Mollusc
A General Proof-Development Shell for
Sequent-Based Logics

Bradley L. Richards* Ina Kraan!
Alan Smaill} and Geraint A. Wiggins}

Abstract

This article describes an interactive proof development shell, Mollusc
[Richards 93], which can be used to construct and edit proofs in sequent-
based logics. Conceptually, Mollusc may be thought of as a logic-inde-
pendent successor to Oyster [Bundy et al 90]. However, where Oyster was
tied to a variant of Martin-Lof type theory, Mollusc can be used with any
sequent-based logic for which a suitable definition is provided. Although
developed in a research environment, Mollusc should also be suitable for
use in classroom exercises. In addition to proof editing facilities, Mollusc
supports the definition of new logics, includes a proof-planner interface, and
provides for automated proof construction through a tactic language and
interpreter.

1 Introduction

Mollusc is a general proof-development shell, which was designed as a logic-
independent successor to Oyster. The Oyster system is an interactive proof
checker for a variant of Martin-Lof type theory, developed as a rational recon-
struction of Nuprl [Constable et al 86]. It is used principally to execute proof

*Artificial Intelligence Laboratory, Swiss Federal Institute of Technology, Lausanne,
bradley@lia.di.epfl.ch

tDepartment of Computer Science, University of Zurich, inak@ifi.unizh.ch2

tSupported by SERC grant GR/H/23610; Department of Artificial Intelligence, University
of Edinburgh, smaill@aisb.ed.ac.uk

§Supported by EsSPRIT Basic Research Project #6810, “Compulog IT”; Department of Arti-
ficial Intelligence, University of Edinburgh, geraint@aisb.ed.ac.uk



Mollusc: A General Proof-Development Shell for Sequent-Based Logics 2

plans developed by the proof planner CIAM [Bundy et al 90]. Recently, there
has been a strong interest in applying CIAM to a variety of different logics, and
this created a need for proof-checking support in these logics. Rather than cre-
ating a new proof-checking system for each logic, we decided to create a single
shell which would work with a variety of logics, and which would assist the user
in defining new logics. In addition to checking proof plans, the shell would also
be meant for interactive proof development; thus, it had to include a friendly
user-interface with on-line help.

These requirements formed the specification of the Mollusc proof development
shell, which has been developed and implemented over the past two years.
Mollusc consists of two components: the proof development shell itself and
a logic-definition utility.

The proof development shell allows the user to choose a logic to work in, and
then supports the user in exploring, constructing, and editing proofs in that
logic. Mollusc supports backward inference only, i.e., moving from goals toward
axioms. It provides a library mechanism and a means of tracking dependencies
among proofs and definitions, as well as a tactic mechanism for automating
the construction of a proof. Mollusc also provides a generic interface to proof
planners, and can directly execute proof plans represented as tactics. The tactic
language 1s a superset of that used by Oyster, and includes tacticals such as
complete, try, repeat, then, or, as used in the LCF system [Gordon et al 79].

The logic-definition utility allows the user to formally specify the syntax of
a new logic, and automatically produces both a parser and a set of “access
functions” which allow the user to compose and decompose logical expressions
in a declarative manner. The parser and access functions can then be used
to write inference rules for the logic. Unlike the approaches taken in, e.g.,
[Huet & Plotkin 91, Paulson 89|, where a variety of logics are represented in
a single meta-logic, Mollusc does not imlpement a meta-logic, and generates
a distinct theorem-proving system for each logic. The uniform presentation,
however, does allow efficient reuse of inference procedures.

Mollusc has been used to implement propositional logic, many-sorted first-order
predicate logic with equality, Martin-Lof type theory [Martin-Lof 79], Edinburgh
Logical Framework [Harper et al 87], and a decidability logic for logic program
synthesis [Wiggins 92]. Mollusc has been used most extensively in many-sorted
first-order logic, where it was used to execute proof plans generated by CIAM to
verify synthesized logic programs [Kraan 94]. The proof trees for such verific-
ations were up to 0.75 megabytes in size; the tactic execution times for proofs
of that size were under 40 seconds of CPU time on a Sparc station 10 using
Quintus Prolog Release 3.1.4.

