Representing Music Symbolically

Mitch Harris, Alan Smaill and Geraint Wiggins *

Abstract

The automated understanding and generation of music is an area of re-
search that raises problems that are central to the Artificial Intelligence en-
terprise. Recent work at Edinburgh has aimed to use a symbolic Al ap-
proach for this field. We indicate how a more abstract understanding of
music representation unifies this approach, and how logical descriptions of
hierarchical structures can be incorporated. We relate this work to altern-
ative approaches, describe some projects carried out in this framework, and
indicate planned future work.

Keywords: Key; Knowledge Representation; Structured Hierarchy; Ab-
stract Data Type.

1 Introduction

...les calculs n'ont cessé d’accompagner la musique tout au long
de son histoire, et dans toutes les civilisations ...
([Boulez 85, p 73])

Musicians have an intuitive awareness of the depth of possibilities of musical
structure, and how these structures can be manipulated to create new forms of
musical understanding. At first sight, computers would seem to be an ideal tool
for exploring this mode of expression, yet there seems to be a barrier of form
between musical ideas and structures that can be implemented on a computer.
Our aim 1s to give ways to overcome this barrier.

There has been relatively little work in the area of AI and music, yet the prob-
lems it poses are central to the Al enterprise. There is a particular problem for

*Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge, Edinburgh
EH1 1HN; Email:{M.Harris,A .Smaill,geraint }@uk.ac.edinburgh

the traditional symbolic Al approach, as we do not have the benefit of the sort
of well developed syntactic and semantic analyses that have been worked out
for natural language, for example. On the other hand, while the complementary
sub-symbolic approach is effective, and perhaps necessary, for some musical tasks
(see section 2.3), such solutions will not give to the user of an Al system the sort
of structured understanding and manipulative ability that is usually wanted.

In what follows, we describe how we have attempted to organise formal systems
for music representation for manipulation in an automated system. Our inten-
tion is to allow a wide range of possible representations, while still permitting
the sharing of software, through the use of abstract data types. Thus the power
of automation may be made available to composers and analysts, by allowing
them to think of and access music in terms familiar to them, and yet which also
allow automated manipulation.

In section 2, we outline our notion of representation. In section 3, we indicate
how an abstract approach helps us to deal uniformly with different sorts of rep-
resentation. In section 4, the topic of higher-level musical structures and their
specification is introduced. After describing in section 5 three more extended
pieces of work carried out in the style we advocate, we summarise our conclu-
sions and indicate future research directions.

2 What is there to represent?

Before we describe our representation, let us establish what it is that we wish
to represent. There are various possibilities, so we will consider them in turn.

2.1 Score / Performance

Often musical databases hold transcriptions of scores, and are intended to re-
cord the information in the score rather than to describe some music more dir-
ectly. The difference can be fairly small for written music in (eg) the classical
western tradition, but for many other styles the score (when it exists) relates
less closely to music as performed or experienced. Therefore we choose to rep-
resent in the first instance music as performed. This means, for example, that
a score that does not determine the order of some musical events will corres-
pond to several possible performances and so to a collection of representations.

2.2 Physical / Psychological

The process of forming abstractions nearly always has a psychological compon-
ent. At the lower levels the psychophysics of perception are important; for ex-

ample the categorical perception of pitch intervals makes possible the abstrac-
tion of pitch into note names. Very similar effects occur in our perception of
speech; the phoneme ¢ does not correspond to any unique pattern of sound en-
ergy as this may vary significantly depending on the preceding and subsequent
vowel sounds and the position of the consonant in a word. In general, there is no
absolute mapping between any physical event and a musical perception, because
of the effects of context, categorical perception and the various kinds of filtering
which occur due to our biological and neurological make up. See [Handel 89] for
discussion of these and related issues.

Having said this, phonemes are a useful abstraction in linguistics, and similarly
pitches and durations are useful abstractions for music to use as a base-line for
symbolic representation, although the ambiguity between the physical and the
psychological is inherent and sometimes problematic. At higher levels, similar
considerations will also apply, and either the psychological or the physical phe-
nomena may be the objects of interest.

2.3 Symbolic / Subsymbolic

Having decided on an abstraction boundary for our representation (in terms of
events with pitches and durations) we can construct formal systems above this
layer. One example of such a system i1s Western tonal music, though this is too
restrictive in general. Below this layer we are, by our definition, outside the
formal system.

To make a mapping between the physical world and the perception of a musical
note we need a subsymbolic system. This, in turn may be abstractly repres-
ented, although it may be argued that a discrete symbol system is inadequate
for this and analogical representations or connectionist systems will be needed
([Leman 88]).

