Synthesis and Transformation of Logic
Programs by Constructive, Inductive
Proof

Alan Bundy, Jane Hesketh,
Ina Kraan and Geraint Wiggins

April 30, 1998

Published in
Proceedings of LoPSTr-91,
Manchester,

July 1991

Department of Artificial Intelligence
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN
Scotland

Synthesis and Transformation of Logic Programs

from Constructive, Inductive Proof

Geraint Wiggins Alan Bundy

geraint@ed.ac.uk bundy@ed.ac.uk
Ina Kraan Jane Hesketh
inak@ai.ed.ac.uk jane@ai.ed.ac.uk

DReaM Group
Department of Artificial Intelligence
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN
Scotland

Abstract

We discuss a technique which allows synthesis of logic programs in the
“proofs-as-programs” paradigm [Constable 82]. Constructive, inductive proof
is used to show that the specification of a program is realisable; elaboration of
a proof gives rise to the synthesis of a program which realises it. We present
an update on earlier ideas, and give examples of and justification for them.
The work is presented as foundation for further work in proof planning, where
we aim to synthesise not only programs, but good programs.

1 Introduction

In this paper, we present further developments in work on a method for the syn-
thesis of logic programs originally presented in [Bundy et al. 90a]. The method
uses the constructive, inductive proof of conjectures which specify the desired pro-
grams’ input/output behaviour, coupled with simultaneous automatic extraction of
the computational content of the proofs. The method has been implemented as
a user-directed proof development system which provides a rich environment for
the elaboration of synthesis proofs. The implementation, the Whelk system, has
been designed to be amenable to application of existing ideas and further develop-
ments in the technique of proof planning, in which inductive proofs are developed
automatically [Bundy 88, Bundy et al. 91, Wiggins 90].

In Section 2 we present a brief background summary of the ideas of [Bundy et
al. 90a]. In Section 3, we discuss issues arising from the attempt to synthesise logic
programs in our chosen paradigm and style. Section 4 gives an example of program
synthesis and transformation within our technique, and Section 5 summarises the
ideas presented and suggests some directions for future work.

2 The Basic Technique

Whelk is based on the “proofs-as-programs” paradigm of [Constable 82]. In order

to adapt this approach, intended for the synthesis of functional programs, to that
of logic programs, we view logic programs, in the “all ground” mode, as functions
onto a valued Boolean-valued type. We can then in principle perform synthesis
of programs by the constructive proof of conjectures of the following general form
(though we explain below why this form is not precisely ideal for our purposes):

F Vi .3b:boole.spec(i) <> b

We will call a conjecture which specifies the behaviour of a program to be synthesised
a specification conjecture. The conjecture states that, for all vectors of input values
(?) of the correct type(s) (7) !, there is some Boolean value (b), such that spec() is
logically equivalent to that value. We define the Boolean type to contain only the
constants true and false, so it is not possible merely to instantiate b with spec(?)
to prove the conjecture. Therefore, one might think of the proof process as proving
the decidability of the spec. See [Bundy et al. 90a] for more detail.

The approach differs from the conventional functional proofs-as-programs ap-
proach, and from some other attempts to adapt it to logic programming (eg [Fribourg 90])
in that it allows us to synthesise programs which are partial, many-valued relations
(as logic programs often are) rather than (strict) functions.

Now, in order to prove a conjecture constructively, we must show not just that
there is a value of b in boole for each possible combination of inputs, # — rather,
we must show that we can construct that Boolean value. Showing that we can
construct the value involves showing how to construct it. Therefore, the proof must
contain (in some maybe abstruse form) instructions for such a construction.

In the event that +7 is empty, we can supply either true or false as the wit-
ness for our Boolean variable b, simply by introduction on the existential — this
then becomes the body of our synthesised program. If 77 is not empty (so there
are universally quantified, typed variables in our specification conjecture) then the
Boolean witness may depend on the values of those variables. Our proof will there-
fore consist of nested case-splits2, dividing the types of the variables into sub-types
for which a single Boolean value may be computed. These case splits, conjoined
with the values of the various b’s associated with them, will constitute the main
body of the synthesised program.

