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Abstract

I present the Whelk proof development system, a tool for the synthesis and transform-
ation of logic programs. Whelk is based on ideas used in the “Proofs-as-Programs”
literature [9, 1], which enable the eztraction of logic programs from proofs, in a sim-
ilar way to that of [10]. Using Whelk, we can synthesise pure logic programs [4] which
may be easily translated into “real” logic programming languages such as Prolog and
Godel. Delay declarations to prevent floundering and unbounded recursion may also
be generated automatically. In the longer term, Whelk will form a substrate for the
CLaM proof planner [7, 6, 8, 5], which will allow automatic generation of programs
from first order specifications.

In this paper, I present a subset of the refinement rules used in Whelk. I show
how a proof of correctness of both the rules and the synthesised program should be
carried out. I give a detailed example of a synthesis/transformation proof.

1 Introduction

In this paper, I present and explain the Whelk proof development system. Whelk is
intended for the synthesis and/or transformation of logic programs as I will explain
below, though it is usable for the development of more general proofs. Whelk is de-
signed for use with the CLaM proof planner [7, 6, 8, 5], which allows the automation
of the proof process; currently, CLaM is orientated towards proofs by induction.

The rest of the paper takes the following form. Section 2 begins by outlining
the notion of proofs as programs, summarising the problems raised and solutions
proposed in [4], which arise when the idea is applied to logic program synthesis,
rather than that of functional programs, which has been past practice. Section 3
summarises the operation of the Whelk system, and lists and justifies the proof rules
used in the example of Section 4. Finally, Section 5 draws conclusions and outlines
the next steps in the work presented here.

2 Background

2.1 Proofs as (Functional) Programs and Type Theory

Proofs-as-Programs is an existing technique for program synthesis [9]. The basic
notion behind it is that mathematical proofs of certain theorems can contain the
computational information required to construct a program. In particular, if we



prove a conjecture of the form
F V7.30.5(7, 0)

where 7’is a (possibly empty) vector of inputs, o is an output, and S is the specific-
ation of a program, it is sometimes possible to derive that program from the proof.
I will refer to this kind of conjecture as a synthesis conjecture.

In order to ensure that we can derive a program from the proof, and to ensure
that the program is then executable, we must place restrictions on the proof system
we use. The most straightforward way to achieve the necessary restriction is to
require that the logic used for the proof be constructive. The upshot of this is that
any proof of our existential goal, above, will involve showing not merely that the
output value o exists, but that it can be constructed. This is shown by constructing
it in terms of any other values, functions, and relations in S, and their definitions.
Since the proof shows how to construct our output for all input, we can then derive
a program which will construct it for any given input value.

This construction process begs an important question: how can we know that
the program we construct is correct with respect to the proof? In the literature on
functional proofs-as-programs (as opposed to proofs-as-relational-programs, which I
discuss below), there is a standard technique for doing this. We cast our specification
conjecture and its proof in a Constructive Type Theory; once we have done so, we
can derive functions, expressed in terms of the A-calculus, as our programs, and
know they are correct by virtue of the Curry-Howard Isomorphism [14], a one-to-
one relationship between the notions of implication and function application [16, 17].

2.2 Proofs as Relational Programs

The main problem with the application of the type-theoretic proofs-as-programs
technique to the synthesis of logic programs is that it synthesises functions — if
we were to synthesise logic programs which were strictly functional, we would be
throwing away the main advantages of logic programs: multiple outputs, partial
programs, the concept of failure, and so on. So we would like to adapt the technique.

In [4], we propose an adaptation of the proofs-as-programs technique in which
we view relations (qua logic programs called in the all-ground mode) as functions
on to the type boole (containing just true and false). We then prove a synthesis
conjecture of the approximate form

Fv23B.S(D) © B

where B is a variable of type boole, 7'is a (possibly empty) vector of arguments and
S is as before. This technique allows us to overcome the limitation of [10], which
can only synthesise functional relations.