2.4 Analysis / Generation

Our use of a basic level of representation on the level of note-like events is sim-
ilar to Jackendoff’s notion of a “musical surface” [Jackendoff 87, p 217]. But of
course this is only a starting point — we want to be able to talk about group-
ings of these basic events, according to whatever criteria interest us, and about
groupings of these groupings, and so on.

We draw a distinction between the unadorned description of the events that
make up a piece of music, and whatever richer description interests the listener
or composer. Thus on top of the basic description we introduce a mechanism
that allows such higher order structures to be introduced in a way appropriate
to the task at hand. For example, the analyst may wish to determine metrical

or tonal information that is not explicit in the description of the notes of the
plece. The mechanism we propose allows the user to represent such higher-level
information, either by asserting it directly, or by indicating in general terms the
conditions under which these higher-level properties hold. For example, tradi-
tional harmonic analysis can be thought of as a series of rules for determining
harmonic progressions for music written in a certain style; as such, the rules
could be used to indicate what harmonic progression is suggested by given notes,
and this could be determined automatically.

In the terms of Nattiez’s description in [Nattiez 75], our basic representation is on
the level of the “niveau neutre” — it certainly makes no attempt to represent any
compositional or affective features that the music may have. However, the mech-
anism for higher-order structures that we describe in section 4.1 allows the com-
poser to manipulate musical material using structuring devices of the composer’s
choice, just as it allows a variety of interpretations of the piece to be expressed.

2.5 Representation / Implementation

In what follows we will propose some data structures which we believe are gen-
erally useful for reasoning about pieces of music, and which should allow shar-
ing of algorithms for implementations that respect our representation principles.
Our proposal is thus not of a new software system; indeed, we have implemen-
ted parts of this work in several different versions, and in two languages. We
envisage that different users will want to describe even notions as basic as pitch
and duration in different ways; our proposal is designed to allow this.

3 Abstract Representation

Anyone who looks at computer systems for music representation is quickly struck
by the variety of systems on offer. There are some attempts to standardise; for
example relatively low-level information may be encoded using MIDI, DARMS etc
communications protocols. However the possibilities are enormous, and the di-
versity often prevents us from using software written for one representation for
another representation.

Computer scientists have come across this problem in many areas, and have de-
veloped a response to it in the use of abstract data types. The main idea is
that there are patterns of operations over data that recur frequently in differ-
ent concrete implementations. If the operations are expressed in terms of these
general patterns, then they can be made to apply to whatever particular imple-
mentation is used, provided we know how to relate the concrete implementation
to the abstract patterns.

For example, if we consider an operation such as determining the interval
between the pitch of two notes, this will be performed in one way if the pitches
are represented in Hertz, in another if they are given in number of semitones
above middle C, in another if they are given as traditionally notated on a stave,
and there are many other possibilities. If we regard all of these as instances of
the same computation at an abstract level, this will be one of the operations of
our abstract data type. We define such an abstract data type for the descrip-
tions of collections of notes in general. We call this the basic representation.
This is to be contrasted with particular instantiations of this basic representa-
tion in some concrete data type.

Once we move beyond this basic representation, there are even more possible
operations the user may wish to perform, for example generating music by re-
peated transformations of some structure that is never explicitly heard (as in
“Traum A”, section 5.3). We will use the notion of constituent to describe in
general terms higher-level musical structures that might be so generated, or ap-
pear in some analytic process.

We now describe our proposal more formally. The reader not interested in the
technical details may skip to section 5.

3.1 The Basic Representation — Specification

The internal structure of our (simplified) event representation is as follows. We
define abstract datatypes to represent Pitch (and Pitch Interval), Time (and
Duration), Amplitude (and Relative Amplitude) and Timbre, which we will not
discuss here — 1t will be the subject of future work. The abstract event repres-
entation 1s then the cross product

Pitch x Time x Duration x Amplitude x Timbre

The abstract data type for Time is formed as follows. (The others, except for
Timbre, are the same modulo renaming.) The objects of interest are points in
time and intervals between them (durations). We want to be able to compute
durations from pairs of times, durations from pairs of durations, and so on. We
therefore require the existence of functions addy, and suby, where z and y are
each one of { t d }, standing for Time and Duration, respectively, defining the
types of the arguments. The type of the result is unambiguous. Thus, we have

functions]]]
addgq: Duration x Duration — Duration
addiq: Time x Duration — Time
suby: Time x Time — Duration
subgq: Duration x Duration — Duration

There is an ordering on the type Duration, <. A distinguished symbol for the
zero duration, the operation addgg and an inverse are defined so that they make

Duration a linearly ordered commutative group. Formally, this means that dur-
ation is a Generalised Interval Structure in the sense of [Lewin 87|, with extra
properties.

