
Evolutionary Methods for Musical Composition

Geraint Wiggins, George Papadopoulos, Somnuk Phon-Amnuaisuk, Andrew Tuson
School of Artificial Intelligence, Division of Informatics, University of Edinburgh

80 South Bridge, Edinburgh EH1 1HN, Scotland
Phone: +44-131-650 2702; Fax: +44-131-650 6516

Email: geraint,georgep,somnukpa,andrewt @dai.ed.ac.uk
WWW: http://www.dai.ed.ac.uk/groups/aimusic/

Abstract

We discuss the use of genetic algorithms (GAs) for the generation of music. We explain
the structure of a typical GA, and outline existing work on the use of GAs in computer
music. We propose that the addition of domain-specific knowledge can enhance the quality
and speed of production of GA results, and describe two systems which exemplify this.
However, we conclude that GAs are not ideal for the simulation of human musical thought
(notwithstanding their ability to produce good results) because their operation in no way
simulates human behaviour.

Keywords: Genetic Algorithms; Music Generation; Search Space

1 Introduction

In recent years, the idea of Genetic Algorithms (GAs) has generated signficant interest in
the artificial intelligence and computer science communities. This has been reflected in a
number of publications in the computer music world, some of which we discuss below.

However, as GA research proceeds, it is becoming clear that the operation of a GA
need not be enormously different from that of a knowledge-based system. Indeed, Wolpert
and Macready (1995) have suggested that for a GA-based method to be really effective,
domain-specific knowledge is not just desirable, but strictly necessary.

In this paper, we set out to explore two aspects of GA applications to music:

1. the use of knowledge-rich structures and procedures within the algorithm itself, as
opposed to the more traditional use of GA components which are not problem-
specific;

2. the strict use of objective methods, in the sense that any reasoning encoded in the
GA should be stated explicitly, rather than being implicit in the expressed opinion
of a human user.

These criteria are important to us because we are interested in simulating human
behaviour, and not just in achieving a musical result. So we wish to be able to examine



the internal behaviour our of methods, compare them with human behaviour, and attempt
to explain any discrepancies.

First, we present an overview of the structure of a typical GA. We then proceed to
outline existing applications of GAs in computer music. We present two case studies of
knowledge-rich musical GAs, and then draw conclusions about the implications of the
work for musical GAs in general.

2 What are Genetic Algorithms?

Genetic algorithms (GAs) are a stochastic, heuristic optimisation technique first proposed
by Holland (1975). The idea is loosely based upon the process of evolution by natural
selection proposed by (Darwin 1859). GAs have been successful in previously difficult
or intractable problems such as atmospheric pollution monitoring (Cartwright and Harris
1993), and scheduling (Fang 1992). Ross and Corne (1995) give a useful overview of GA
applications.

For our purposes here, we merely outline the constituents of a GA, and describe a
typical implementation, only briefly discussing each of the constituent parts. For more
detail, see (e.g.) (Michalewicz 1992).

A GA consists of the following components:

A representation for chromosomes, the candidate solutions to the problem being
solved.

An initial population of chromosomes.

A set of operators to generate new candidate solutions from members of the popu-
lation, and information as to when they should be applied.

An evaluation function to assess the fitness (quality) of a given candidate solution.

A selection method which gives good solutions a better chance of survival.

The GA is applied iteratively, each time generating new candidate solutions from the
population by the application of operators, evaluating them, and then allowing the fittest
of the available solutions to comprise a new population.

We now describe the GA and its components in more detail.

The Algorithm. The following sequence of steps describes the algorithm for a GA with
steady-state reproduction. Other methods exist; this is one of the simplest.

1. Generate an initial population of chromosomes, usually at random.

2. Apply the evaluation function to each chromosome.



3. Select parent solutions according to their fitness (fitter solutions are more likely to
become parents).

4. Randomly pick and apply an operator to generate a new chromosome.

5. Evaluate the new chromosome and, if it is fitter than the least fit member of the
population, substitute it into the population.

6. Go back to step 3 until a stopping criterion is reached. Examples of stopping criteria
are: all members of the population are identical (convergence), a fixed number of
evaluations have been computed, or a solution of a given quality has been found.

Representation. As with the vast majority of knowledge engineering problems, the first
question to ask, once we have stated our problem, is: How do we represent the chromo-
somes in a form that the GA can manipulate? The GA designer must encode the required
information so that correlations existing in the search space are made explicit: only then
can the GA exploit them.