The exact form of the specification conjecture is largely a matter of taste — it can
be specified as above, where the boolean variable is second-order, or in other ways
which keep the logic first-order; we discuss these possibilities in [22]. The option I
have chosen is to use a first order typed constructive logic with a new operator,

0 : formula — formula

read as “it is decidable whether...”. The meaning of 9 is defined thus:

FVa.oS(@ iff + 3IPVaE.S(@) < P(@) and P, a relation, is decidable



where S is a formula specifying a program. Proving decidability is equivalent to
proving the existence of the boolean B in the initial approach. However, it has the
advantage that the higher-order component of the specification, B, is hidden away
in the definition of the logic, and we are left with a purely first order specification.

Given this operator, branches of the proof corresponding with any parts of a
logic program search tree can be elaborated normally, regardless of their eventual
success or failure, and then related with true or false, in a synthesised program,
as appropriate. This will become clearer in the exposition of the Whelk system in
Section 3, and in the worked example in Section 4.

Now, since I am not using type theory (which is for various practical reasons not
ideally suited to this work), I must also motivate the construction steps associated
with the proof rules — I will do this in Section 3.3.

2.3 Justification

It is necessary to justify the usefulness of this technique as opposed to the many ex-
isting techniques for program synthesis and transformation in the logic programming
world. It is regrettably the case that the proofs necessary to synthesise programs
are often long-winded and difficult; it seems likely that direct writing of a program
will be a much quicker and less laborious approach than this. However, I suggest
that the technique is very much worthwhile, for the following reasons.

1. Tt involves working with logical specifications with no procedural content at
all. Thus, is is much closer to the original intent of Kowalski’s equation [15]
than working with programs which have a procedural interpretation.

2. Working with specifications in terms of equivalence means that there is only
one notion of program equivalence, which simplifies matters greatly.

3. The proofs associated with a particular theorem contain much more informa-
tion than a logic program usually does. This information is available for use in
connection with program synthesis and/or execution, once the proof has been
carried out. For example, in [21], I explain how information about applications
of induction can be used to generate delay declarations.

4. In this technique, automation of the synthesis process becomes for the most
part equivalent to that of the proof process. Existing work (eg [7, 6, 8]) can
therefore be used to generate programs automatically; thus, long-windedness
of the proofs no longer matters.

5. Given 3 and 4, we can expect to adapt the existing work to use the information
in the proof to produce good programs as part of the automated process more
easily than in techniques working by program transformation alone.

6. Once the proof and extraction systems are shown to be correct, we know that a
complete proof will give rise to a correct program. Thus, no correctness proofs
are needed for the synthesised programs.

7. We can use the technique to reproduce the behaviour of other techniques —
for example, in [20], I show how a prototype of the current technique can be
used to reproduce the results of [2]. Given 6 above, this means that such
techniques need no longer be proven correct — if they are implemented in
the synthesis logic, then they must be so, a priori, given that their notion of
program equivalence is the same as Whelk’s.



3 The Whelk System

3.1 Introduction

Whelk is a Gentzen Sequent Calculus proof development system, based on the Oyster
system of [7], the Martin-Lof-based Type Theory of that earlier system having been
replaced by a first order typed constructive logic with equality. Whelk is designed
and implemented as a substrate of the CLaM proof planner, as explained in Section
5.

In this section, I will state the refinement and construction rules necessary for
the example of Section 4, which constitute a good cross-section of the rules of the
full Whelk system.

3.2 The Logic

The proof refinement system I use here is based on a sequent calculus, L.J, of [11].
LJ has been enhanced for our purposes by the addition of the d operator and
refinement rules for each combination of @ with the other operators, and with types
and equality. It would take too much space here to state the rules for the whole
system, so I will limit myself to those necessary for the example proof in Section 4.
These rules are laid out in the following sections.

