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Abstract

We provide a framework for the description of music representation sys-
tems in terms of two dimensions, which we call Structural Generality and
Frpressive Completeness. This allows us to give some criteria for the eval-
uation of such systems, dependent on the aims of the user of the system.
We then survey a range of current representation systems and their imple-
mentations in the light of the our characterisation.

1 Introduction

1.1 The Evaluation of Music Representation Systems

We seek to provide a framework for the description and evaluation of music rep-
resentation systems suitable for implementation on computers. Qur main concern
is with representational aspects, rather than with implementation; however, if a
system 1s to be useful a good implementation is required.

A representation system may be suited to many different purposes. and its use-
fulness is relative to the task at hand. It is not possible to cover all of such pur-
poses, but we can distinguish three general sorts of task.

1. Recording—Here the user wants a record of some musical object, to be re-
trieved at a later date. Accuracy is the prime concern.
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2. Analysis—Here the user wants to retrieve not the “raw” musical object, but
some analyzed version of it. revealing some salient feature. The ability to
find or exploit structure within the object is important.

3. Generation/Composition—Here the user wants to build a new musical ob-
ject, either from scratch, or by transformation of an existing object. Manip-
ulability and flexibility of the representation is needed.

Our classification below is intended to cover these three situations.

1.2 Structure of the Paper

This paper proceeds thus. After an outline of the concepts we propose for con-
sideration and of the background ideas involved. we discuss the possibility of us-
ing a general-purpose representation language developed in Artificial Intelligence,
not specifically targeted at musical applications. We then consider a representat-
ive selection of music representation systems in the light of the discussion in the
introduction, above, and in the next section. We restrict our attention to systems
that work on the level of notes and more abstract structures, rather than systems
for dealing with (say) description of timbre.

Some systems raise additional issues. In particular, “connectionist” systems use a
different notion of representation from most of those we describe, and do not fit
so easily into our framework. This is discussed after the main survey.

The paper concludes by summarizing why we consider this analysis of music rep-
resentation systems to be useful.

2 Two dimensions of representation systems

We consider the relative merits of different systems along two orthogonal
dimensions—“expressive completeness” and “structural generality”.

“Expressive completeness” refers to the range of raw musical data that can be rep-
resented, and “structural generality” refers to the range of high-level structures
that can be represented and manipulated. For example, at one extreme we can
use a waveform to represent any (particular) performance at the cost of being un-
able easily to capture abstract musical content; a very similar performance of the
same piece may look very different. For another example, MIDI encodings cap-
ture some generality about a performance (at the cost of losing some complete-
ness) but do not extend to the expression of general high-level structures. Tradi-
tional score-based notation has more structural generality than MIDI, giving some
tonal and metric information, but is restricted in expressive completeness to tra-
ditional western tonal music.
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The diagram below shows several well-known representation systems classified ac-
cording to their position with respect to the two dimensions. We believe it is use-
ful to evaluate the suitability of a representation system for a particular task by
relating the task and the system to these two dimensions.

2.1 What is represented?

First, we must be clear about what we are trying to represent. We draw a distinc-
tion between a “score” (in the conventional sense) and a “musical object”. A score
may be thought of as instructions to a musician, computer system or whatever,
to be read as the basis for the realization of a piece of music, while the result ob-
tained from this process, and its sub-parts, are musical objects. To put this an-
other way: a score (usually) only partially defines the musical object produced
when the scored piece is performed—the score “precedes” the realization or inter-
pretation [Nattiez 75, pp109-117].

Even though our evaluation strategy may be applied both to scoring systems and
to representations of pure musical objects, confusion will arise if we mix the two.
Therefore, for this discussion, we will focus on representations of musical objects,
which gives us a rather broader spectrum to consider.

A further potential confusion is that any representation of a musical object can
be viewed as a score and made open to “re-interpretation”; conversely. scores can
be (and often are) viewed as representations of musical objects. This distinction
should be borne in mind when reading the discussion below.

2.2 Procedural and Declarative Representations; Objects

There is a distinction, which will be useful in the forthcoming discussion, between
programming languages and between data representations that are either “pro-
cedural” or “declarative”.

We characterize the difference for programming languages as follows. Procedural
languages (e.g., FORTRAN, C) require us to state how something is to be done.
On the other hand, declarative languages (e.g., Lisp, Prolog) allow us to specify
what is to be done or what is lrue—execution is left to the programming environ-
ment and is (in theory) not the concern of the programmer.