3 Whelk: The Current Implementation
3.1 Whelk

Whelk has been implemented within a proof development system originally designed
for the Oyster system [Horn 88, Bundy et al. 90b]. The Martin-Lof Constructive
Type Theory of Oyster has been replaced in Whelk by a much simpler typed first-
order logic. This design decision has raised some questions about how the synthesis-
proof approach actually works, which we discuss in this section.

Whelk provides a rich environment for the user guided development of proofs
(synthesis proofs or otherwise). It includes a tactic language which allows the
construction of more complicated compound rules from the atomic ones which define
the proof system; this mechanism will allow the application of automatically planned
proof steps in future work.

A fundamentally important feature in the program synthesis application is that
each rule of inference in the proof system corresponds one-to-one with a rule of
construction for a structure called the extraction from the proof. This correspond-
ence is so arranged that the extraction from a proof of a specification conjecture (as

Lie a vector of input value/type pairs
2except in the trivial case where the synthesised program is always true or always false

above) constitutes a logic program which fulfils the spec for all input where spec is
true, and which fails for all input where spec is false. This will become clearer in
the examples below.

3.2 The Form of The Specification Conjecture

Before we can use Whelk for program synthesis, we must motivate our chosen form
of specification conjecture. It is important to understand in advance that there are
several options open, and that we do not suggest that any one is in any absolute
sense better than any other. We feel, however, that the option we have chosen offers
the best insight into the operation of the synthesis system from the point of view
of the user.

3.2.1 Existential Quantifier and Logical Equivalence

To recapitulate: in [Bundy et al. 90a], we loosely outlined an approach where we
proved a conjecture of the form

F Va7 . 3b:boole.spec(z) < b

to show that, for all well-typed input there is some truth value (true or false, here)
to which the specification spec(?) is logically equivalent. Because our proof system
is constructive, we have to show not only that some such value exists, but that we
can generate it. This is equivalent to saying that spec(?) is decidable. Also, the
extraction may be thought of as a witness for b.

Closer inspection, however, shows that this approach is flawed. The logic of
our proof system is a typed first-order logic. However, the existentially quantified
variable b in the specification conjecture above is (assuming the usual interpretation
of +») a variable over formulae, and not over terms. Thus, the existential quantifier
is second-order, which we do not want.

In fact, the original intention was that the right hand side of the equivalence
should be notated in a different language from the left (or at least in a disjoint
subset of the same language). By arranging the categories of the various expressions
carefully, we could overcome the apparent syntactic ill-formation. This, indeed, will
be the approach we follow later in this discussion, but with this form of synthesis
conjecture, we suggest that the mixture of languages is inelegant and potentially
confusing,.

An alternative solution to the problem would be simply to allow the second-
order quantifier in this circumstance only (first-order existentials frequently arise in
the body of spec); however, this approach is unsatisfying because of its rather ad
hoc flavour — the necessary restriction on quantifier order is hard to justify in the
larger context of the proof system.

3.2.2 Meta-Variable and Logical Equivalence

A better version of essentially the same idea is to allow the proof system to support
uninstantiated meta-variables, and to prove a conjecture of the form

F Vi spec(?) & M

where M is a meta-variable over formula. In this approach, the construction of
the extraction is much more explicit than in the others presented here, as it ac-
tually constitutes the (partially instantiated) value of the variable M as the proof
proceeds. This technique, however, would involve significant changes to the opera-
tion of the Oyster/ Whelk environment, and thus is not ideal for our purposes here.

Further, recent work by Ina Kraan on using the meta-variable approach to give a
semantics for synthesis involving the form of conjecture we do use (see 3.2.5) sug-
gests that though there are some difficult logical problems associated with its use as
a semantics, it is in itself a potentially useful technique for program synthesis. One
advantage over the Whelk system is that all the rules required are derivable directly
from a standard Sequent Calculus, and thus are known a priori to be sound. We
intend to pursue this approach in parallel with the Whelk system, in order to be
able to compare the two.