Practical GAs should use whichever encoding is appropriate to the problem (an en-
coding used by an existing method is often a good start). This might be a string of real
numbers, a logical expression, a Lisp S-Expression – whatever is found to work for the
problem at hand.

Operators. In the basic GA, there are two main types of operator: crossover and muta-
tion, drawn from the biological metaphors of sexual and asexual reproduction respectively.

Each operator available to the GA has a probability of being applied (an operator
probability). Operators may also have parameters, which can determine their behaviour.

Crossover is an exchange of information between two (maybe more) chromosomes in
the population. This is best illustrated by a commonly-used crossover operator for binary
strings.

Two-point crossover picks two points, at random, along the strings and swaps the
contents of the string between those points, to produce children, thus:

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

Crossover 0 0 1 1 1 1 0 0
1 1 0 0 0 0 1 1

Crossover is deemed useful because it can bring together portions of separate strings asso-
ciated with high fitness to produce even fitter children, and, conversely, bring poor portions
of strings together so they can be purged from the population.

Mutation takes a chromosome and randomly changes part of it. In combination with se-
lection (see below) this performs a search analogous to hill-climbing (Russell and Norvig
1995). For a binary string, mutation involves flipping each bit in the string with a (low)
probability as follows:



0 0 0 0 0 0 0 0
Mutation

0 0 0 0 0 1 0 0

Early GA research viewed mutation as a background operator, used infrequently in order
to maintain diversity in the population. However, opinion has changed, partly due to the
fact that mutation-only optimisation techniques, such as simulated annealing (Kirkpatrick,
Gelatt, Jr., and Vecchi 1983), can obtain comparable results with GAs. Mutation is now
viewed as a search operator in its own right.

The Fitness Function provides a measure of the quality of a chromosome. Devising
such a function is non-trivial, especially in the case of multi-objective solutions, where
multiple fitness measures have to be weighed against each other in assessing a chromo-
some. Sometimes, a human opinion is used instead of a fitness function, in which case the
GA is said to be interactive (IGA).

Population and Selection is where the other components come together. As we ex-
plained above, the GA works upon a population of chromosomes and selects the most
suitable. However, there are choices to be made, such as:

Population size: large populations have a larger and more diverse number of can-
didate solutions, but take longer to evaluate. The size is usually fixed within a given
run.

Spatial arrangement of chromosomes: dividing the population into groups emulates
geographical speciation and helps maintain diversity between solutions.

Replacement strategy: should an entirely new population be generated (a genera-
tional GA), or should children be incrementally inserted into the current population
(a steady-state GA)?

Selection scheme: which breeding partners and surviving children should we select?

3 Existing Work on GAs in Music

GAs have been used in music generation elsewhere. Horner and Goldberg (1991) used
GAs for thematic bridging; Jacob (1995) devised a composing system using an interact-
ive GA; Biles (1994) used an interactive GA to produce jazz solos over a given chord
progression.

In harmonisation, the most directly related work to that presented here is that of
McIntyre (1994) and Horner and Ayers (1995). McIntyre used a GA to generate a four
part harmonisation of an input melody, focussing on Baroque harmony. Horner and Ayers
focussed on the harmonisation of chord progressions using GAs.

One aim of our harmonisation project here is to investigate the potential of the GA
and its performance in the musical domain. So our search is not artificially limited as in



McIntyre’s system (which only used a C major scale); nor is there problem abstraction
as in Horner and Ayres’ system, (which uses the GA to generate parts, given a chord
progression, which is a significantly simpler task). Our work aims to harmonise input
melodies and does not limit itself to a specific key or scale; and it works at the level of
individual voices, with all the extra constraints this entails.

In terms of instrumental solo generation, GenJam (Biles 1994) is the most closely
related work to that presented here. It is a “genetic algorithm based model of a novice
jazz musician learning to improvise”. There is no algorithmic fitness function to evaluate
the population of the distinct melodic ideas; instead, a human “mentor” gives real-time
feedback, so GenJam is an IGA. Therefore, GenJam exhibits the drawback associated
with all IGAs: in order to evaluate a population of potential solutions, the user must hear
all of them – and there are many. Moreover, it is likely that bias will arise towards musical
structures which are familiar from previous listenings. As such, GenJam can tell us little
about the mental processes involved in the improvisation process. GenJam also uses a
simplified mapping between the accompanying chord and the scale used for the generation
of the solo, restricted the duration of the notes to be all equal. These restrictions can lead
to the loss of potentially interesting solutions, containing inflections or passing notes, and
rhythm interest, respectively.