In more concrete terms, the procedural programmer uses a system that follows
basic instructions about the manipulation of data: for example, “add 1 to 2” or
“put it in X”. The declarative programmer, on the other hand, works in a rather
different way. In functional languages. like Lisp, one thinks in terms of a result,
obtained by the evaluation of a function. so instead of saying “add 1 to 27, one
might say “the sum of 1 and 27. The connection between the concept of a sum and
the action of adding is made by the evaluation mechanism. In logic programming
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languages, like Prolog. a programmer specifies logical relations between data, so
that “the sum of 1 and 2 is 3”7 is a simple program. Logical inference is used to
find solutions to queries (for example, “what is the sum of 1 and 27" or “what
number added to 1 gives 3?7”) posed to the programming system. This is a very
high-level specification—stating what is true. rather than giving explicit instruc-
tions to manipulate data.

Now consider the distinction for knowledge representations. If we have a program
that will generate a declarative representation of a musical object. we can say that
the program itself is a procedural representation of that object.

Why, then. should we not use the program itself instead of the output it yields,
for our purposes of evaluation? Because, practically speaking. it can be very dif-
ficult to get at the data implicit in a program, especially a procedural program,
without running it. Anyway, if we run the program, we end up using the explicit
data it generates.

The issue of procedural vs. declarative representations will arise later, but we pro-
pose to defer it, since the majority of representations are declarative, and we wish
to compare like with like. There is no point in discussing generation programs
when we can necessarily discuss the form of their output.

We must also briefly discuss the nature of object-oriented programs and repres-
entations. It is often thought that the object-oriented programming paradigm is
an alternative to the declarative and procedural ones, or to the procedural, func-
tional or logical basis of program design. This is not the case. Object orientation
is a style of programming. which may be implemented in any of the above forms,
to varying degrees of advantage. Specialized object-oriented languages may be
procedural, functional, or logical, but they have built in to them certain structures
and operations that facilitate the object-oriented approach to program design.

An object-oriented program is stated in terms of “objects”. which are localized
collections of data and procedures. Objects may be arranged in a hierarchy, and
various forms of property inheritance may be defined. Objects have their own local
variables and memory, and may share a view on to common memory with other
objects. The behavior of the objects in a program is determined by messages sent
between them, defined by the programmer. We will discuss object-orientation fur-
ther in the section on the SmOKe system.

2.3 General Purpose Representation Systems

Before looking at purpose-built music representation systems, we consider general-
purpose systems for representing and manipulating knowledge. What do general-
purpose systems provide, and are musical applications likely to raise problems
that demand special treatment?

A good knowledge representation language lets the user express knowledge of a



Surveying Musical Representation Systems 6

given domain naturally and concisely, and supports an efficient reasoning regime
to retrieve and manipulate the knowledge encoded. Much work has gone into the
development of such formalisms, which allow a declarative reading of the encoded
knowledge [Brachman & Levesque 85].

KL-ONE [Brachman & Schmolze 85] has been used as the basis for a musical ap-
plication [Camurri et al 92]. It allows the user to describe a domain in terms of
“Concepts”. These describe both the individual objects in the domain, and classes
or “sorts” of objects; objects can belong to several sorts, because some sorts are
more general than others (so if Freddie is of sort “shark”, he is also of sort “fish”
and more generally again “animal”). This means that general knowledge can be
attached to all objects of a given sort (“all animals eat”) and used whenever an ob-
ject is of the appropriate sort (so, “Freddie eats”). This sort of inference is called
“inheritance”, and is important because it can be implemented efficiently. Con-
cepts are defined in terms of their internal structure—KL-ONE uses “Roles” for the
constituent parts or attributes of a Concept, and “Structural Descriptions” that
express in logical terms how the Roles interrelate for a particular Concept. Brach-
man ensures that KL-ONE is a declarative representation, and it is important that
the representation can be efficiently manipulated, with an appropriate interpreter.

Other general-purpose representation systems exist. So can we simply use a
general-purpose system to represent of musical objects, or are there special char-
acteristics involved that raise special problems?

Some musical systems privilege the notion of time when describing musical
objects—see [Balaban 88, Diener 88]. This can be for pragmatic reasons (efficient
access to the temporal properties of objects), or because time is held to be the fun-
damental axis in musical descriptions. However. we can also regard time simply as
one dimension among others in our representation. Pieces like Messiaen’s “Modes
d’intensités et valeurs” illustrate how time and pitch dimensions (among others)
may play equal organizing roles. So the temporal aspects of music do not require
special representation techniques (though it may help to optimize the treatment
of time).