Notation is as follows: upper case Greek letters (I, A) denote sequences of for-
mulee and program fragments; lower case Greek letters (7) denote types and program
fragments; upper case Roman letters (4, B, C') denote formula; and lower case Ro-
man letters denote variables (z,v;) or terms (t). {} denotes contradiction. A(t/z)
means “A with all free occurrences of x replaced by t”. Finally, we have the usual
connectives, V, 3, A, V, <, —, -, with the addition of <; we have typed =, and we
have : denoting type membership.

In all the rules, where a term substitution occurs, the type of the replacement
term must be consistent with that of the term being replaced.

Note also that there must (for the moment) be no more than one occurrence
of d in a goal. Multiple occurrences would mean that we were synthesising meta-
programs, which I defer for a future document.

3.3 Extracting Pure Logic Programs

We also need to supply a set of construction rules, in correspondence with the proof
rules, to allow our program to be built. This way, the program extraction process
can take place as a side effect of elaborating the proof, and then the program can
simply be read off afterwards.

The language I will use for my extracted programs is that of the pure logic pro-
gram used in [4] and [22]. It is essentially the same as the specification language used
above, but functions other than constructors are not allowed, and the 8 operator
does not appear. Also, the boolean terms true and false are replaced by the pre-
dicates of the same name. There is a mapping, the interpretation, between the two
logics, which I will now label as Ls and Lp — the specification logic and the program
logic, respectively. Note that, in [22], these were called Lg and L7, the “external”
and “internal” logics respectively. I no longer use this terminology, which can be
misleading. The correspondent of an Lg-formula A in £p under the interpretation,
is denoted by A*; the only detail necessary here is that the connectives of Lg map to
connectives of the same name and meaning in L£p under *. See [22] for more details.



The behaviour we require of our system is that, given a specification conjecture
F Va.o S(a)
we synthesise a pure logic program P(@) such that
FVar.s(a@)* < P(a)

so that P is effectively the “witness” for the decidability of the specification S — ie
something which actually does the deciding.

For our purposes here, it is enough to say that a pure logic program, like that
defining P, consists of a head and a body, connected biconditionally, and that the
body is an arbitrary formula containing quantification, and maybe free occurrences
of variables appearing in the head, all variables being typed. It may also contain
explicit true and false predicates, so the natural expression of a pure Prolog program
in these terms is its completion. For example, the Prolog member/2 predicate

member( X, [X[] ).
member( X, [_|Y] ) :- member( X, Y ).

could be expressed, for lists of natural numbers, as the following pure logic program:

member(z:nat, y:list(nat)) <
y=[]A falseV
Juo:nat.Jvr:list(nat).y = [vol1] A (z = vo A true V
member (x:nat,vy:list(nat)))

To generate our desired program, we need a construction rule corresponding with
each proof rule. First, I introduce notions of synthesis proof and wverification proof.

Synthesis proof is that part of the proof of a specification conjecture which con-
tributes directly to the extracted program. Verification proof is that part which
shows the synthesis part to be correct, but does not actually constitute part of the
synthesised algorithm itself. This distinction is also made in the functional proofs-
as-programs literature — though, in Martin-Lof type theory, both the synthesis and
the verification parts of the proof contribute to the extracted program, which is
undesirable for our purposes here.

It is a desirable feature of the logic Ls that it is possible and easy to distinguish
syntactically between synthesis and verification parts of the proof: wherever there
is a 0 in one’s conjecture, one is working on synthesis; elsewhere one is performing
verification. This is reflected in the construction rules shown below.

The rule governing whether or not manipulation of a hypothesis contributes to
the construction of a program is more subtle than that for conjectures. With a
few exceptions, hypotheses in sequents are considered to be true and are therefore
associated with the program fragment ¢true by default. The only times when this is
not the case are:

e when a disjunctive hypothesis is split into its disjuncts — each disjunct is then
a constraint on the environments of a separate subconjecture;

e when an induction step is used — when the program fragment associated with
the induction hypothesis is a recursive call to the synthesised predicate; and

e when a hypothesis is cut in, or a lemma is appealed to — in which case the
program fragment associated with the new hypothesis is a call to the program
synthesised by its proof (or just true if it does not contain 0).