The rest of this article is organized as follows. Section 2 describes the proof
development shell itself. Section 3 discusses the logic-definition utility. Section 4
discusses extensions that are planned for future releases. Finally, Section 5



Mollusc: A General Proof-Development Shell for Sequent-Based Logics 3

describes how to obtain a copy of Mollusc.

2 The Mollusc Proof Development Shell

Mollusc provides an interactive environment for creating and editing proofs.
Users can develop proofs manually or use the methods Mollusc provides to
partially or completely automate the proof. Mollusc supports both scripts
and tactics. A script is a file containing a series of Mollusc commands; this
can be useful, for example, to set up the Mollusc environment to work with a
particular set of proofs and definitions. Tactics, on the other hand, are programs
representing a particular sequence of proof steps to be followed.

Although a complete description of Mollusc is beyond the scope of this pa-
per, the paragraphs below describe three of the most important capabilities 1t
provides: library support, proof manipulation, and tactics.

Library support. Mollusc maintains a library for each logic. A library may
be distributed; normally, for example, there will be one or more central, shared
repositories of definitions and lemmas, plus each user’s local library containing
work in progress. A user’s start-up script file lists the shared libraries which
should be searched, plus the user’s local library. Mollusc loads proofs or defin-
itions from all libraries listed, but saves work in the user’s own library.

A library contains directories for proofs, tactics, and each type of definition in
the logic. These items are all manipulated using the same basic set of commands
(e.g., load, save). In addition, the user can create a file defining the dependen-
cies of items in the library. For example, if the definition of plus should only
be loaded after the definition of natural numbers, this can be specified in the
dependency file. Mollusc will then automatically load all required definitions
in the proper order.

Proof manipulation. The ultimate purpose of Mollusc is to allow the user to
interactively create, edit, and display proofs. Mollusc provides an extensive set
of navigation and display commands, allowing the user to move about a proof
tree and inspect it. The display format is defined in a user-alterable file, so that
the output format can be tailored to a particular logic. New display commands
can also be added; this is useful, for example, if the logic has some additional
feature such as extract terms.

Inferences are carried out in three ways. First, the user may explicitly invoke
an inference rule. Mollusc can advise the user on possible inferences if the
inference rules are written declaratively. Second, the user can create and execute
tactics, as described below. Finally, the user can set an “autotactic”, a tactic



Mollusc: A General Proof-Development Shell for Sequent-Based Logics 4

that 1s applied after every successful proof step. This helps eliminate many of
the tedious steps in a proof, such as well-formedness goals.

Tactics. Tactics are essentially programs that describe how to perform a par-
ticular set of inferences. The tactic language is a superset of the language used
in Oyster. At one end of the spectrum, the user might write a tactic that per-
forms some common sequence of proof steps. At the other extreme, a tactic may
include all steps necessary to completely recreate a proof. The user has control
over the “grafting” of tactics. When a tactic is executed, all proof steps are
normally represented explicitly in the proof tree, just as though they had been
done manually. If a tactic is “grafted”, then all intermediate steps are removed
from the proof tree, and the tactic execution looks like a monolithic inference
rule. Grafting can substantially shorten and simplify the proof tree.

Tactics may be created in three ways. First, of course, the user may write the
tactic manually. Second, a tactic may be extracted from an existing proof or
portion of a proof. Finally, Mollusc provides an interface to proof planners
(e.g., CIAM [Bundy et al 90]), so that a proof planner can create a tactic for
Mollusc to execute.

3 The Logic Definition Utility

When starting Mollusc, the first thing the user does is choose a logic to work in.
Mollusc then loads a parser, a set of inference rules, a substitution algorithm,
and a pretty printer for sequents in the logic. When a user wants to create a
new logic, all of these must be created. While they can be written manually,
much of the work is tedious and repetitive. To make the process of creating a
logic easier, Mollusc provides standard templates for some files (e.g., the pretty
printer) and a define_logic utility to help create a parser.