This technique might be viewed as deductive synthesis, as, for example, in
[Bibel & Hérnig 84].

3.2.3 Lifting with Functional Specification

Another meta-flavoured approach would be to change the form of our synthesis

conjecture to
F Va7 3b:boole.spec(i) =poote b

In this formula, we have lifted the original spec to the meta-level, and are actually
reasoning about the term which names it under a bijective naming function. Thus,
all of the connectives and predicates permissible in the logic must have a functional
equivalent. For example, the “and” connective, A : formulax formula — formula,
must correspond with a function A’ : boole x boole — boole. This is to an extent
inconvenient, because the system must maintain the distinction (in terms of the
constructed program, A and A’ are significantly different) — and it is in the nature
of logic systems that such a distinction must be explicit in the inference rules. Thus,
the user has to worry about a distinction which is largely irrelevant to the production
of the proof (NB as opposed to the program) s/he must elaborate, which complicates
the system unnecessarily. Oddly, it turns out to be undesirable to remove the source
of this problem in the formal sense (see 3.2.4) — but we can nevertheless protect
the user from its most irritating effects, as we explain in 3.2.5.

3.2.4 Decidability Proof

Perhaps the most obvious route to the construction of the program we need is a
specification conjecture of the form

F Va7 .spec(?) V —spec(?)

In this approach, we are showing that there is some truth value for the spec, in
much the same way as in 3.2.1, and relying on the constructive nature of our proof
system to give us an executable extraction. However, there is a significant difference
here, because there is no existential quantifier, and no explicit truth value associated
with the spec for any given value(s) of 7. In removing the truth value, we remove
the basis of the problem arising in the sections above, which is clearly one related
to self-reference; all the way along, we have been attempting to reason about the
truth values of a logical expression in a(n object-level, first-order) system within
that system, which is not straightforwardly possible.

Unfortunately, this apparent step forward brings with it a disadvantage. In the
approach of 3.2.1, above, we were able in some degree to motivate our use of that
form of synthesis conjecture by saying that the logic program we would eventually
synthesise would be a witness for the existentially quantified Boolean variable, b.
Now, though, we have thrown our variable away, and there is no equivalent intuitive
foothold on which to base a semantics for our proof system. We also lose the useful
notion that we are trying to show the existence of some (logical) output for all
possible input, which is the fundamental tenet of the proofs-as-programs approach.

3.2.5 Existential Quantifier and Realisation Operator

On this basis, therefore, we must take a step back, and attempt to compromise
on a system which is logically correct and transparent (like 3.2.4), but also easily
motivated as an instance of our chosen paradigm (like 3.2.1, 3.2.2 and 3.2.3). Ideally,
the system should not introduce needless complication for the user (as does 3.2.3),
and it should definitely not mix meta- and object-levels in an unmotivated, and,
indeed, syntactically ill-formed, way (as does 3.2.1).

The solution, then, is a compromise between user-friendliness, logical correct-
ness, and intuitive transparency. It involves the addition of a new operator in our
logic which will allow us correctly to mix formulze and terms in the way sugges-
ted by 3.2.1. We will also restrict our type boole to contain only the values true
and false, which will give us the effect of enforcing the proof of decidability, as in
3.2.4. The scope of our new operator also gives us a motivated way to separate
the two different kinds of operator (the distinction between the connectives and the
functions in 3.2.3) without bothering the user.

The operator we use to do all this is read as “realises”, written

—: formula x term — formula
and its meaning is defined by:

F formula < (b =poote true)

F formula — b iff { F —formula <+ (b =po0ie false)

where formula is an object level formula in our logic and b is in boole. =pype
denotes equality in boole.

Since our specification formula is now within the scope of the realisation op-
erator, we have a straightforward syntactic distinction between (eg) the A and A’
of section 3.2.3, which makes little difference from the point of view of the user
applying inference rules (indeed, it allows him/her to ignore the difference, which
is desirable), but allows the proof system to detect unambiguously which way any
given connective should be treated.