All of these will be demonstrated in Section 4.



Notation is as follows: each sequent or hypothesis A must now be associated with
a program fragment; these fragments are written as subscripts on the expressions,
each one with an explicit fragment being placed in [] for clarity. Where no value
is given, if A is decidable by first-order unification (eg a function-free equality) the
default is A*; otherwise the value is a program fragment ¢ constructed by proof of
the subconjecture

[T+ 0A]lpe)ss

The body of the synthesised program fragment associated with each subconjecture is
denoted by a greek letter (¢,1)); the head, P(£), is a predicate symbol, P, applied to
an “environment” of variables, £, which constitute the parameters of the predicate.
€ is written here as a list in (., nil) notation. The program fragment associated with
the dominating conjecture is then expressed in terms of those of its subconjectures.

The refinement rules given in Section 3.4 are in some cases annotated with rules
for program construction. Those which have no such annotation simply do not
contribute to the construction; they serve only to verify its correctness. Those rules
marked 1 do not apply to formula containing 9.

Finally, note one further non-standard feature of the logic. Any formula of form

0A

where A is a formula is necessarily true — it states that A is either true or false. It is
nevertheless necessary to give refinement rules for the provability (F) of conjectures
of this kind, because of their contribution to the synthesised program (see below).

3.4 The Refinement and Construction Rules
3.4.1 Axiom

We need two forms of axiom rule, the second deriving anything from contradiction:

aziom

O AT AF Alpomes . ™ T{},AF A

3.4.2 3 Introduction

Tk A(t/z)
'k3z:7.A

3 intro

3.4.3 V Introduction

We need two forms of V introduction, distinguishing between V outside and inside
the scope of 8. This is necessary because the first rule leads to the introduction of
a parameter into £ and the second does not.

[T, 2:7 F 0 Allpg)os
[T F V7.0 Al p((2:r).6) >

[[F, X.T |_ 6 A]]P(é’)(—)(ﬁ
[[F F 6 (vaA)]]P(E)Hd)

Y intro Y intro

3.4.4 A Introduction

[T FOoAlpe)yny [T'FIBlpe)ny
[T+ 0 (AAB)pe)yosony

A intro

3.4.5 V Introduction

[T FOoAlpe)yny [T'FIBlpe)ny
[T +O(AV B)pe)yoeove

V intro



3.4.6 — Introduction

We need two forms of — introduction, distinguishing between — inside and outside
the scope of 9, as with V. Note that, in the construction rule, we must reject the rule
of ex falsio quod libet, to avoid proof of anything from falsehood, which is undesirable
in logic programming. Thus, that — in Lp is more like (local cut) in Prolog than
classical implication as in Gddel, though it does not have the same (or indeed any)
procedural interpretation.

— intro -4 T,AFB s intro [r+ 8A]]P(5)<—>¢ [T,AF 83]]13(5)‘—”/«'

3.4.7 O Introduction
[T+ Allpe)oe
[[F F 6A]]P(nil)<—>true

3.4.8 V Elimination

For this rule, we need all three possibilities: V inside and outside 0, and in expres-
sions not containing 8. £" is £’ prepended to (t:7).nil.

[[F, [[6 V.'L'ZT.A]]P(EI) y A, [8 A(t/m)]]p(gu) F A]]P(f,‘)(_mﬁ
[[F, [[6 vx:T.A]]P(SI)7 AF A]]P(f)H¢

[T F -Alpe)os
[[F F 6A]]P(nil)(—)false

0 true intro 0 false tntro

Y elim

[[F, [[Va:r@ A]]p(gl) y A, [8 A(t/:c)]]p(gu) = A]]P(E)H¢
[[F, [[\7’337-6 A]]P(gl), AF A]]P(S)H¢

Y elim

I,Va:r. A, A(t/z), A+ B

Velimt = s A AF B
3.4.9 - Elimination
po oA AF A
B ey =

3.4.10 V Elimination
[[1—‘7"47A = C]]P(E)<—>¢ [[FJBJA - C]]P(E)(—)¢
V elim [[1—‘7 Ak aA]]p(g)Ha [[F, AF 6B]]p(5)<_,ﬂ
[T, AV B, A Clpe)eang)v(Bry)
Here, the constructions a and 3 ensure that the disjuncts in the eliminated disjunc-
tion correspond with executable program fragments.