The abstract data types for Pitch and Pitch Interval, and for Amplitude and
Relative Amplitude, may be derived by appropriate renaming of the properties
in the above description.

3.2 The Basic Representation — Implementation

Having defined our abstract data type, we now indicate what we mean by the im-
plementation of the type via the provision of corresponding concrete operations.

Each member of a concrete event structure is associated with a unique Identifier,
for efficient reference by software routines. Such reference is made via destructor
functions on the datatypes. We require that the following destructor functions
be defined in any instantiation of our representation.

Get X where X is one of { Pitch Time Duration Amplitude Timbre } are un-
ary functions which return the appropriate component of the event tuple
associated with the identifier given as their arguments

PutEvent 1s a function taking an event tuple as its single argument and return-
ing the identifier associated with it

Note that these functions (and those for constituents, specified in Section 4.1)
are normally used in conjunction with a database in which the events and con-
stituents making up an idealised performance are stored. The precise form of
such a database i1s immaterial to applications using this representation because
of the availability and transparency of the destructor functions.

3.2.1 Example

An example of the event structure, implemented here as a neutral logical term,
might use the instances of the abstract data types shown in Figure 1. Timbre
is not considered here — we will avoid the issue with ellipsis (...). We associate
each event in a represented score with a unique identifier — in this example of
the form eN where N is in Integer Number. Finally, in this instance of the rep-
resentation we notate the existence of the association between the identifier and
the appropriate element of the type of data type tuples by the e relation.

Figure 2 shows the specification in the event structure of the first twelve notes
of Webern’s Variations for Piano, Op 27, as in Figure 3. Note that we do not in-
tend to suggest that this is a readable or person-friendly notation. The attempt

Pitch

Pitch Interval

Time

Duration

Amplitude

Relative Amplitude

= {abcdefg} x{c:tf#b} x Integer Number

representing traditional Western notation —
note name, accidental, and octave

= Integer Number

representing integer numbers of semitones

Integer Number x Integer Number

representing rational numbers of crotchet beats

Integer Number x Integer Number

representing rational numbers of crotchet cbeats

Integer Number x Integer Number

representing rational numbers of decibels (dB)

Integer Number x Integer Number

representing rational ratios of Amplitude

Figure 1: An example event instantiation

is to supply a standard (abstract) notation, which may then be translated to
user-friendly form in a general way.

e(€00, (f,z, 4),1/4,1/2,10/1, ...
e(€01, (e, 5),1/4,1/2,10/1, ...
e(€02, (b,z, 3),1/2,1/4,10/1, ...
e(€03, (f,4,3), 3/4, 1/4, 10/1, ...

e(€04, (g, 4), 3/4,1/4,10/1, ...
e(€05, (c,4,5),1/1,1/4,10/1, ...

e(€086, (a,, 2), 3/2,1/2,10/1, ...
e(€07, (b)b, 3), 3/2,1/2, 10/1, ...
e(€08, (e,h, 4), 7/4,1/4,10/1, ...
e(€09, (c,t, 4),4/2,1/4,10/1, ...
e(el0, (d,:, 5), 4/2, 1/4, 10/1, ...
e(ell, (g,1,4),9/4,1/4,10/1, ...

4 Hierarchical representation

Figure 2: Webern, Op 27, bars 1-3

It is widely agreed that a system to manipulate musical representations must
allow higher level structures to be introduced hierarchically [Balaban 88,

Buxton & et al 78].

On the other hand, it is equally widely agreed that such

ob. = 40
0— 'urF I b -
5 Te—— o o o
ANS V2N § / Vi % Vi / b |
d qb — -
pp k
| be .
n: 92 I *)]
| Y N 7 7 L T L é " L
Z 1 £ ¢ €/] €7/ &/ I €/ =) €/
19U 7/ / VU [7 ﬂiﬁ / A o /

Figure 3: Webern, Op 27, bars 1-4

structures and the groupings or kinds of groupings which they delineate must
not be imposed on the user of a representation system. Further, it must be pos-
sible to assign different hierarchical structures simultaneously to a given set of
musical events, in order, for example, that different possible structural inter-
pretations may be represented where there is ambiguity, or that different kinds
of information may be represented and related together but kept logically sep-
arate (eg information about harmony and orchestration).

4.1 The Constituent Representation — Specification

In our representation, we use constituents to delineate groupings of events and
other constituents. A constituent, at the abstract level, i1s a pair of the form

(Properties/Definition, Particles)

Properties/Definition allows logical specification of the relationships between
the Particles of this constituent in terms of membership of certain classes,
which may be defined externally by the user; the reason for the two-part
name for this component will become clear below

Particles is the set of the events and sub-constituents making up this constitu-
ent.