The semantics above gives us a connection between the formula of the spec itself
and some Boolean value(s); we must now give a semantics for the extraction system
which will supply the synthesised logic program required to produce these values
for any given well-typed input.

3.3 Semantics of Whelk Extractions
3.3.1 The Languages L¢ and L1

The semantics of our extraction system is fairly complicated, and will be reported in
detail elsewhere. There follows enough of a sketch to allow the reader to understand
the example in Section 4.

First, we have in the logic of our proof system the usual first-order connectives,
-, =, V, A, V and 3, with the addition of < and ¢ for convenience. We have the
realisation operator <, as above, and @ (exclusive or) which will allow us to make
certain optimisations as part of the proof process. We also have the operator : for
sort/type membership, sorts, boole = { true false }, nat = { 0 s(0) s(s(0)) ...},
and the parametric type of lists: a list = { [] [ho] [ho, h1] ... } where h;:a. Finally,
formulae may consist of literals (ie predicates, often applied to argument terms),
statements of equality within a type (written =), combinations of these made with
the connectives, or contradiction (written {}). Terms may consist of literals (ie
functions, often applied to argument terms). We will call this language the external
logic, L¢, on the grounds that it is what the user sees as s/he elaborates proofs.

In order to motivate our extraction system, we also need an internal logic, Lz,
which is mostly invisible to the user of Whelk. It is almost identical with L¢, and
maps to it, through a function we call the interpretation. The elements of the £z
correspond one-to-one with the syntactically identical elements of L¢g, except in the
following cases.

The Boolean terms true and false of Lg correspond with predicates true and false
respectively in L.

Ouly type/sort constructor functions are allowed in £7; non-constructor functions
have no correspondent in L7.

The < operator has no correspondent in £L7.

We write formula® to denote the expression in £z which corresponds with formula
in L¢ under the interpretation.

3.3.2 Realisation Semantics
Recall first that the semantics of < is defined thus:

F formula < (b =poote true)

F formula — b iff { F —formula <+ (b =poote false)

where formula is a closed object level formula in £¢ and b is in boole.

Note that, while formula may contain quantifiers, the expression as a whole is
unquantified, which makes the semantics simpler — b is simply either true or false.
If we add in universal quantification of the entire formula, to represent arguments to
our synthesised predicate, we have a more complicated semantics for the realisation,
which can be written thus, in terms of a composition of sub-proofs (the universally
quantified input vector 277 has been introduced as a hypothesis):

7T, conditiony + formula — by

27T, condition,. b formula < b,

where condition; is a (possibly empty) conjunction of conditions (either sets of
equations — ie unifiers — or references to axiomatic predicates) free in (some of the)
Z. It is important to note that the condition; must together select all the elements
of the product type [[,¢ € 7, so that the predicate is defined for all well-typed
input. Whelk ensures this during construction of the proof.

The corresponding pure logic procedure (see definition in [Bundy et al. 90a]),
constructed automatically as a side-effect of the elaboration in Whelk of the proof,
is then defined thus:

extract(z7r) +— \/ (condition;* A b;™)
1<i<n

In fact, it turns out that some sub-terms of the condition; are irrelevant and/or
tautologous, and will not appear in the extracted construction.

3.3.3 Example: zero/1

For an initial very simple example, let us consider the predicate zero/1, which is
true if its argument is the natural number 0 and false otherwise. QOur synthesis
conjecture is:

F Va:nat.db:boole.x =54t 0 — b

The proof runs as follows. (Note that though this is a Gentzen Sequent Calculus
derivation, it is presented backwards, in refinement style. Thus “introduction” steps
actually make operators disappear.) First, we introduce the universal quantifier, to
give:

z:nat

F Jb:boole.x =pnat 0 — b

Then, we import a lemma about the decidability of equality in the naturals, giving

z:nat
Vr:nat.Vymnat.x =pat y ® T =pet Y
F db:boole.x =pat 0 — b

We eliminate the universals in the hypothesis with the values x and 0, giving:

T:nat

Vrmnat.VYymat.s =pq Yy S T =pat Y
T =nat 0O 7T =pqet 0

F 3b:boole.x =pqt 0 — b

We can now eliminate disjunction, to give two subconjecture (in the context of the
above hypotheses):

T =nat 0 ‘ =T =pat 0

F db:boole.x =pat 0 = b F db:boole.x =t 0 — b

Next, we proceed by supplying witnesses for the Boolean, b — true and false
respectively:

T =nat 0 X =pat 0
F 2 =pa 0= true F 2 =pat 0= false

The introduction rules for the — operator are defined so that we can make the
following step:

T =pnat 0 ‘ T =pqt 0
b =nat 0 F -z =nat 0
And finally, both branches can now be terminated by tautology, since each subcon-
jecture appears in its own hypotheses.
The pure logic procedure synthesised from this proof, and written in Lz, is as
follows:
zero(x:nat) «— (£ =nat 0 Atrue) V (=2 =nat 0 A false)

which corresponds with the semantic scheme given above in the following way.
Labelling the left branch of the proof as 0, and the right branch as 1, we are
looking for a by, a by, a conditiong and a condition;. The two b’s were supplied by
the existential introduction: true and false respectively, in Lg, mapped to their
predicative correspondents in Lz by *. conditiong is then x =,,¢ 0 and condition,
is =z =p4¢ 0, which map to their syntactic identities under *.

The program may be trivially partially evaluated to give

zero(z:nat) <— T =pq 0

and converted (automatically, by Whelk) to the Godel module (Natural Zero is the
Godel constant we have chosen, to be distinct from the integer 0):

MODULE Zero.
IMPORT Naturals.
PREDICATE Zero: Natural.

Zero(x) <- x = Zero.

Various other construction steps are hidden within the proof; the only points of
any major significance are that the initial universal introduction gives rise to the
argument of the synthesised predicate, and that the lemma does not appear in the
extraction. This latter is achieved because hypotheses (ie the condition; of the
semantic scheme) are only built into the construction when they are actually used
to show that a conjecture is an axiom.

3.3.4 Inductive Realisation Semantics

For any program synthesis system to have a reasonable coverage, it must be able
to synthesise recursive programs — this applies even more to logic and functional
program synthesis than to synthesis of other kinds of programs. In order to in-
troduce recursion into programs synthesised by Whelk, we take advantages of the
close relationship between recursion and induction. Indeed, recursion is necessarily
intimately linked with induction throughout the “proofs-as-programs” literature (eg
[Constable 82]); without this duality synthesis of recursive programs. In the Con-
structive Type Theory of the Oyster system, for example, each recursive data-type
has its own explicit induction term.

In a constructive logic, inductive proofs are always of a form in which it is shown
that, given an existing construction, one can construct a further value (cf classical
logic, where pure existence proof is acceptable). Choice of an induction scheme in
the proof corresponds with choice of (class of) algorithm in program construction
— for example, given the usual specification of list sorting,

perm(X,Y), ord(Y)

one can derive either bubble sort (via structural induction on the input type) or
quicksort (via, for example, a divide-and-conquer form of course-of-values induc-
tion). The choice of induction schemes to generate “good” programs is an interest-
ing and difficult question, which will be a central topic of our future research, to be
implemented in extensions of the existing CLaM proof planner [Bundy et al. 91].
This work will be linked with existing work at Edinburgh on transformation of
functional synthesis proofs to give more efficient extracted programs [Madden 91].

The use of inductive proof to construct recursive programs requires a small ex-
tension to the semantics presented above. Until now, we have excluded the instan-
tiation of Boolean variables by anything other than ground terms in boole. Now,
in order to allow recursion, we must admit instantiation by a restricted class of
Boolean-valued expressions — namely, atoms defined themselves during the proof
as pure logic procedures. The general form of the pure logic procedure is now

extract,, (T, Tm) +— \/ (condition (m iy* A bim.s™)
1<i<nm

where b, € { true false extract,(y:701)...extract,(y,70,) }, and m:nat,
r:nat.