3.4.11 Induction on Lists

This is the rule which will allow us to build recursive programs. (Of course, further
induction rules exist in Whelk but we do not need them for the example given here.)

[T, z:list(1), A - A{[]/2)]Pr(e)s0
induction [T, z:list(1), A, vo:T, v1:list(7), [A{vi/z) ] pr(er) F A{[volvr]/2)] Prig)erw
[T, z:list(), A+ Allpe)yop (&)

&' is the environment at the time of application of the rule, and P’ is defined by
P'(E") & § =gy ru) [1A ¢V 3ErTIC 7.8 =1y u(r) [EiEoo] A9

Note that the program fragment associated with the induction hypothesis is a call
to a procedure, as opposed to a procedure definition, such as are associated with
sequents. This is always the case for hypotheses.




3.4.12 Substitution

We have two substitution rules, one under logical equivalence, which must be justi-
fied, and one for rewrites manipulating only the connectives in Ls.

'k [IB ~ C]]P(g)<_>¢ 'k [[A<C/B)]]P(£)<—>¢/\¢ rewrite I+ [IE]]P(E)Hd’
L'+ [Alpe)oe L'+ [Dlpe)yess
where D < FE, this being determined by the proof system.
In the sub rule, the contribution of 9 is to connect any variables instantiated in
the proof of the substituted goal with those in the original.

sub

3.4.13 New Hypotheses

[T, [Blp (niyy F Alpe)os
[T F Alpe)yos

where P’ is the program synthesised by the proof of the lemma, B.

lemma

3.5 Generating “Real” Logic Programs

Given the rules of Section 3.2, we can now perform a proof of the specification
conjecture specified in 4.1. On completion of this proof, we will have a program
which embodies the algorithm which we showed to exist during the proof process.

However, this program is a pure logic program, and not a program in a generally
accessible programming language. Fortunately, transforming pure logic programs
into Prolog and Gdédel programs is easy, except for the issues of floundering and
infinite looping mentioned below. A little trivial partial evaluation quickly removes
all the failed branches of our program. Because our logic was constructive, we do
not have disjunctive heads, so we immediately generate Horn Clauses.

For the rest of this paper, I shall focus on the Gédel language [13], because it
gives us some features which are preferable, here, to those of Prolog. In particular,
Godel allows arbitrary formulae in the bodies of its clauses, so there is no further work
involved in unpacking the bodies of our pure logic programs. Much more import-
antly, Godel admits explicit DELAY declarations (as found in NuProlog), which we
can use to prevent floundering and infinite looping in our synthesised programs. [21]
explains how the inductive structure of the synthesis proof encodes the information
we need to generate these declarations without further analysis.

3.6 Correctness
3.6.1 Introduction

There is not space here to give the full correctness proof for this system. I will,
however, sketch a proof for a few rules which will show how the proof is done.
Correctness of the sequent calculus is presented in terms of an existing Gentzen
Sequent Calculus, assumed correct a priori. Correctness of the synthesised programs
with respect to the specifications is shown in terms of the required behaviour specified
in Section 3.3. A full proof of the correctness of Whelk will be given elsewhere.

3.6.2 Correctness of the proof system

I start from LJ, —, a constructive logic based on LJ [11] with the addition of equality
and sorts in the obvious way. Connectives have their usual constructive meanings.