In summary, while Biles (1994) reports promising results from GenJam, it might
be said that the simplifying assumptions made in order to render the problem tractable
have rendered the problem rather anodyne. In our solo generation project (also based on
jazz harmony), we have attempted to be more general. Our use of knowledge-intensive
operators has rendered this extra generality computationally tractable.

For a more complete summary of GA work in music see Burton and Vladimirova
(1997).

4 Harmonising Chorale Melodies

In this section, we present the results of a study on the use of GAs in generating four-part
homophonic tonal harmony for user-specified melodies. We detail the parts of the GA
which are specific to this project – the reader is referred to Section 2 for other details.

4.1 Domain-specific Knowledge

The domain-specific (i.e., musical) knowledge in this system is implemented in three parts
of the GA:

Chromosome representations: Generally speaking, keys and chords are the main con-
cepts in harmonisation of western tonal music. Harmonisation rules are expressed in terms
of relationships between triads, and between degrees of scale within a key signature (e.g.,
tonic-dominant, etc) but not the absolute pitch.



Therefore, in this implementation, musical information (e.g., pitch, interval, time,
duration) is represented after normalisation with respect to key – that is, absolute pitch
information is abstracted out. Then, pitch is expressed in terms of scale degree. To ex-
press all twelve semitones, the standard five accidentals are used. Different octaves are
distinguished by an associated integer. Finally, time intervals are represented as integers.

A knowledge-rich, meaningful representation is used in our chromosome represent-
ation (compare with the binary strings more commonly used in GAs). The representation
may be thought of as a matrix. It consists of four strings of equal, fixed length. The four
strings contain soprano, alto, tenor and bass part. The user inputs the soprano information
(assumed to be the melody); the GA will then harmonise the input soprano, homophonic-
ally, with a further three voices according to the musical domain knowledge encoded in its
operators.

Reproduction operators: both crossover and mutation operators of several kinds are
used in this implementation, as follows:

Splice: One point crossover between two chromosomes – selects a point for crossover
between successive notes of the melody, so the division is vertical, not horizontal.

Perturb: Mutate by allowing alto, tenor and bass to move up or down by one semitone or
tone. The process is random.

Swap: Mutate by swapping two randomly picked voices between alto, tenor or bass. This
gives the effect of changing the chord between different open and closed positions,
and of changing inversions.

Rechord: Mutate to a different chord type. This mutation generates a new chord from the
melody data. A chord is built with the soprano note as root, 3rd or 5th. Doubling
(necessary for a four note chord) can be in any position.

PhraseStart: Mutate the beginning of each phrase to start with tonic root position on a
down beat.

PhraseEnd: Mutate the end of each phrase to end with a chord in root position.

Fitness function: Many GA applications in the music domain use humans as a means to
justify the fitness of chromosomes, in IGAs. This approach is subjective because it relies
on individual preferences. Also, human listeners tend to become more open to music
on repeated hearings, and are prone to other inconsistencies based on mood, attention
span, and so on. So the IGA and does not allow us to study the fitness function itself, to
determine how faithful it is to our chosen task. In this project, music-theoretical knowledge
is used to construct the fitness functions in objective logical terms, which allows us to
examine the behaviour of the system more scientifically. The fitness function judges the
fitness of each chromosome according to the following criteria. Within individual voices
(as opposed to between voices), we prefer stepwise progression over large leaps, and we



keep the voice within its proper range. We avoid progression to dissonant chords, and
we avoid leaps of major and minor 7ths, of augmented and diminished intervals, and of
intervals larger than one octave.

Between voices, we apply the following criteria: we avoid parallel unison, parallel
perfect 5ths, and parallel octaves; we forbid progression from diminished 5th to perfect
5th (though the converse is allowed); we avoid hidden unison; we forbid crossing voices;
and, we forbid hidden 5th and octave in the outer voices, when soprano is not progressing
stepwise.

Solutions are penalised for note doubling and omission, in the primary major and
minor triads: doubling of Root is preferred, while doubling of 3rd is avoided; doubling of
3rd is forbidden in a dominant chord; if it is necessary to omit a voice, omit the fifth only,
except in 1st inversion; in inverted chords, doubling of the bass is preferred; and we avoid
doubling of tones which give a strong harmonic tendency.