It is important to understand that this less restrictive régime is only admitted
in the internal logic, L7 — thus, the original idea of forcing a proof, in L¢, of
decidability is preserved.

The introduction of recursive calls in the Whelk system is handled by the as-
sociation of specific program components with hypotheses. In the case of the sub-
stitutions in the example above, the computational content associated with the
hypothesis was simply the hypothesis itself; in the case of the induction hypothesis,
that content is a recursive call to the predicate being defined, with the appropriate
substitution of arguments. This will become clear in the example of Section 4.

3.4 “Real” Logic Programs

Given a pure logic procedure it is a near-trivial task to convert to languages such
as Prolog and Godel. One of the advantages of this technique is that information
contained in the proof can help in detecting significant factors in the execution of
the finished program — for example, in general, it is advisable to include a Gddel
DELAY declaration for inductively constructed predicates, so they they are only
unfolded when the induction variable is ground, thus helping prevent unbounded
recursion. The elicitation of the information necessary to do this from a program
can be difficult; from an inductive proof, it is often trivial.

4 An Example of Program Construction

Regrettably there is only space for one example here. However, synthesis of the
notmember/2 predicate is a good example of how the Whelk system may be used
for synthesis, or to produce partial evaluations of existing programs. notmember/2,
predictably, succeeds if and only if its first argument, a natural number, is not a
member of the list of naturals which constitutes its second argument. We use a
pure logic procedure exactly equivalent to the conventional member /2 definition as
a lemma, which motivates one of our case splits. Negation, as defined in the proof
system, gives us the rest of the mechanism we need.

We start with the following synthesis conjecture. (In the proof below, for lack of
space, we will omit repeated hypotheses and assume an incremental context unless
otherwise stated.)

F Vz:nat.Vy:nat list.Ib:boole.~member(z,y) < b
First, we introduce both the universal quantifiers:

z:nat
y:nat list
F 3b:boole.~member(x,y) < b

and then apply primitive induction on y. The base case of the induction runs fairly
simply as follows:
F 3b:boole.—~member(z,[]) <= b

We introduce true on the Boolean existential:
F —member(z,[]) < true
We will need a lemma about membership of empty lists to prove this:

Vz:mat.—member(z, [])
F —member(z,[]) — true

and we must make the appropriate substitution in the lemma;:

—member(z,[])
F —member(z,[]) = true

We can now introduce <, as in the earlier example, to give:

—~member(z,[])
F —member(z,])

which is a tautology. We are now left with half a pure logic procedure, the ellipsis
“...” being the part as yet unconstructed. The sub-procedure, notmember; is
constructed as a result of the application of induction.

notmember (z:nat,y:nat list) +—
notmember;(z:nat, y:nat list)

notmember;(z:nat, y:nat list) «—
Y =natlist [| A true AtrueV
Ful:nat list. v0:nat.y =nat1ist [00 | V1] A ...

In terms of the semantic scheme, in subproof ! of the proof, branch 0 gives us (in
L1)

condz'tionu,o) is Y =natiist [
b<l’0> is true

The step case of the proof proceeds as follows. Initially, we have two new variables,
to define the non-empty list for the induction, and the induction hypothesis. Note
that the extraction component associated with this hypothesis in Whelk is

notmember;(xz:nat, vl:nat list)
the witness for this assumption being, of course, the proof of the base case.

v0:nat

vl:nat list

3b:boole.~member(z,vl) — b

F b:boole.~member(z, [v0 | v1]) — b

The first thing we do is rewrite the member reference according to the definition
lemma (which is the usual definition of member/2).