Theorem 3.1 (Correctness of Whelk Verification Logic) V¢ iff LI, - F ¢
where V is the subset of Whelk rules not mentioning 8 and ¢ does not mention 0 .

Proof 3.1 V is identical with LJ, - by definition. m|



Theorem 3.2 (Correctness of Synthesis Logic) The rules of Whelk including
0 are correct with respect to the interpretation of @ given in Section 2.2.

Proof 3.2 By definition, F 0 A iff F AV = A. Rewrite any Whelk rule under this
equivalence. The resulting rule is necessarily derivable from the rules of LJ,—. O

Theorem 3.3 (Correctness of induction rule) The induction rule for finite lists
preserves correctness with respect to the interpretation of 0 given in Section 2.2.

Proof 3.3 In the usual way. O

Theorem 3.4 (Correctness of Whelk Logic) The rules of Whelk are correct with
respect to the usual constructive interpretations of the standard connectives, and to
that given for 0 in Section 2.2.

Proof 3.4 From Proofs 3.1, 3.2, and 3.3. O

3.7 Correctness of the synthesis system

Theorem 3.5 (Correctness of the synthesis system) If P(d@) is a program syn-
thesised by Whelk proof of a specification conjecture
F Va.o S(a)
then
FVar.s(a@)* < P(a)

Proof 3.5 By induction on the structure of proofs, building on base cases of the 0
introduction rules, each construction rule being proven correct individually.

Base Case 1:
Consider

[T+ Alpe)es
IIF F A]]P(nil)(—)tTue

Given a specification (sub)conjecture

[T F-Allpe)es
IIF F aA]]P(nil)(—»false

O true intro 0 faise ntro

ros
suppose that I' - S. Then application of 0 4. introduction yields subconjecture

| Y
which can be shown in LJ; —. The corresponding program is defined as a proposition

P & true

Therefore, - S is true and P < true, so - S* & P. O
Base Case 2:
Alternatively, given a specification (sub)conjecture

rros
such that I' - —.S, application of 8 ¢4 introduction yields subconjecture

k=S

which can be shown in LJ. The corresponding program is a proposition:
P & false
Therefore, - S is false and P « false, so - S* < P. O



Step Case
Consider A introduction under 0:

[T+FOAlpe)se [TFIB]pe)sy
[TFO(AAB)]peE)sseny

Suppose we have a synthesised (sub)program

A intro

PooNy
from a specification conjecture
F'+0(AAB)
Then the required behaviour is
I AAB)* & P
which is equivalent to
I"EF(AAB)" & oA

It is known that
IM"EA* & ¢

and
I'"FB* <9
Therefore,
T F(A* & ¢) A(B* < 0)

Therefore (recall that the meaning of connectives is preserved under *) it is not hard
to show that
I"EF(AAB)" & oAy

The correctness of the other construction rules is proven in the same way. O

4 Example: subset/2

4.1 A Simple Synthesis Conjecture

For the purposes of example here, I will use a conjecture which specifies the subset/2
predicate using lists as a representation for sets — that is, the predicate which
succeeds when all the members of the list given as its first argument are members
of that given as its second. The specification in Whelk looks like this:

F Vz:list(nat).Vy:list(nat).0 (Vzinat.z €z — z € y)

where : denotes type membership, V and 3 denote the usual quantification over
types, — denotes the usual implication, and € is defined by the following lemmas
(which are equivalent to the completion of the familiar member/2 predicate). Lists
are denoted with the Prolog/Gdodel notation.

F Vznat.—z € [] (1)
F Vz:nat.Vhnat Vi:list(nat).x € [ht] oz =hVz €t (2)

We will also use an axiom about the decidability of equality in the natural numbers:

b VznatVynatz =yV-x =y (3)



The proof proceeds by primitive induction on lists, first on z and then on y. Note,
though, that there is no reason in principle why more powerful forms of induction
should not be used. For example, insertion sort and quicksort may be derived from
the same specification, the former by primitive induction, the latter by course-of-
values or transfinite induction [18].

