we might call “cognitive” evaluation® our testscanshaw
somelight on theinternalmechanicof the system.Hof-
stadter(1994) has argued that the premisethat “covert
medanismscanbedeeplyprobedandeventuallyrevealed
merely by meansof watchingovert behaviour.. lies at
thevery heartof modernscience€. In particular heargues
thatthe Turing testoffersamultitudeof probeswvhich may
beusedin long-terminteractionwith a cognitive modelto
infer the mechanismsinderlyingits behaiour.

To give an example,a systemwhich storedsamples
from various songsand simply pastedthem togetherto
producenew compositiongnight passthe discrimination
testinitially. However, it would seemlikely that over re-
peatedexperimentsthe underlyingmechanism®f “com-
position” would be inferred by the subjects. This exam-
ple emphasisetwvo importantfeatureof theexperiments:
first, the criteria usedby the subjectsfor evaluationare
usefulaspointersto the typesof behaiour they identify
asexposingnon-humamechanismén the compositional

9Althoughimportantthisis a topic for anothempaper



system?; second the subjectsshouldideally be allowed
to take thetestrepeatedly

8 Summary and Conclusions

This paperhasprovided a tentative first steptowardsthe
developmentof a generalframeawork for the evaluation
of machinegenerateanusicby computemprogramsbased
on Al techniques.The evaluationof algorithmiccompo-
sitionsis an importantissuesincewithout it we have no
meanf telling whetherthe systemswve developsucceed
in their compositionakimsand, if not, why not. Thisin
turnis importantif we areto developprogressieresearch
programmesvithin thefield of cognitive musicology The
issueof evaluationis alsoonethatis frequentlygivenless
attentionthanit deseresin the literatureon algorithmic
composition.

The framework involvesfour stages:specificationof
compositionalaims; induction of a critic from examples
of the relevant musicalgenre;compositionof musicthat
satisfieshe critic; andevaluationof the machinecompo-
sitionsusinghumansubjects.

Theframework hasseveralattractive featurespnebe-
ing thatit placesorestrictionsonthecompositionakims,
the musicgeneratedndthe Al techniquesisedin there-
search.However, our presentatiorin Section5 of a com-
positionalsystemwhich embodieghe framewvork demon-
stratesthatis not so generalasto be meaninglessin ef-
fect,it allowsusto makerefutable andthereforescientific,
claimsaboutthe degreeto which a systenmfulfills its com-
positionalaims. Therefutationof theseclaimsmay allow
usto identify areadn which arecompositionamodelsare
lacking. Finally, the framavork may be extendedto eval-
uatethe musicalcreatvity of machinecomposers.

In additionwe have highlightedseveralissuesworthy
of futurework includingthefollowing:

e A reliableandappropriatanean®f inducingacritic
from abody of music.

e Variousissuesoncerningheexperimentaprotocol
usedfor evaluationincluding: the useof expertsub-
jects; counteringclassificationbiases;andthe pre-
sentatiorof thecomposednusicin anaturalcontet
for evaluationby the subjects.

e The evaluationof musicalcreatvity bothin terms
of the compositiongproducedandhow the compo-
sition allow subjectdo infer the underlyingmecha-
nismsof the system.

e Finally, theframewnork shouldbeappliedto systems
with a wider rangeof compositionalaims and the
generatiorof differentstylesandtypesof music. It
would also be interestingconsiderthe application
of theframework to the evaluationof othercreatve
systemsfor the generationof, for example,visual
art, storiesandjokes.

10asnotedin section6.2

We expectto addressheseissuedn futureresearch.
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