F Vz:nat.
Vv0:nat.
Vvl:nat list.
member(z, [v0 | v1]) ¢ 2z =p4t v0 V member(z,vl)

After the appropriate substitutions in the conjecture above, we have:
F 3b:boole.~(x =nat v0V member(xz,vl)) < b

As in the zero/1 example, earlier, we now need to decide on the equality sub-term,
so we introduce an appropriate lemma, and substitute inside it, giving:

T =nat V0 @ 7T =pq¢ v0
F 3b:boole.~(x =nat v0V member(xz,vl)) < b

As before, we eliminate the @, giving two branches of the proof, which we will
consider separately here. First, the positive equality case:

T =pat V0
F b:boole.~(x =pnqt v0 V member(xz,vl)) < b

10

The formula here is clearly false, because the left disjunct inside the negation is
true by tautology, so we can introduce false on the Boolean, to give:

T =pqt V0
F = (z =pqt v0V member(z,vl)) — false

Introducing — then yields:

T =nat v0
F —=(x =nat v0 V member(x,vl))

which is proven in the following steps, ending with tautology:

T =pqt V0
—(x =pqt v0 V member(z,vl))

F{}

T =pqt V0
bz =pat v0 V member(z,vl)

T =gt V0
Fx =,q 00

Our pure logic procedure now looks like this:

notmember(z:nat,y:nat list) «—
notmember;(x:nat, y:nat list)

notmember;(x:nat, y:nat list) «—
Y =natlist [| A true A trueV
Jul:nat list.Jv0:nat.
Y =nat list [UO | 1)1] A ((Z‘ =nat v0 A false) V..)

so in our semantic scheme condition 1y is T =nat v0 and by 1y is false.
Finally, we have the case of inequality between z and v0:

T =pqt V0
F b:boole.~(x =pqt v0 V member(z,vl)) — b

Rewriting this according to the familiar de Morgan Law (one of those which are
constructively valid), and introducing on the disjunction inside the < gives us two
branches, the first being trivially provable by introduction of true and tautology:

T =pqt V0
F 3b:boole.—~x =pqt v0 A —member(z,vl) < b

Left branch (branch 2):

T =pqt V0
F db:boole.—x =0t V0O = b

T =pqt V0
b =z =0t V0 = true

T =pqt V0
F =2 =0t 00
The right branch (branch 3) is a copy of our induction hypothesis so we immediately

have a tautology. Remember that the construction associated with this step is the

recursive call.
Jb:boole.~member(xz,vl) < b

F 3b:boole.~member(xz,vl) < b

Finally, then, we have our pure logic program:

11

notmember (z:nat, y:nat list) +—
notmember;(x:nat, y:nat list)

notmember;(x:nat, y:nat list) «—
Y =nat list [| A true A trueV
Fvl:nat list.3v0:nat.
Y =nat list [UO | '1)1]/\
((x =nat VOA false)V
(=2 =nat v0 A notmember(x:nat,vl:nat list)))

as we would wish. Our semantic scheme has now been instantiated thus:

conditiong oy 1S Y =patiist [V0 | V1] A2 =pq v0
b2y is false

conditiong 3y 18 Y =natiist [V0 | 1] A =T =pat v0
bi,3) s notmember;(x:nat,vl:nat list)

—

In Godel, the program comes out (automatically) as:

MODULE Notmember.

IMPORT Lists.
IMPORT Numbers.

PREDICATE Notmember : Number * List(Number).

Notmember (x,y) <-
Notmember 1(x,y) .

PREDICATE Notmember_1 : Number * List(Number).

Notmember 1(x,y) <-

y=0V
Some [v1]
Some [vO0]
(y = [vo|vi] &
(Cx=v0&
Notmember_1(x,v1))).

5 Conclusion and Future Work

In this paper, we have given an overview of the operation of the Whelk program
synthesis system. We have outlined the semantics which will allow us to demonstrate
that the programs synthesised by the system always fulfil the specification in the
conjecture proven during the synthesis process. We suggest that the examples here
show that the scope of our synthesis system is quite wide. In particular, it is not
restricted to certain special classes of program (eg stratified, or locally stratified) as
are many comparable synthesis/transformation systems.

Much work yet remains to be done. In particular, we have yet to use our
semantics to verify all our inference rules; this verification will be carried out in
parallel with development of a system using the meta-level approach mentioned in
Section 3.2.2. We also wish to increase the choice of induction schemes available
to the system, so that (eg) divide-and-conquer and course-of-values algorithms are
available to the Whelk user.