One feature of music representation, whether for analysis or generation, that is
not common outside music, is the importance of multiple viewpoints—the abil-
ity to represent the same musical object in many different ways for different pur-
poses. In many representation tasks, ambiguity of representation can be a prob-
lem, whereas, in music, multiple readings of an object can be vital. A system
where this was difficult would rate poorly in terms of structural generality. Al-
though general-purpose systems can be used to express such multiple viewpoints,
the importance of this aspect is such that it should be explicitly supported, as it
is in some of the systems we look at later. Apart from this, however, the prob-
lems raised in music representation are not so different from the general case.
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3 Evaluating Music Representation Systems

3.1 Introduction

This section is a survey of specialized music representation systems, evaluated in
terms of our proposed two dimensions. There are many more systems than we can
possibly cover here, so we have tried to choose a representative member for each
subclass. No slight is intended on those systems not mentioned.

Each system will be outlined and assessed in terms of expressive completeness and
structural generality. The point of this exercise is two-fold. First, it enables us
to exemplify what we feel is important about musical knowledge representation
in general, and about the individual systems in particular; second, it allows us to
explain our evaluation strategy and its parameters.

3.2 Spectrum Analysis

We have already mentioned the raw waveform as an example of maximal express-
ive completeness and minimal structural generality. We can carry this abstract
discussion further to explain our axes of evaluation.

Consider the output of a spectrum analyzer or phase vocoder (see €.g., [Vercoe
91]), applied to the raw waveform we mentioned before. The result of the ana-
lysis is a three-dimensional mathematical structure, graphable as frequency wvs.
time vs. amplitude. The difference between this representation and the raw wave-
form is that the individual partials are separated out from the inscrutable (and so
structurally non-general) original wave. It is now much easier to isolate, e.g., in-
dividual notes (by searching for groups of partials in harmonic frequency ratios),
than it was in the raw wave. We can draw notional circles around harmonics
that form meaningful groups, which we could not do before. Note, however, that
this notional grouping is outside the representation—the spectrum—itself, and so
does not contribute to its structural generality. The point is that, in the spectrum
form, the information in the wave is much more readily available for analysis and
edition than it was before, in a form that is musically more meaningful.

Further, if we have a perfect spectrum analyzer, and a perfect additive synthesiser
to reconstitute our waveform after analysis. we can exactly reproduce the original
wave from the spectrum representation. Thus, even though we have increased
structural generality, we have lost no expressive completeness—our two axes of
evaluation are mutually independent.

3.3 MIDI

The MIDI system [Rothstein 92] is a combined hardware and software commu-
nications protocol for music electronics. Recent developments of the idea include
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definitions for “MIDI Files” that contain all the data required to play a “song” on
a particular synthesiser or other MIDI instruments. Some instruments have “Sys-
tem Exclusive” commands to allow dumping of specific information about their
settings to other instruments or to archive storage. In the context for which it was
originally intended. the MIDI system functions well. However, as a music know-
ledge representation, it scores few points in either structural generality or express-
ive completeness.

A MIDI “event” is the receipt or transmission of a number of bytes of information
by an instrument or computer. Two common events are “NOTE ON” and “NOTE
OFF”. Each consists of three parts: an identifier (NOTE ON or NOTE OFF), a
note number (from a standard numbering of the piano keyboard), and a velocity
(the speed with which the note is depressed or released). Time is implicit: a note
begins on receipt of a NOTE ON event, and ends on receipt of a NOTE OFF.

Let us first consider expressive completeness. MIDI Time is represented impli-
citly in terms of “real” time—or at least, the ticks of a notional clock. This means
that it is as close to what was played as the granularity of the clock ticks will al-
low. and therefore potentially quite high in expressive completeness. On the other
hand, a huge amount of pitch information is abstracted out of the representation.
This is due to the approximation of pitches to piano keys. No explicit assump-
tion is made about tuning systems: equal or just temperament use the same note
representation in a MIDI file—but the representation does not encompass both:
it acknowledges neither. simply ignoring the issue. On balance. then. in terms of
expressive completeness, MIDI sits a quite long way below the spectrum repres-
entation discussed above.