A sub-constituent of a constituent 1s one of its Particles or a sub-constituent of
one of them. The Particles of a constituent are restricted so that no constitu-
ent may be a sub-constituent of itself. Thus, the constituent structure of a per-
formance in our representation is a directed acyclic graph.

4.1.1 Logical Classification of Constituents

For constituents to be maximally useful, we require that their properties be
defined in such a way as to be easily and efficiently available for testing and/or

8

manipulation. That is, given that the user should able to specify whatever mu-
sical groupings s/he is interested in, it must be possible to indicate that these
groupings have some structural properties — for example, that they are consti-
tuted horizontally or vertically with respect to time.

In order to specify Properties more generally, but still allow efficient inference
from them, we propose the following approach. The Properties component of a
constituent is a pair,

(spec, environment)

where spec is a logical specification, and environment is a (possibly empty) set
of values for the result of GetPitch etc, when applied to this constituent. The
idea 1s that the spec is a logical specification for the defining property of the
constituent, which can be checked by looking at the particles of the constituent;
the environment supplies event-like information on Pitch, Time etc associated
with the constituent directly.

First, we define the specification language for specs. We use a first order logic,
with the conventional connectives. We already have the destructor functions on
structures and datatypes, and the arithmetic and comparison functions described
before (and their derivable relations). Then we can naturally specify the prop-
erty of (eg) a monophonic line, or stream, like this, where p; range over particles:

stream <«

Vpi.—~3p2. p1 # P2
AGetTime(p;) < GetTime(pz) A
GetTime(p,) < addiq(GetTime(p;), GetDuration(p;))

This means that the constituent has no particle which starts between the begin-
ning and end of any other particle.

Similarly, we could specify the orthogonal type, the time slice, where some point
in time is common to every particle in the constituent, like this:

shice
Jt.Vpi. GetTime(p;) <tA
t < addiq(GetTime(p;), GetDuration(pi))

4.2 The Constituent Representation — Implementation

The implementation of the constituent is very similar to that of the event. The
implementation must be a tuple of the form

(Identifier, Properties, Definition, Particles, Description)

Identifier is as in the event implementation;

9

Properties and Definition are, as at the abstract level, a logical specification of
the structural properties of the constituent. At the implementation level,
though, we make a distinction between properties specified in terms of
externally defined predicates and those defined by the constituent itself.
More on this below;

Particles are as in the abstraction above;

Description is an arbitrary structure, defined by the user, which 1s intended for
annotation of useful information. Note that no interpretation is given for
this component, and that while software may freely write to it, no software
using its information in any strong sense can guarantee to be portable.

We require that constituents have appropriate typing and destructor functions,
as for events.

4.2.1 Properties and Definitions

What, then, i1s this distinction between the Properties and the Definition of a
constituent?

In checking that a constituent has the properties required for meaningful applic-
ation of a given algorithm, or, indeed, in checking that the Particles of a con-
stituent actually do have the Properties claimed, it will always be necessary to
use definitions of any propositions given in terms other than of the basic con-
nectives in the logic and the functions and predicates of the abstract data types.
Thus, a definition, external to the constituent structure itself is required — ex-
amples for the stream and slice were given above.

Now, there may well be properties which a user wishes to state about his/her
constituent which are simply true of that constituent by definition — for example,
that a constituent comprises the events of a particular piece of music. While 1t
1s clearly the case that such definitions could be written in the same way as the
definitions of stream and slice, above, it 1s equally clear that doing so could be ar-
bitrarily laborious — consider, for example, representing a full-scale symphony in
this way: the existence of each individual note would need to be verified. This is
doubly undesirable by virtue of the fact that all this work has already been done
anyway, in writing down the events and constituent structure in the first place.

It makes sense, therefore, at the level of implementation, to distinguish between
those propositions which are derivably true of a constituent (ze its Properties)
and those which are definitionally true of it. The Definition component con-
tains the latter. As an example, the constituent representing Debussy’s “Syr-
inx”, as discussed in [Wiggins et al 89, Smaill et al 90|, might be represented
thus, where c41 is the identifier of this constituent and el...e999 are the events
comprising it:

10

(c41, (stream, {}), syr-
inx, { el ...e999 }, “A solo flute piece by Claude Debussy”)

In this way, the property syrinz is defined to be true of the constituent, but
will not be unnecessarily checked by a specification checker, because it is distin-
guished as a Definition; nor will the user have to give an external definition for it.