In this preliminary implementation, the system does not have enough knowledge
to plan for large scale harmonic progression. The fitness function determines only the
plausible harmonic movement between two adjacent chords. The fitness function prefers
(in decreasing order of preference): descending 5th movement; progression towards the
tonic; retrogression; and repetition.

4.2 Results and Analysis

Figure 1 shows a harmonisation by our system of the first eight notes of “Joy to the world”.
The output is not perfect, but it is surprisingly good given the limited rules built in to
the system. All the output of the system was marked by Dr. John Kitchen, a lecturer
in the Department of Music at Edinburgh, according to the criteria he uses for 1st year
undergraduate students’ harmony. This example scored 5 out of 10 – a clear pass. While
other examples were less successful (most earning around the 30% mark), this was mostly
due to the lack of coherent large-scale musical progression – the system was felt to be
better than student harmonisers at getting the basic rules right.

TB

SA

I iii IV I IV iii V I

Figure 1: Harmonisation of first line of “Joy to the World”

The experiment was carried out with various GA parameter settings. It was observed
that, as expected, the weights of the various penalties applied in the fitness function have
a significant effect on the solution. Other parameters, such as crossover rate, mutation



rate, and different selection schemes appear to affect the time taken for the population to
converge, and do little for the solution quality. This is due to the fact that it is the fitness
function which primarily defines the knowledge in the system, while the other parameters
define the search strategy.

What is most significant is that, with these evaluation functions and reproduction
operators, the GA still cannot satisfy all the constraints within 300 generations.

An attempt with an island model (Gordon, Whitley, and Böhn 1992) with four pop-
ulation groups was also carried out, in the hope that different population groups might be
able to preserve their own salient cultures, and might be able to bring the GA to a more
globally acceptable solution.

TB

SA

I I I vi I ii II V I vi IV I I

IV I I I vi IV V vi V I V I IV ii V I

Figure 2: Harmonisation of “Auld Lang Syne”

Figure 4.2 is a result from the island model. The experiment showed an improvement
in search efficiency, but the GA still could not reduce all the penalties.

The main explanation for this is the relatively shallow knowledge of the system, in
particular with respect to overall harmonic movement. A reduction of a fitness penalty
in one position may increase penalties in other positions, because the movement from
one chord to the next is not considered with respect to overall movement in the phrase.
Because GAs work by random perturbation of their chromosomes, the high-level planning
necessary to smooth out these penalty spikes is not readily encoded in them – to do so, we
would have to build a much more complicated model.

We conclude, therefore, that a conventional rule-based system (perhaps in conjunc-
tion with as one or more GAs) is a more appropriate method for the harmonisation task.



5 Generating Instrumental Solos

This section describes a study on generating instrumental solos by GA. Note in particular
the distinction between the objective GA with a programmed fitness function, and the more
subjective (and so less scientifically enlightening) interactive GA used in some similar
studies. Again, we detail here the points which make this GA system different from others
– see Section 2 for other details.

5.1 Domain-Specific Knowledge

Chromosome Representation: The representation of the structures (solo, chord pro-
gression) is very abstract, flexible and does not allow the generation of non-scale notes
(note, though, that this does not preclude the generation of passing notes, as more than one
scale can be used with most chords). The solo is generated as a list of degree, duration
terms. The chord progression given as a list of root, chord type, duration terms.

Operators. The speed of convergence to high fitnesses, and the quality of results, of this
system is based largely on the genetic operators. They are directed, in the sense that they
contain domain-specific knowledge, and are not the general operators used in traditional
GAs.

Crossover Two crossover operators were implemented: one-point and two-point cros-
sover. The first parent belongs to the selected population and the second parent is chosen
randomly either from the selected or the previous population. The fitter of the two created
children goes into the intermediate population. The crossover operators work in terms of
absolute time, not in terms of notes, so some care has to be take with splitting notes up to
maintain a coherent flow. This process has a tendency to split notes to smaller durations.
Note that these crossover operators apply no intelligence in selecting their cross-over point
– this issue is discussed further below.

Mutations In this system, mutations are the operators which try to fix a flawed solo or to
direct the music in ways which are pleasing and attractive to the ear.

One-note: randomly pick one note and replace it with a newly generated one or transpose
it up or down by a small number of degrees.

Swap: randomly choose two fragments of the same length (number of notes) and swap
them.

Transpose: randomly choose a fragment and transpose it modally by up to a perfect fifth.

Permute: randomly choose a fragment and permute its notes.

Sort ascending: randomly choose a fragment and sort its notes into ascending order of
degree. Rests in the fragment remain in position.