Necessarily, I have skipped some steps in this proof, because the proof is far too
long to present in full here. However, I have tried to focus on the points which are
most relevant to the synthesis issues discussed in this paper. Note, in particular, that
the proof is presented in refinement style, with the rules being applied “backwards”,
and that I have omitted unchanging hypotheses unless they are used in the current
proof step. The finished program, after conversion to Godel, looks like this:

MODULE Subset.
IMPORT Lists.
IMPORT Numbers.

PREDICATE Subset : List( Number ) * List( Number ).
Subset(y,z) <- Subset_b(y,z).

PREDICATE Subset_b : List( Number ) * List( Number ) * Number * Number.
Subset_b(y,z) <-
y =11V
SOME [v1] SOME [v0] ( y=[vOlvi] &
SOME [x] (x=v0 -> Subset_dy(z,x)) &
Subset_b(vi,z)))).

PREDICATE Subset_dy : List( Number ) * Number.
Subset_dy(z,x) <-
SOME [v3] SOME [v2] (z=[v2]|v3] &
(x=v2 \/ Subset_dy(v3,x))).

4.2 The Proof
We start with:

F Va:list(nat) Vy:list(nat).0 (Vzinat.z € x — z € y)

First, we introduce z, and apply primitive induction on lists. This gives us two
subgoals (note the program fragment attached to the induction hypothesis in the
step case — I use o to denote the name of the synthesised predicate).

Base Case:

x:list(nat)
F Vy:list(nat).0 (Vzinat.z € [] = 2 € y)

Step Case:

x:list(nat)

vo:nat

vy :list(nat)

[Vy:list(nat).0 (Vz:nat.z € vi = 2z € Y)]lo ((2i1ist(nat)).nil)
F Vy:list(nat).0 (Vznat.z € [wolv] = 2 € y)



At this stage, the synthesised program looks like this:

o((z:list(nat)).n) < o ((z:list(nat)).n)
o' ((z:list(nat)).m]) « (z=[]A¢)V
Jug:nat.Jvy :list(nat).x = [volvr] A9

where 7, ¢ and ¢ are uninstantiated meta-variables. Comparing this with the Gédel
definitions of Subset/2 and Subset _b/3 in Section 4.1 will yield a clearer under-
standing of which parts of the proof give rise to which program fragments.

I will now follow through the base case of the proof. We proceed by introducing
the remaining universal quantifiers, and then by 0 ¢y introduction:

y:list(nat)
zmnat
Fze[l]ozey

The synthesised program now looks like this:

o((z:list(nat)).(y:list(nat)).nil) <+ o ((x:list(nat)).(y:list(nat)).nil)
o' ((z:list(nat)).(y:list(nat)).nil) <+ (z =[] Atrue) Vv
Jug:nat.Jvy:list(nat).x = [volv1] A ¢

and we are left with a verification conjecture in standard LJ— ; which is trivially
proven using definition (1).

The step case is harder. First, use the sub < rule to unfold the specification
according to definition (2). Then introduce the universal quantifier of y and rewrite
under propositional equivalence to get:

y:list(nat)
F O (Vzinat.(z =vg = z € y) AVzinat.(z € v1 = z € y))

The rewriting can be performed automatically, via the rippling paradigm of [3, 8].

The only step so far in the step case affecting the synthesised program is the V intro-

duction: rewrites maintain logical equivalence, and so do not change the program.
Next, we introduce A under 0 to give two subconjectures:

F & (Vzinat.z = vy = z € y) (4)
Fo(Vzmnat.z € vi — 2z € y) (5)

The proof of (4) runs as follows. After introducing V and —, we use axiom (3) to
decide on the equality of z with vy, which leaves us with the program

o(z:list(nat).y:list(nat).nil) < o' (z:list(nat).y:list(nat).nil)
o' (z:list(nat).y:list(nat).nil) & x =[] A true V
Jug:nat.Jv;:list(nat).x = [volv1] A
((x =vo ANtrueV -z =vg A false) = ¢) AN

where ¢ and ¢ correspond with the right hand branches from the — and A intro-
ductions, above, respectively.
The sequent corresponding with ¢ is

r = Vg
Fozey

This is proven by induction, using the definition of €. It yields the member/2 pre-
dicate (Subset_dy/2 in Section 4.1).