4.2.2 Defaults

We specify defaults for each of the Get X functions over constituents as follows,
so that we can be sure that, for example, GetPitch will return some value which
1s meaningful, at least to the user who defined the default. The defaults can then
be built in to the implementation of the Get X functions. However, it may well
in general be undesirable or impossible to specify a universal default system for
any given application, and so we allow the specification of over-riding values in
the environment component of the Properties pair. The environment is a set of
pairs of named constants and values. The constants are named after the abstract
datatypes of the representation (viz Pitch, Time, Duration, Amplitude, Timbre),
and the associated values are then returned as the result of any call to the corres-
ponding GetX function with this constituent as parameter. For example, con-
sider a constituent, with Identifier cO, whose Properties are defined thus:

(stream, {Time = 0})

This constituent has the stream property defined above, and any call of
GetTime(c0) will return the value 0.

4.3 Example

A typical example constituent is given in Figure 4 (c00). It records the fact
that the events shown in Figure 2 are related together. That they form the
subject of the movement is represented by the Definition; and the underlines _
in the Properties and Description positions indicates there are no entries there.
In this instance of the representation, we use the relation k to express that we
are dealing with a constituent. The identifier is of the form c¢N where N is in
Integer Number.

Let us now consider how use of the representation given in Figures 1, and 2 al-
lows us to express different readings of the same notes. From the logical descrip-
tions of the constituents it is possible to check or generate constituents with the
properties described.

We have already shown how the initial notes may be represented in our notation.
In fact this twelve note constituent has the property of containing each degree of

11

the chromatic scale exactly once - that is, it defines a series. We can define what
1t 1s for a constituent to have this property, and make the assertion that the first
twelve notes form a series in the following form (figure 4, (c001)). Note that
this has the same notes as the previous example, but is distinct as a constituent.

Suppose now that we wish to represent some of the internal relations of these
notes. For example, if we simply collect together notes sounded simultaneously,
we find the four two-note chords we can write as in figure 4 (c03-c06). Then the
alternation of two-note chords and single notes can be expressed by a constitu-
ent that gathers together the chord constituents and the remaining single notes
(c07). Gathering the notes in groups of three in temporal order gives the four
triples (c08-c11) (figure 4).

k(00, _, subject, { e00 e01 e02 e03 €04 €05 €06 €07 €08 €09 e10 ell }, _)
k(c01, (series,{}), -, { €00 €01 e02 €03 e04 e05 €06 e07 e08 09 el0 ell }, _)
k(c03, (chord,{}), -, { e00,e01 }, _)

k(c04, (chord,{}), -, { e03,e04 },_)

k(c05, (chord,{}), -, { e06,e07 }, _)

k(c06, (chord,{}), -, {e09,ell },_)

k(c07, (alternation,{}), -, { c03, e02, c04, €05, c05, €08, c06, ell } , _)
k(c08, (triple,{}), -, { €00, e01,e02 } , _)

k(c09, (triple,{}), -, { €03, e04, €05 } , _)

k(c10, (triple,{}), -, { €06, e07, €08 } , _)

k(c11, (triple,{}), -, { €09, e10, ell }, _)

Figure 4: Constituents for Webern Op 27

Now, the first three of these triples are related in pitch terms — the pitches can
be obtained by transposition modulo the octave. This fact can be expressed in
a similar way to our other constituents. In this way, the constituent mechanism
allows the collection and labelling of events and other constituents.

5 Reasoning with the representation —
Some case studies

One approach to Artificial Intelligence in the symbolic tradition aims to simu-
late “intelligent” behaviour by allowing the goal-directed manipulation of sym-
bolic structures. In presenting our abstract basic representation, we have given
a famaly of ways of describing music in a neutral manner. In presenting our con-
stituents, we have given ways for users to introduce their own notions of analysis
and compositionally interesting features. We now indicate briefly how reason-
ing takes place via the manipulation of these descriptions so as to permit ana-

12

lysis and generation of music. Reasoning here is thus the inference of higher-
level constituent structure during analysis, or of basic structure from genera-
tional constituents or from transformations of existing structures.

We now describe some work performed using some of the above ideas. In the
first two cases, the use of a particular representation is not central, and our ab-
stract representation framework was used implicitly. In the third case, the rep-
resentation appears difficult to achieve in other ways, and our representation ap-
pears explicitly. [Smaill et al 90] describes a further example.

5.1 Case study: Small Scale Analysis

In [Wolte 90|, Isabel Wolte designed a program for analysis of musical form in
small, simple, classical music (minuets and trios by Mozart and Haydn). Based
on earlier work by Steedman ([Steedman 77]), a number of procedures were writ-
ten to deal with the rhythmic, harmonic, and repetition and similarity inform-
ation all of which is required for the simplest analysis.