As for structural generality, even the very latest versions of the MIDI system score
badly. While the MIDI concept of “note” and its start and end time are certainly
more structurally general than the spectrum representation, there is no further al-
lowance for structural annotation until we reach the level of “MIDI File”, which
is intended to encapsulate a whole “song”. The pitch dimension is equally homo-
geneous. Thus, the kind of multi-level and multi-view representations discussed
below are impossible.

3.4 Score Representations: DARMS

For completeness, we must cover a computer scoring system, which. like any scor-
ing system, can be (ab)used as a representation for musical objects. One such is
DARMS [Erickson 75]. DARMS is a language that allows representation of tradi-
tional Western scores in the way considered most computer-friendly at the time
of its inception—i.e., as ASCII letter codes.

The DARMS representation scheme encourages the user to view scores as an un-
interpreted collection of graphic symbols—so that a curved line, for example, de-
notes neither a phrase nor a slur, but is simply a graphic symbol placed some-
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where on a piece of paper. For this reason, DARMS. and any other system like it,
for representing traditional scores in computer-friendly form. occupy exactly the
same place in our diagram as the score itself.

3.5 Graphical Representations: the UPIC

There 1s no difference in potential expressive power between a graphical repres-
entation and a textual one. That is to say: any information represented graph-
ically can necessarily be recast in a more traditional, non-graphical form. Why,
then. use a graphical representation? Simply because the information represented
can be substantially more easily available to the human eye. Given this, we can
straightforwardly apply our evaluation criteria to graphical systems exactly as to
non-graphical ones.

A good example of graphical representation systems is that used in the “UPIC”, a
computer musical instrument intended to embody the some of the ideas in [Xena-
kis 71]. The UPIC is a synthesizer incorporating a large graphics tablet on which
lines can be drawn. The drawings can represent waveforms, amplitude envelopes,
and events (i.e., notes), expressed as signal, amplitude, or pitch, respectively,
graphed against time. Each UPIC event is a notionally continuous pitch gradient
with fixed start and end points, and is associated with a waveform and envelope.
Pages denote collections of events; scores are sequences of pages.

The UPIC representation is a hierarchy—the first we have seen here. The graph-
ical view can be applied at several levels: waveform, envelope, and score. However,
at the level of our interest here, where the primary events are (roughly speaking)
notes, the system is hardly hierarchical at all. Each page of score is stored sep-
arately from its neighbors, and may be manipulated, just as one would expect to
manipulate images with a very simple wysiwyg graphics program. Beyond this,
there is no concept of structure other than that implicit on the pages of the score.
So while the UPIC scores quite well on expressive completeness, due to the high
granularity and flexibility of its basic concept of “note”, it is only slightly more
structurally general than MIDI.

3.6 Music Programming Languages
3.6.1 Introduction

Programming languages, specialized or otherwise, are increasingly being used for
tasks related with music analysis, generation and composition. Specialized lan-
guages often consist of libraries of functions, extending a general-purpose program-
ming language, and a customized environment for user interaction. It is therefore
important that we consider carefully the contribution of the host language when
we evaluate such systems.
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Recall that we have distinguished two kinds of programming languages: proced-
ural (e.g., FORTRAN, C) and declarative (e.g., Lisp, Prolog). Recall also that
we restrict our attention to systems that treat music on the level of notes, and no
lower, so we will not discuss the sound generation mechanisms of the languages
covered below, but cover only representation of note events.

We have not placed the music programming languages per se on our diagram, be-
cause they are different in kind from the representation systems shown there. Nev-
ertheless, it is possible to discuss the representations they use.

3.6.2 The Music-N Family

The Music-N family began at AT&T Bell Laboratories [Mathews 69]. It has
spawned descendants such as Music V, Music 11, Csound [Vercoe 91|, and, re-
cently, CLM [Schottstaedt 92].

These languages use a two-part music representation, consisting of an “orchestra”
of sounds to be used and a “score” of notes to be played. The two are stored
separately, so one orchestra may perform many scores. Both parts of the music
representation are declarative: the orchestra part specifies connections inside a
sound generator built from a number of predefined blocks, and the score part is
a list of note specifications, each with start time, duration and pitch, and maybe
some other parameters. Running the “program” is equivalent to “performing” the
score, the output being a digitized representation of the sound waveform. Note
that the only “interpretation” involved is in the orchestra: the resulting sounds
follow the specification literally. so the combined specification might be said not
to be a score in the traditional sense: rather, it defines a musical object directly.