12

All this, however, is just the starting point for research in automation of
the construction of the synthesis proofs themselves. This work will begin forth-
with, based on the existing success of the “rippling” paradigm for proof planning
[Bundy et al. 90c]. Rippling allows us drastically to reduce the search for correct
proofs of synthesis (and other) conjectures by characterising the symbolic behaviour
of inductive proofs in a very precise way. The technique can reduce the search space
by as many as 33 orders of magnitude (see [Bundy et al. 88] for more detail). All
of the manipulations carried out in the examples in this paper may be motivated in
terms of rippling, and thus the proofs may be planned and applied automatically.
Also, we have not yet considered how to use the technique to produce good programs
— this will be a central topic of work in the short term future.

References

[Bibel & Hornig 84] W. Bibel and K. M. Hornig. LOPS — a system based on
a strategical approach to program synthesis. In A. Biermann,
G. Guiho, and Y. Kodratoff, editors, Automatic Program Con-
struction Techniques, pages 69-90. MacMillan, 1984.

[Bundy 88] Alan Bundy. The use of explicit plans to guide inductive
proofs. In R. Lusk and R. Overbeek, editors, 9th Conference on
Automated Deduction, pages 111-120. Springer-Verlag, 1988.
Longer version available from Edinburgh as DAI Research Pa-
per No. 349.

[Bundy et al. 88] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Ex-
periments with proof plans for induction. Research Paper 413,
Dept. of Artificial Intelligence, University of Edinburgh, 1988.
Appeared in Journal of Automated Reasoning, 7, 1991.

[Bundy et al. 90a] A.Bundy, A. Smaill, and G. A. Wiggins. The synthesis of logic
programs from inductive proofs. In J. Lloyd, editor, Compu-
tational Logic, pages 135-149. Springer-Verlag, 1990. Esprit
Basic Research Series. Also available from Edinburgh as DAI
Research Paper 501.

[Bundy et al. 90b] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The
Oyster-Clam system. In M. E. Stickel, editor, 10th Interna-
tional Conference on Automated Deduction, pages 647-648.
Springer-Verlag, 1990. Lecture Notes in Artificial Intelligence
No. 449. Also available from Edinburgh as DAT Research Paper
507.

[Bundy et al. 90c] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Exten-
sions to the rippling-out tactic for guiding inductive proofs. In
M. E. Stickel, editor, 10th International Conference on Auto-
mated Deduction, pages 132-146. Springer-Verlag, 1990. Lec-
ture Notes in Artificial Intelligence No. 449. Also available from
Edinburgh as DAI Research Paper 459.

[Bundy et al. 91] Alan Bundy, Frank van Harmelen, Jane Hesketh, and Alan
Smaill. Experiments with proof plans for induction. Journal of
Automated Reasoning, 7:303-324, 1991. Earlier version avail-
able from Edinburgh as DAI Research Paper No 413.

13

[Constable 82]

[Fribourg 90]

[Horn 88]

[Jacquet 93]

[Madden 91]

[Wiggins 90]

R. L. Constable. Programs as proofs. Technical Report TR, 82-
532, Dept. of Computer Science, Cornell University, November
1982.

L. Fribourg. Extracting logic programs from proofs that use
extended Prolog execution and induction. In Proceedings of
Eighth International Conference on Logic Programming, pages
685 — 699. MIT Press, June 1990. Extended version in
[Jacquet 93].

C. Horn. The Nurprl proof development system. Working
paper 214, Dept. of Artificial Intelligence, University of Edin-
burgh, 1988. The Edinburgh version of Nurprl has been re-
named Oyster.

J.-M. Jacquet, editor. Constructing Logic Programs. Wiley,
1993.

P. Madden. Awutomated Program Transformation Through
Proof Transformation. Unpublished PhD thesis, University of
Edinburgh, 1991.

G. A. Wiggins. The improvement of Prolog program efficiency
by compiling control: A proof-theoretic view. In Proceedings
of the Second International Workshop on Meta-programming
in Logic, Leuven, Belgium, April 1990. Also available from
Edinburgh as DAI Research Paper No. 455.

14