The program consists of three relatively independent parts; each part is respons-
ible for one aspect of the analysis and builds up on the information obtained by
the preceding part(s). The musical input is first analysed from a rhythmic point
of view: a metre for the given piece is suggested and the input reorganised into
bars. Then harmonic constituents are evaluated, and regions of specific keys
defined, following the ideas of [Longuet-Higgins 62]. A further analysis of these
regions establishes the notion of a phrase, punctuated by a cadence, and provides
a simple overall structure of the piece. The analysis is performed bottom-up.

In using our representation for such analysis the musical events which we wish
to consider are abstractions of a hypothetical listening process; one which ana-
lyses acoustic input and extracts a sequence of pitches and idealised durations
(crotchet etc or integer numbers of beats) — throwing out (or representing sep-
arately) any information about tempo, stress etc. A process then acts upon
this representation, analysing it to produce constituents representing meaningful
units such as cadences. The knowledge of key or time signatures is not assumed
and is inferred from the pitch and length information of the musical input.

The program performed well on the restricted range for which it was designed.
However, 1t proved to be brittle outside that range, because of the fixed or-
der of use of the available information. The presence of various experts for dif-
ferent sorts of musical understanding suggests that a blackboard system would
work well here, as in [Ebcioglu 88], or a distributed system as suggested by
[Minsky 85]. Such systems would share musical representations of the form sug-
gested above.

13

5.2 Case study: Parsing for Temporal Structure

The ability to determine the internal metrical structure of a piece of music from
a performance (or score) with no expressional markers (accents, bar-lines, phras-
ings etc) can be a taught skill — and thus one which seems amenable to formal-
1sation as a parsing process. Where a piece is heard for the first time the parse
must happen in temporal order (without lookahead). The inference of higher
level metrical structure (time signature and phase) from local events must have
a significant ‘bottom up’ component.

Steedman, in his model of rhythmic analysis [Steedman 73, Wiggins et al 89],
took the approach of parsing for different metrical feet (eg trochees and dactyls)
which would only be recognised if they occurred on a strong beat of the metre
established up to that point. He had a policy of strict commitment during the
parse — the establishment of low level metrical structure always preceded larger
(longer) structures, which were never revised once established. This has attrac-
tions as a model of listening because it is bottom up and easily implemented as
a one-pass process and thus has some psychological plausibility. However, the
drawback of sticking to early commitments is that they might turn out to be
wrong, leading to misinterpretation of all subsequent structure.

John Whyte has been working on an improved parser which also works in one
pass but stores the evidence for different candidate metric structures in a tree,
and thus does not suffer from the problem of premature commitment [Whyte 91].
For example, this allows evidence for groupings into two and threes (hemzola) to
be co-present. There is psychological evidence for such ambiguity ([Handel 89,
p 411]). Pitch information can also contribute to this parsing process.

The system acts upon this representation, parsing it to get constituents repres-
enting metric chunks. For example, the metrical foot dactyl (long-short-short)
can be represented as a property thus:

dactyl «
Jp1.3p2.3ps. addia(GetTime(p;), GetDuration(p;)) = GetTime(p,)A
add¢q(GetTime(p2), GetDuration(p;)) = GetTime(p;)A
GetDuration(p,) = GetDuration(psz)A
GetDuration(p;) > GetDuration(pz)A

Vpa.(p1 =Pa VP2 =paVP3=pa)

This simply expresses the local constraints within the dactyl itself (the relative
durations and order of its particles). In practice higher level constituents are
needed to constrain the context in which a dactyl is perceived as such, for ex-
ample, the note which follows a dactyl must be longer than last two notes of
the dactyl itself. However, once satisfactory definitions have been created for
the necessary “perceived” constituents, we can experiment with different pars-
ing techniques, and the parser will work for any concrete representation. This
llustrates how our representation may be applied to the cognitive modelling of

14

musical processes, using constituents to represent perceived structures.

5.3 Case Study: “Traum A”

“Traum A”, for solo computer, by Geraint A Wiggins is an algorithmically gen-
erated piece, in the minimalist tradition, which shows two ways in which our
representation system can be useful to the composer. In particular, the piece re-
quires the simultaneous representation of notes in equal and just temperament
scales.

The piece starts from a “seed”, which is repeatedly transformed according to a
simple rule. The seed is a set of 128 sine waves, initially played simultaneously,
at equal amplitude, each an even-tempered semitone from the next, and centred
around Middle C. There is an underlying theme, which, though never explicitly
heard, directs the transformations as time proceeds. The theme can be thought
of as playing throughout the piece — at any given time, one note will be current.
In particular, as well as various time displacements which are not so interesting
for our purposes, each transformation step performs pitch and amplitude trans-
formations to achieve the following effect.