Sort descending: as above, but sort by descending degree.

Redistribute durations: randomly choose a fragment and permute its durations, maintain-
ing the order of the pitches.

Same rhythm: vary a random fragment by randomly transposing up to half of its notes,
maintaining their durations.

Simple copy: copy one fragment and overwrite another with the copy.

Copy & mutate: a family of mutations, which copy a fragment, as simple copy but mutate
it as per mutations above before pasting it back into the chromosome. The mutations
used are Transpose, both kinds of Sort, Redistribute durations, and Same rhythm.

Concatenate repeated notes: merge any contiguous notes (in the whole chromosome) of
equal pitch into one note of equivalent length. This mutation prevents boring repe-
tition of the same note, which can be caused by the sorting mutations and splitting
of notes in copying and crossover.

Fitness Function: In the current state of the art, we do not know how to implement
a complete algorithmic fitness function which will direct the search towards desirable,
human-like jazz solos. Here, we merely approach the problem, by building operators
which loosely imitate the improviser’s “work tools” and mental process. The final output
generated on this basis is at least closer to the desired kind of output than random doodling,
and, importantly, its shortcomings will inform future work.

The fitness function discussed here is based on material gleaned informally from
many sources (music books, articles) which aim to explain and model the process of im-
provisation. It is also based on simple informal statistical analysis of jazz solos and finally
on some intuitive ideas. As such, it constitutes a first approximation to a fitness function
for jazz solos, and provides a point of departure for further development.

Our fitness function is a multi-objective function – that is, various different dimen-
sions are used to measure fitness, and a vector of those dimensions is produced for each
chromosome. This is more informative than a single-objective function. Here, we produce
a single value by taking the weighted sum of the vector; a more general approach would
be to use Pareto Ranking (Fonseca and Fleming 1994).

The function checks eight different characteristics of the solo line, which it then uses
to calculate the corresponding overall fitness. Different coefficients may be used to apply
more or less significance to the different dimensions. The eight characteristics used are as
follows.

Illegal jumps: A solo will tend to lose coherence if it jumps around in pitch too much,
because of lack of auditory streaming.

Pattern matching: Looks for repeated pitch patterns within the chromosome, particularly
on musically significant beats, and favours chromosomes which exhibit this prop-
erty.



Suspensions: Because of the way the chromosome is represented, it is possible to have
suspensions – notes which lie across to two consecutive chords. This part of the
fitness function checks what happens to those N-1 chord changes. There are two
cases: there is a good suspension, i.e., the note is a member of both scales determ-
ined from the two consecutive chords; or there is a bad suspension, i.e., the note is
a member of the first scale but not of the second. Note that the issue of whether a
suspension is dissonant or not is orthogonal to this test – the suspended chord may
in principle be dissonant with either or both of the underlying chords.

First downbeat: The first beat of a bar is harmonically significant. This part of the fitness
function requires that the note on the first beat be a member of the current chord,
unless the scale is a symmetrical one, such as whole tone, in which case any note in
the scale is allowed.

Third downbeat: As for the first downbeat restriction, but less strongly so.

Long notes: Relative length of notes in a solo contributes to its feeling of tonality. In par-
ticular, long notes which are not in consonance (in whatever terms are appropriate!)
with the current chord are not generally desirable. Equally, long rests leave unsat-
isfying gaps in the solo. This aspect of the fitness function penalises chromosomes
with these features.

Pitch Contour: The system favours close matches between the pitch contour of the gen-
erated solo and that specified by the user.

Speed: The system favours close matches between the speed contour of the generated solo
and that specified by the user.

Cleary, there are many other features which might be modelled in the fitness function
– for example, valid cadences. With a system such as ours, which is clearly modular, other
features may be added in easily.

5.2 Results and Analysis

The solo generator GA converged very quickly to high fitness because of its domain-
specific genetic operators. Pattern matching in particular was beneficial to the creation of
a feeling of theme development in the solo. However, the choice of weight for pattern
matching as compared with the other fitness dimensions is crucial – it easily becomes
unnoticeable or outweighs all the other dimensions, resulting a boring, repetitive solo.