The define_logic utility allows the user to specify the syntax of the logic in a
BNF-like language. The utility uses this specification to create a parser for the
logic. It can also create a set of “access functions” which compose and decompose
terms in the logic. These access functions make the process of writing declarative
inference rules considerably easier.

4 Limitations and Planned Extensions

As with any new system, there are a number of areas where Mollusc could be
enhanced. The major improvements being considered are:



Mollusc: A General Proof-Development Shell for Sequent-Based Logics 5

5

Complete logic independence. Mollusc currently assumes that target lo-
gics are sequent-based. This assumption could be lifted, making the shell
completely logic independent. The principal difficulty is that Mollusc
currently manipulates and displays hypothesis lists directly. In a com-
pletely logic-independent shell, utility predicates for these functions would
have to be provided by each external logic definition.

Custom input parser. Mollusc currently allows Prolog to parse all input
items. This means that syntax errors result in uninformative messages.
It also requires the user to end all entries with a period, and enclose de-
scriptive items in single quotation marks. Providing Mollusc with its own
input parser would eliminate these problems.

Custom display predicates for proof trees. Currently, the logic designer
can create custom display predicates for sequents, but not for the entire
proof tree.

Automatic dependency determination. In principle, Mollusc should de-
termine dependencies automatically, by observing when definitions are
used in the course of a proof. Adding this capability would simplify or
even eliminate the manually constructed dependency file.

Obtaining Mollusc

Mollusc is available from the Mathematical Reasoning Group at the Depart-
ment of Artificial Intelligence, University of Edinburgh. The contact person is
Alan Smaill, smaill@aisb.ed.ac.uk.

Mollusc is written in Quintus Prolog, and runs under versions 3.1 or later.
While it has not been ported to other Prolog implementations, this should not
be difficult as long as the target Prolog supports modules. As of this writing,
one user is porting Mollusc to SICSTUS Prolog.

References

[Bundy et al 90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The

Oyster-Clam system. In M.E. Stickel, editor, 10th In-
ternational Conference on Automated Deduction, pages
647-648. Springer-Verlag, 1990. Lecture Notes in Artificial
Intelligence No. 449. Also available from Edinburgh as DAI
Research Paper 507.



Mollusc: A General Proof-Development Shell for Sequent-Based Logics 6

[Constable et al 86]

[Gordon et al 79]

[Harper et al 87|

[Huet & Plotkin 91]

[Kraan 94]

[Martin-Lof 79]

[Paulson 89]

[Richards 93|

[Wiggins 92]

R.L. Constable, S.F. Allen, H.M. Bromley, et al. Imple-
menting Mathematics with the Nuprl Proof Develop-
ment System. Prentice Hall, 1986.

M.J. Gordon, A.J. Milner, and C.P. Wadsworth. FEd-
inburgh LCF - A mechanised logic of computation,
volume 78 of Lecture Notes in Computer Science.
Springer Verlag, 1979.

R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. In Proc. of the Second Symposium on
Logic in Computer Science, 1987.

G. Huet and G.D. Plotkin. Logical Frameworks. CUP,
1991.

I. Kraan. Proof Planning for Logic Program Synthesis.
Unpublished PhD thesis, Department of Artificial Intelli-
gence, University of Edinburgh, 1994. Submitted February
1994.

Per Martin-Lof. Constructive mathematics and computer
programming. In 6th International Congress for Logic,
Methodology and Philosophy of Science, pages 153-175,
Hanover, August 1979. Published by North Holland, Am-
sterdam. 1982.

L. Paulson. The foundation of a generic theorem prover.
Journal of Automated Reasoning, 5:363-397, 1989.

B. L. Richards. Mollusc user’s guide version 1.1. DAI Tech-
nical paper 23, University of Edinburgh, September 1993.

G. A. Wiggins. Synthesis and transformation of logic pro-
grams in the Whelk proof development system. In K. R.
Apt, editor, Proceedings of JICSLP-92, pages 351-368.
M.I.T. Press, Cambridge, MA, 1992.