In expressive completeness, the MUsic-N family fares quite well, since parameters
are expressible with fine granularity, and therefore can be made to (re)produce a
musical object very accurately. However, structural generality is less satisfactory:
notes may be grouped in sections, but we cannot specify relationships between
sections, nor parameterize the sections themselves. No hierarchical arrangement
is possible beyond the “section” level.

3.6.3 Common Music

Common Music [Taube 92a] is a language that allows one to write programs that
generate sequences of notes in a variety of formats—e.g., MIDI events, or Csound
notes. It is a descendant of PLA and SCORE of [Loy & Abbott 85], and is im-
plemented as an extension of Common Lisp, providing a set of tools that perform
operations on lists of musical parameters. Note that here is our first example of a
“procedural” representation of musical objects. Even though Lisp is a declarative
programming language, the specification of the music arises from the evaluation
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(i.e., the execution) of the program—there is not in general a declarative repres-
entation of notes, but rather of the processes that generate them.

Assessment of Common Music with respect to our two parameters is complicated
by the fact that, regardless of whatever representation it has of its own, on evalu-
ation (i.e., execution, since Lisp is a functional language), it gives rise to a repres-
entation of the produced musical object in some other (programmer-selected) sys-
tem. The internal representation of Common Music is in terms of standard Lisp
datatypes, and so is in principle as strong or as weak as any of the systems here
described, depending on the programming style used. However, because the final
output must be restricted to the terms of another system. the actual value is that
of the chosen output representation. The same applies to structural generality:
while the generality of the selected output system limits the overall generality of
a given Common Music program, the original data produced can be highly struc-
turally general. with arbitrarily complicated annotations and grouping being cre-
ated by the Lisp program.

3.6.4 Stella

Stella [Taube 92b] uses a frame-like representation [Minsky 81], enhancing Com-
mon Music to admits both implicit procedural and explicit declarative specific-
ation of musical objects. Musical knowledge is built around “Stella-objects”. A
“Stella-object” is either an atomic element that reflects a basic compositional
datum (e.g., a single note) or a more abstract concept denoting a collection of ele-
ments or of other collections (e.g., a monophonic sequence of notes), or a frame.
A frame is a data structure with components called slots. Slots have names and
accommodate information of various kinds: e.g., elements, collections of elements,
references to other frames, or procedures to compute the slot values. Various the-
ories of inheritance and default may be applied to data represented in frames.

The frames make little difference to the evaluation of Stella’s output. compared
with that of Common Music. because one is still restricted by one’s chosen out-
put representation. However, the structural generality of the internal representa-
tion is much improved by the addition. It is now possible explicitly to annotate
groupings and relationships, and, importantly, to use that information as part of
the musical object construction. As well as (and because of) the increased struc-
tural generality, user transparency is significantly improved over the implicit pro-
cedural representation of Common Music.

3.6.5 Summary

In this section we have shown that, when evaluating a (music) programming lan-
guage we must draw a distinction between the language itself and its output. Also,
declarative programs do not always represent knowledge declaratively, and, while
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declarative programs do not always lead to structurally general representations, a
declarative knowledge representation (even in a fully procedural program) can in-
crease structural generality significantly.

3.7 Grammar-based Approaches: The Bol Processor

A grammar is a means of describing the structure of a class of syntactic entities.
Grammars may be implemented in many ways, the basic idea being that structure
of larger entities is described in terms of their sub-parts. For example, in English,
a sentence can be composed of a noun phrase followed by a verb phrase. This is
often written:

Sentence — NounPhrase VerbPhrase

to form, along with definitions for other syntactic structures, a “Phrase Struc-
ture Grammar”. Other styles of grammar exist. such as “Categorial Grammars”,
where each word is in a syntactic “category”, some of which are functions. Rules
are used to define how members of categories may be combined to produce mem-
bers of other categories. For example, a noun phrase might be in category NP,
and a verb phase in S\NP; then, given the rule

X+ Y\X — Y

the two form a sentence, S. Computational linguists often use syntactic analysis
by grammar (“parsing”) to determine the structure of a sentence, the words of
which are then translated and recombined to give a representation of the meaning
(“semantics”) of the sentence in a machine-friendly form (e.g., Predicate Logic).
A grammar for a class of structures may be used to generate those structures. to
check if a given structure falls within the class described, or just for the descrip-
tion alone; the structure itself is purely declarative. It is often possible to use a
given grammar for any or all of these purposes. Use of a grammar may be more
or less computationally hard, according to its expressive power [Winograd 72].