Initially, we hear a block of noise, which is effectively unpitched. As the piece
proceeds, the even tempered semitones tend in amplitude towards values de-
termined by whichever note of the underlying theme is notionally current. If
the pitch of a particular tone is close to a harmonic of that theme note (in the
usual “power-of-two” harmonic series), the tendency is towards the amplitude of
that harmonic; otherwise it is towards zero. When a tone’s amplitude gets close
enough to that of the corresponding harmonic, its pitch is altered to be exactly
that of the harmonic. Thus, it has moved from equal to just temperament (with
respect to the current note of the theme). Not only does this produce the obvi-
ous effect in the harmony of the piece, but as time progresses, the sound we hear
tends towards a single note — at the pitch of the current note of the underlying
theme — as the non-harmonic tones fade, and the near-harmonic ones become ex-
actly harmonic. The timbre of that single note is then determined by the particu-
lar distribution (in the space of frequencies) of the tones of which it is composed.

Because the underlying theme 1s expressed in equal temperament, each time we
pass from one note to the next, there are significant changes in the relative fre-
quencies of the current and target sounds. This gives rise to a constant shifting
of the harmonic spectrum, which provides the interest of the piece.

The creative aspect of the piece, then, lies primarily in the choice of theme and
of the values determining “closeness” in pitch and amplitude. Similar variables
appear in the transformation of the time displacements of each note.

15

5.4 Representing “Traum A”

There are two ways in which our representation is able to help us with this piece.
The first is rather prosaic, and would presumably be possible in the most basic
of representations — the obvious way to represent the set of sine waves produced
by each step in the transformation process is as events grouped in constituents.
Then the transformation step can be represented as a function from constitu-
ents to constituents. The resulting constituents can then be bundled together
in one constituent representing the whole piece.

More interestingly, we can define a Pitch data-type which has the ability to rep-
resent both equal and just temperament at the same time. We require Pitch and
Pitch Interval to be defined as in Figure 5. The intuition is that we represent
Pitch as some equal temperament base pitch — defined by the first three compon-
ents of the tuple: note name, accidental, and octave number, as before — with
a harmonic multiple and an octave shift (applied after the harmonic multiple)
to give us access to the just temperament scale related to each equal tempered
note in the type. Pitch Interval is then an integer number of semitones (the first
component) and a rational multiple which gives the adjustment between the dif-
ferent scales.

Having made these definitions, and supplied the appropriate destructor func-
tions, we can easily supply the seed, values for the two closeness measures, and
the theme (which can also be expressed as a constituent). The implementation
of the algorithm itself is then almost trivial.

Pitch={abcdefg} x {:fb} x Integer x Integer x Integer
Pitch Interval = Integer x Integer x Integer

Figure 5: Pitch/Pitch Interval datatype for “Traum A”

The whole has been implemented in Prolog, and interfaced to the CSound mu-
sic programming language via completely general routines based on the abstract
representation.

This ease of representation, we claim, would not be available in more conven-
tional notations. In particular, the attempt to notate this piece in conventional
score notation would be doomed to failure, unless the composer resorted to the
addition of indication for each and every note whether it were in equal or just
temperament. What is more, the compositional process itself is aided by the ex-
pression of the just tempered scales with respect to bases in the equal tempered
scale. This, again, would be difficult and complicated to represent in more con-
ventional terms.

16

6 Discussion

It 1s now appropriate to reconsider how our work fits into the broader context
of music representation in general. We have already discussed the problem of
‘what to represent’ in terms of the various dichotomies of score vs performance,
physical vs psychological, symbolic vs subsymbolic, analysis vs generation and
representation vs implementation. Clearly, there is no panacea, but it 1s useful
to consider the relative merits of different systems along two dimensions — ez-
pressive completeness and structural generality.

‘Expressive completeness’ simply refers to the range of raw musical data which
can be represented, and ‘structural generality’ refers to the range of high level
structures which can be represented and manipulated. For example, at one ex-
treme we can use a waveform to represent any (particular) performance at the
cost of being unable easily to capture abstract musical content; even another
performance of the same piece may look very different. For another example,
MIDI encodings capture some generality about a performance (at the cost of los-
ing some completeness) but do not extend to the expression of general high level
structures. Traditional score-based notation has more structural generality than
MIDI, giving some tonal and metric information, but is restricted in expressive
completeness to traditional western tonal music.

Graphical representations of energy spectrum against time (eg Xenakis’s upIC)
are more useful to musicians than a raw energy waveform but (as yet) there is no
uniform way of interfacing these to more abstract structures, particularly those
which are not localised in time (eg recapitulation). Similar considerations also
apply to symbolic representation schemes which give time a privileged status
(eg [Diener 88, Balaban 88]). However, within the time domain these systems
have more structural generality than purely graphical representations.