Finally, (5) leads to introduction of the program fragment associated with the
induction hypothesis, as follows. Recall that the goal is:



[Vy:list(nat).0 (Vzmat.z € vi = 2 € Y)]o (z:tist(nat)).nil)
y:list(nat)
F O (Vzinat.z € vy = z € y)

We eliminate y on the induction hypothesis to yield the sequent:

[Vy:list(nat).0 (Vz:nat.z € vi = 2z € Y)]lo (215t (nat)).nil)
y:list(nat)

[0 (Vzmat.z € vi = 2z € Y)] o ((z:tist(nat)).(y:tist(nat)).nil)
F o (Vzmnat.z € v1 — z € y)

The proof is then completed by application of the axiom rule.
We now have the following pure logic program:

o(z:list(nat).y:list(nat).nil) < o' (z:list(nat).y:list(nat).nil)
o' (z:list(nat).y:list(nat).nil) <
z =[] AtrueV
Jug:nat.Jvy:list(nat).x = [volv1] A
((x = vo ANtrue V -z = vg A false) —
o (y:list(nat).z:nat.nil) A
o' (vi:list(nat).y:list(nat).nil)
o' (y:list(nat).z:nat.nil) <
y=[]A falseV
Jua:nat.Jus:list(nat).y = [valvs] A
((x = v2 AtrueV -z = v2 A false) V
o' (vs:list(nat).x:nat.nil)

This then translates, trivially, into the Gédel program of Section 4.1.

5 Conclusion and Future Work

In this paper, I have demonstrated the theory behind the Whelk program synthesis
and transformation system. I have outlined a proof of correctness for the system,
and I have show how it can be used to develop a simple program.

The implications of this are as follows. We now have a proof system which will
allow us to synthesise programs from logic specifications. Because the proof system
and associated synthesis system is known to be correct, programs synthesised by it
are also correct (with respect to the specification!) a priori. The approach improves
over similar existing approaches (eg [10]) because it generates true logic programs
with non-determinism, rather than only functional predicates.

Because there is strong connection between the steps taken in a proof (in par-
ticular between the choice of induction scheme and the resulting algorithm), we
can exercise considerable control over the program we eventually obtain. Thus, we
are in a position to use proof steps which we know will lead to efficient programs.
This, however, is subject to certain controls in the object-level logic to ensure that
good programs are produced — one of which requires, for example, that negation be
partially evaluated as far as possible in the synthesised program, thus reducing (or
usually removing) the problem of floundering [21]. In similar vein, DELAY declara-
tions can be generated easily and automatically, using the inductive structure of the
proof.

Subject to these desirable restrictions, the close connection between the proof
rules and those for construction means that we can in principle implement other



techniques in our system. For example, one technique which has already been recon-
structed in this framework is that of Compiling Control [2]. Another likely candidate
for reconstruction is the block fold/unfolding work of [19]. A noteworthy point is
that Whelk will provide a platform on which these techniques and others may not
merely by developed and tested, but also combined in new and useful ways.

The next task required is to finish the implementation of the system and thence
to being able to use the CLaM proof planner to generate programs automatically.
This will require the construction of new meta-level encodings of proof strategies
for producing not only proofs, but proofs which correspond with efficient programs,
as in [12]. It is known that the rippling paradigm [5] can usually reduce the search
tree for a proof to a linear path; the search heuristics are not, however, motivated
towards program synthesis, and will usually produce the shortest proof, rather than
the one corresponding with the most efficient program. This, then, will be the main
focus of the forthcoming work with Whelk.
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