The use of linguistic tools for music begs a deep philosophical question. If there
is an analogy between the syntax of language and musical structure, what. if any,
is the relationship between linguistic semantics and the “meaning of music”? In-
deed, it is by no means clear that such “meaning” exists. However, this issue is
outside the scope of the current paper.

Musical grammars are not usually intended to represent individual compositions,
but to describe classes of compositions (e.g., in a particular style or form). As
such, they are not the same as the other systems covered here, which are mostly
intended for representing the kind of information that results from using a gram-
mar. Therefore, grammars are more appropriate for generating and analyzing mu-
sic, than for recording.
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Although the grammar-based approaches do not exactly correspond with the rest
of our examples, our two dimensions can help in evaluating them—many of the
same issues arise. The “Bol Processor”, BP1. [Bel & Kippen 92] is a good example
of a grammar-based system. It generates pieces of music (“qa’idas™) for “tabla”
drumming; according to expert evaluators. its output is credible. BP1 works from
a top-down, phrase-structural analysis of the qa’ida form, sub-dividing down to
the level of individual note sequences. A problem for any characterization of mu-
sical forms involving repetition is representation within the grammar of the con-
nections between repeated parts. To achieve this, Bel & Kippen define a form
of grammar called a pattern grammar, with has rather more than the descriptive
power of the context-free grammars used to define most programming languages.

BP1 grammars fall low on the scale of expressive completeness—they only repres-
ent the tones of the tabla drums, and not a full pitch metric. This, however, is
a limitation that has been designed; it is not, in context, a drawback. Structural
generality, however. is high, because of the grammar’s ability to express encapsu-
lation of structures into higher level structures. BP1 is particularly structurally
general, by comparison with similar systems, because it can explicitly represent
connections between different sections of music.

[Roads 85] is a good survey of grammar-based representations. [Lerdahl &
Jackendofl 83] is a detailed discussion of a particular system.

3.8 Music Calculi: Balaban’s “Music Structures”

A good example of the notion of a “music calculus” is Mira Balaban’s “Music
Structures” [Balaban 92]. The point of designing a calculus for knowledge repres-
entation is that one would like a language for that representation, which allows
general expression, but also admits unambiguous inference about the information
represented. Balaban’s central idea is that music must be represented in terms of
the interleaving of its temporal and hierarchical properties. She approaches the
representation task by means of hierarchies of structures, abstracted along a set
of parallel time lines, and interconnected by various “concatenation operators”,
all defined in terms of one basic operator, “musical concatenation”, e, which is es-
sentially the set insertion operator.

This yields a very powerful and flexible representation system, which is too com-
plicated to explain in detail here. Instead., we give an example (borrowed from
[Laske et al 92]). Consider the following music structure, presented in a simpli-
fied form that treats e like “cons” in Lisp, so ( ms; @ ( msy @ NIL )) is written as
( ms; msy ). The music structure

( [2.5]@-20 ( [b,10]@5 [a,5]@2 )@8 )

represents this sequence of notes (rests are implicit; we have added the time sig-
nature and barlines for legibility):
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The lowest-level music structures are of the form [ms,d] where ms is some music
structure (here, a note of the Western scale) and d is its duration expressed as a
real number. The @ (“time-stamp”) operator links a music structure with a real
start time; times within the structure are then relative to that start point. Fi-
nally, the e operator associates two music structures together in the temporal re-
lation defined by their start times. So the example above denotes a compound
music structure made up of an atomic event (a 5-beat “a”) and another structure,
which consists in turn of a 10-beat “b” and an overlapping 5-beat “a”.
ample of an operation one might perform on this is flattening—making it into a
structure only one level deep:

An ex-

( [2.5]@-20 [b,10]@13 [a,5]@10 )

The resulting structure is now ready for conversion into, say, MIDI signals.

We can assign names to music structures, and, because the time-stamp operator
is relative, use the same structure many times in (say) a motivic piece of music.
The user is limited only by imagination in terms of hierarchies used in the rep-
resentation, and of their attached significance. Such significance can be made ex-
plicit, by means of “Attributed Music Structures” — wiz., arbitrary labelings at-
tached to music structures.

One advantage of Balaban’s system is its open-endedness. The symbols used are
mostly freely user-chosen, and so are open to free interpretation—though this can
lead to the construction of ad hoc operators, such as Balaban’s “~” (overlap ho-
rizontal concatenation) operator. This extensibility means that the system can
have high expressive completeness, qualified by the comment that it is in a sense
by default, because there is no an explicit extensibility. Balaban does not address
expressive completeness in her examples. though she does point out that they use
the “twelve tones” system, which perhaps implies that she expects to use differ-

ent symbols to express other tonal systems.