The results are really quite encouraging, though they are clearly amenable to im-
provement – Figure 5.2 gives an example. As with the harmonisation program, it is sur-
prising that quite acceptable results can be obtained with relatively simple rules. The
example shows how the system realised the notion of constant pitch contour. The solo is
made up of repeated descending and ascending patterns. The weight of the pattern match-
ing was very small and the probability of the generated notes or rests were 90% for a



Cmaj7

2

F7

3

Cmaj7

4

Gm7 C7

5

F7

6

F dim

7

Cmaj7

8

F7

9

Dm7

10

G7

11

Cmaj7

12

Cmaj7

Figure 3: A solo generated from the chord sequence shown

semi-quaver and 10% for a quaver. In this case, sorting mutations prevailed over the other
types.

6 Conclusion

It is quite clear from the experiments here and elsewhere that Genetic Algorithms can be
applied successfully in the musical domain – up to a point. It is also clear that the efficacy
of the GA approach depends heavily on the amount of knowledge the system possesses.

Looking at the output of our systems from an aesthetic viewpoint, the results are
still far from ideal. The harmonisation produced by the GA has neither clear plan nor
intention, and the solo generator, too, lacks intention, though this is less obvious in the
solo context. This is not a surprise: we cannot expect large scale structure to arise from
the kind of programming inherent in a GA containing relatively little domain knowledge.

In summary, we conclude that while GAs can be surprisingly good at small, con-
strained tasks, their performance, at least in a context of simulating human behaviour, is
limited by two issues. First, GAs are a stochastic, heuristic search method, so one cannot
be sure that a solution will be reached, even if there is one. Second, they lack structure in
their reasoning – composers have developed complex and subtle methods over a period of
centuries involving different techniques for solving the problems addressed here. Noone
would seriously suggest that an author of hymn tunes works in the same way as the GA
presented here, so while we may be able to produce (near) acceptable results, doing so
sheds little or no light on the working of the compositional mind. In the solo generator,



there is a direct attempt to address this; even so, there is still a lack of intent in the structure
which renders the output less than completely musically satisfying.

Acknowledgements

Thanks to Dr. John Kitchen for his help in assessing the harmonisation system. Andrew
Tuson is supported by EPSRC studentship number 95306458.

References

Biles, J. A. (1994). GenJam: A genetic algorithm for generating jazz solos. In ICMC
Proceedings 1994. The Computer Music Association.

Burton, A. R. and T. Vladimirova (1997). Applications of ge-
netic techniques to musical composition. Available by WWW at
http://www.ee.surrey.ac.uk/Personal/A.Burton/work.html.

Cartwright, H. M. and S. P. Harris (1993). Analysis of the distribution of airborne pol-
lution using genetic algorithms. Atmospheric Environment 27, 1783–1791.

Darwin, C. (1859). On the Origin of Species. London: John Murray.

Fang, H.-L. (1992). Investigating genetic algorithms in scheduling. Master’s thesis, De-
partment of Artificial Intelligence, University of Edinburgh.

Fonseca, C. M. and P. J. Fleming (1994, April). Multiobjective Evolutionary Al-
gorithms: An Overview. In AISB Workshop on Evolutionary Computing, Leeds
University.

Gordon, V., D. Whitley, and A. Böhn (1992). Dataflow parallelism in genetic al-
gorithms. In R. Männer and B. Manderick (Eds.), Parallel Problem Solving from
Nature 2, Amsterdam, pp. 553–42. Elsevier Science.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: The
University of Michigan Press.

Horner, A. and L. Ayers (1995). Harmonisation of musical progression with genetic
algorithms. In ICMC Proceedings 1995, pp. 483–484. The Computer Music Asso-
ciation.

Horner, A. and D. E. Goldberg (1991, December). Genetic algorithms and computer-
assisted music composition. Technical report, University of Illinois.

Jacob, B. L. (1995, September). Composing with genetic algorithms. Technical report,
University of Michigan.

Kirkpatrick, S., C. Gelatt, Jr., and M. Vecchi (1983). Optimization by Simulated An-
nealing. Science 220, 671–680.



McIntyre, R. A. (1994). Bach in a box: The evolution of four-part baroque harmony
using a genetic algorithm. In First IEEE Conference on Evolutionary Computation,
pp. 852–857.

Michalewicz, Z. (1992). Genetic algorithms + data structures = evolution programs.
Artificial Intelligence. New York: Springer-Verlag.

Ross, P. M. and D. Corne (1995). Applications of Genetic Algorithms. AISB
Quarterly 89, 23–30.

Russell, S. and P. Norvig (1995). Artificial Intelligence – a modern approach. New
Jersey: Prentice Hall.

Wolpert, D. and W. Macready (1995). No free lunch theorems for search. Technical
report, SFI-TR-95-02-010, Santa Fe Institute.