Grammar-based formalisms ([Roads 85]) are also popular. Our suggested form-
alism 1s compatible with such approaches, because a parse tree can be expressed
naturally in constituent terms. As we have seen above, different representational
semantics are possible in this framework, depending on the interests of the user.

With respect to the dimensions of expressive completeness and structural gen-
erality, our framework allows more expressiveness than a traditional score, as
the mixing of just and even tempered scales shows; it also allows the construc-
tion of musically significant structures over any or all the dimensions of the ba-
sic representation.

We have shown how our representation may be used for analysis and for com-
position in a musically intuitive way. We believe therefore that this framework
provides an extensible vehicle for automated manipulation of descriptions of mu-
sical structures, and as such could allow musicians to gain access to the power of
the computer in terms that make sense to the musician. However, this work will

17

benefit in the future from more extensive worked examples, from usage by other
musicians and musicologists and, eventually, from the development of software

applications.

References

[Balaban 88]

[Boulez 85]

[Buxton & et al 78]

[Diener 88|

[Ebcioglu 88]

[Handel 89]
[Jackendoff 87]

[Leman 88|

[Lewin 87]

[Longuet-Higgins 62]

[Minsky 85]

M. Balaban. A music-workstation based on multiple hier-
archical views of music. In C. Lischka and J. Fritsch, ed-
itors, 14th International Computer Music Conference,
pages 56—65. Computer Music Association, 1988.

P. Boulez. Quoi1? quand? comment? In T. Machover, ed-
itor, Quoi? Quand? Comment? pages 272-285, Paris,
1985. Christian Bourgois.

W. Buxton et al. The use of hierarchy and instance in
a data structure for computer music. Computer Music
Journal, 2:10-20, 1978.

G. Diener. Ttrees: an active data structure for computer
music. In C. Lischka and J. Fritsch, editors, Proceedings
of the 14th International Computer Music Conference,
pages 184-88. Computer Music Association, 1988.

K. Ebcioglu. An expert system for harmonizing four-part
chorales. Computer Music Journal, 12, 1988.

S. Handel. Listening. MIT Press, Cambridge, MA, 1989.

R. Jackendoff. Consciousness and the computational
mand. MIT Press, Cambridge, MA., 1987.

M. Leman. Symbolic and subsymbolic information pro-
cessing in models of musical communication and cogni-
tion. Interface, 18:141-60, 1988.

D Lewin. Generalized Musical Intervals and Trans-
formations. Yale University Press, New Haven and Lon-
don, 1987.

H. C. Longuet-Higgins. Letter to a musical friend. The
musical review, 23:244-8,271-80, 1962.

M. Minsky. Musique, sens et pensée. In T. Machover, ed-
itor, Quoi? Quand? Comment?, pages 137-63. Chris-
tian Bourgois, 1985.

18

[Nattiez 75]

[Roads 85]

[Smaill et al 90]

[Steedman 73]

[Steedman 77|

[Whyte 91]

[Wiggins et al 89|

[Wolte 90]

J.-J. Nattiez. Fondements d’une sémiologie de la mu-
sique. Union Générale d’Editions, Paris, 1975.

C. Roads. Grammars as representations for music. In
C. Roads, editor, Foundations of Computer Music,
pages 443-46. MIT Press, Cambridge, MA, 1985.

A. Smaill, G. Wiggins, and M. Harris. Hierarchical music
representation for analysis and composition. In Proceed-
ings of the Second International Conference on Music
and Information Technology, Marseilles, France, 1990.
Also in Computers and the Humanaities, vol. 27.

M.J. Steedman. The Formal Description of Musical
Perception. Unpublished PhD thesis, Edinburgh Uni-
versity, 1973.

M.J. Steedman. The perception of musical rhythm and
metre. Perception, 6:555-69, 1977.

J. Whyte. The automatic rhythmic analysis of mono-
phonic music. AI/CS Undergraduate Project Report, Ed-
inburgh University, 1991.

G. Wiggins, M. Harris, and A. Smaill. Representing mu-
sic for analysis and composition. In M. Balaban, K. Eb-
cioglu, O. Laske, C. Lischka, and L. Sorisio, editors, Pro-
ceedings of the 2nd IJCAI AI/Music Workshop, pages
63-71, Detroit, Michigan, 1989. Also available from Edin-
burgh as DAI Research Paper No. 504.

I. Wolte. Automatic music analysis. AI/CS Undergradu-
ate Project Report, Edinburgh University, 1990.

19