In structural generality, Balaban’s system fares equally well. Her hierarchies are
designed specifically to maintain that property.

A significant drawback with the Music Structures system, related to the issue
(above) of the choice of symbols to represent (e.g.) different tuning systems, is
the use of the real line as the representation of time. While we believe Balaban
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is correct to state that the required mathematical properties of time are those of
the real numbers, it is rarely the case that musicians think in those terms. An
improvement would be to use an algebra with the relevant properties of the real
numbers, but with abstract syntax. This could add to both the system’s struc-
tural generality and its expressive completeness. This is the approach taken in the
C'harm system, described below.

3.9 Object Orientation: SmOKe

We outlined the basic notion of the object-oriented programming style above. In
this section, we discuss an object-oriented music representation system that is in-
dependent of implementation language, and how it relates to the other systems
covered here, and to our evaluation parameters.

The SmOKe (Smallmusic Object Kernel) system of [Pope & et al 92] is a univer-
sal scheme for music representation. By this we mean that SmOKe is not in it-
self a representation for music, but a specification for what a music representation
should be. This specification is object-oriented, in terms of class hierarchies of ob-
jects. Objects “share state and behavior and implement the description language
as their protocol”. Implementation of SmOKe is explained in [Pope & et al 92]
via the object-oriented SmallTalk-80 language.

Many of the wide-ranging and powerful capabilities of SmOKe are outside the
scope of our example evaluation for this paper. For example, SmOKe requires
representation of timbre in a number of standard forms, and descriptions of “in-
struments” that map data in a SmOKe representation into control signals for syn-
thesisers or music programming languages. It also admits scores, including tradi-
tional Western score notation.

Implementations of SmOKe fare rather well in expressive completeness (at the
note level). Descriptions of note events are given in terms of abstract properties—
see the section on C'harm, below, for a discussion of this idea—though it is not
specified how this is to be implemented. Since an abstract specification can de-
scribe parameters to an arbitrary level of detail, the user decides how expressively
complete an implementation of SmOKe must be.

To consider SmOKe’s structural generality, we need to know what hierarchical
structures are available. We emphasize that it is not the object-oriented nature
of the description that makes the representation structurally general—the objects
are only a means of writing the information down. Frames. for example, will in
principle do just as well. SmOKe’s hierarchy gives us arbitrary nesting of struc-
tures: groups of events may be specified, and mixed with events and other groups
to form higher level groups. It also provides “abstractions for the descriptions of
‘middle-level’ musical structures (e.g., chords, clusters, or trills)”. This, while ap-
parently adding to structural generality, may in fact be restricting it, since it is
possible to specify these kinds of relationships in general logic terms—therefore,
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the existence of particular instances of groupings may suggest that general spe-
cification of such things is not possible. We suggest, then, that SmOKe is highly
structurally general, but that annotation of its structures may not be as general
as that in, for example, C'harm (see below).

3.10 Abstract Representation: CHARM

The Charm system (Common Hierarchical Abstract Representation for Music)
[Harris et al91] is an attempt to free the representation of music (subject to some
experimental constraints) from application- or domain-specific influence. It is in-
tended to allow representation of music in any terms desired by a user. This is
made possible by separation of the “concrete” representation actually used by a
musician or a program from the “abstract” mathematical properties required of it.
The technique is familiar to computer scientists—the end result is an “Abstract
Data Type” (ADT). Charm defines the notion of musical events, abstract data
types for the properties of events. and a system for building hierarchies of events
to describe music.

C'harm events are notes of constant pitch or frequency, with a start time and dur-
ation, intensity, and place holders for other information (e.g., timbre) not cur-
rently catered for. The constant pitch requirement is an approximation to reality
to allow for tractable experimentation, while still admitting a substantial corpus of
real examples. Both pitch and time are described in terms of data-structures that
are arbitrary except that they must obey certain mathematical rules—those of a
linearly ordered commutative group [Harris et al 91]. Charm defines names for
the operations on the representation that must be supplied—for example, Pitch
and Duration are functions that, given the name of an event, return values of
its property—but it is left to the designer or user of a given concrete represent-
ation to build the necessary implementation. Then, any program using Charm
will be able to access the user’s representation via the defined functions (though,
of course, one is always restricted by the aptness of one’s data for one’s program.
For example, applying a Bach-style harmonization program to a raga is unlikely
to produce useful results, regardless of C'harm’s interfacing capabilities.)

The point here is that the ADT approach allows us to represent as much detail
about (constant) pitch as we like, in whatever form we like, so long as we follow
the mathematical rules. For example, in [Smaill et al 90], we explain how an ana-
lysis program designed for the twelve-tone scale was used on quarter-tone music
without changing the code of the analyzer. This was possible because both pro-
gram and representations were built using C'harm. On this basis, C'harm rates
very highly in terms of expressive completeness, because, subject to the tempor-
ary experimental constraints placed by the designers, we can represent whatever
we want—the abstraction approach allows us to choose exactly the mathematical
properties we need.
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C'harm events can be grouped by the construction of “constituents”. These are
arbitrary collections of events or other constituents, known as “particles”, and
referred to via unique labels generated by any given implementation of C'harm.
Each constituent also has a unique name, and may be labeled with a set of first
order logical formulae describing the properties of its particles or of the constitu-
ent as a whole. The definitions may override defaults, which are globally defined,
such as the start time and duration of a constituent. It is also possible to label a
constituent “definitionally”—to state that the constituent itself defines something
(e.g., a piece or motif). Finally, the user may attach an arbitrary text string to
each constituent to express any other information. No inference from this inform-
ation is assumed possible.

Because of the use of arbitrary logical formule in the constituent specification,
the structural generality of C'harm is very high, since any property of or relation-
ship between constituents can be represented explicitly.

4 Symbolic and Sub-symbolic Representation

Some approaches to information processing and representation differ qualitatively
from the discrete symbolic manipulation that characterizes most of the systems
covered here. One important class is that employing parallel distributed pro-
cessing (PDP, or connectionist) [Leman 88, Leman 91].

While PDP systems were originally inspired by quasi-biological models of neural
networks, modern connectionism is heavily rooted in statistics and the study of
dynamic systems. They are particularly useful for implementing processes of cat-
egorization and matching with low-level data.

Symbolic and PDP approaches are not mutually exclusive—it is likely that all
three would be needed in a comprehensive model of music cognition. The key to
understanding their mutual relevance lies in the concept of abstraction boundar-
ies. As we explained in the last section, the abstraction boundary we have chosen
for the C'harm system is the one of note events. Above this level we can construct
a meaningful symbolic system; any hypothesised representations or processes be-
low it are sub-symbolic with respect to our abstraction boundary. PDP represent-
ations might well be appropriate (e.g., for identifying musical events). Further-
more, PDP systems are not intrinsically sub-symbolic—it depends where they lie
within a system with respect to an abstraction boundary. and in a many layered
system there may well be more than one such.

5 Conclusions

The main thrust of this paper has been about the representational adequacy of dif-
ferent approaches to music representation. As researchers in Artificial Intelligence
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and Cognitive Psychology have been only too painfully aware, representation is a
thorny issue. One clear lesson that has been learned, however, is the importance
of assessing notation in the context of a whole “representational system” (i.e., not
just the notation but also the processes that act upon it). Therein lies the prob-
lem for the would-be constructor of a general-purpose system of notation—one
simply cannot anticipate all the purposes to which it may be put. This problem
will be familiar to anyone serving in a standards institution such as ANSI.

Alongside this assessment, we have established some criteria by which the repres-
entational adequacy of systems may be judged. While undoubtedly useful. systems
such as DARMS and MIDI are primarily communications protocols, which are
not suited for the representation of high-level musical structures. In contrast, we
suggest that systems such as Balaban’s “Music Structures”, Pope’s SmOKe, and
our proposed Charm representation. while having a significant degree of express-
ive completeness, go beyond being communications protocols and are first steps
towards creating expressive, general music representation languages. By this, we
mean systems that allow the expression and manipulation of both established and
novel musical structures, while maintaining their ability to represent raw musical
data.

We have isolated two orthogonal dimensions along which these properties may be
measured, giving a means of judging systems (both existing and to-be-designed)
as to their suitability for particular purposes. For maximal utility in a given sys-
tem, one would wish to maximize both dimensions. However, in the design of an
efficient communication protocol, such as MIDI, one is more likely to place the em-
phasis on expressive completeness, rather than structural generality. We suggest.
then. that these dimensions may be a useful guide in choosing an existing repres-
entation system for a particular purpose. and in designing systems for future use.
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