Guiding Synthesis Proofs

Vincent Lombart* Geraint Wiggins'
Unité d’Informatique Department of Artificial Intelligence
Université Catholique de Louvain University of Edinburgh
Louvain-la-Neuve Edinburgh
Belgium Scotland

Yves Devillet
Unité d’Informatique
Université Catholique de Louvain
Louvain-la-Neuve
Belgium

Extended Abstract

1 Introduction

In this paper, we explore some possibilities of the Whelk logic program synthesis system.
This exploration is intended to be a step towards an automation of the synthesis process
using Whelk as a basic building block.

Whelk is based on the constructive synthesis approach, it synthesizes logic programs from
proofs: a conjecture (called a specification conjecture) is interactively proven in a constructive
way, and Whelk automatically generates the corresponding program.

In [Wiggins 92b], it is explained how Whelk synthesizes programs from proofs. Here, we
focus on how to guide a proof to get a logic program with a given structure. This will be done
through the synthesis of a sample problem: from the specification of the subset relation, we
synthesize two programs with completely different structures. We then explain how the close
structural relationship between a proof and the synthesized program has been used to guide
the synthesis towards those program structures.

Whelk is designed to be interfaced with the CLaM proof planner [Bundy 88, Bundy et al.
90b]. The techniques and heuristics illustrated here can be integrated as CLaM proof plans
or as proof “critics” [Ireland 92|, and the operation of the system will be discussed alongside
the proofs.

In the following sections, the aspects of Whelk important for this paper are first described.
Two proofs of the subset specification conjecture are then developed, and the synthesized pro-

*Email: v1@info.ucl.ac.be
"Email: geraint@ed.ac.uk
{Email: yde@info.ucl.ac.be

grams are built in parallel. Finally, both programs are analysed, and issues of time complexity,
directionalities and proof difficulties are discussed.

2 The Whelk system

Whelk is a proof development system. Under certain conditions, Whelk is able to extract a
logic program from a developed proof. This makes it a valuable tool in the logic program
synthesis and transformation domain.

Whelk is based on a Gentzen Sequent Calculus, and uses a first order, typed, constructive
logic with equality. To derive a logic program from a proof in Whelk, the proofs-as-programs
paradigm, which usually synthesize functional programs, has been adapted to synthesize logic
programs. This adaptation raised two important problems, due to the differences between
functional and relational programs:

e There is more than one way to use a relational program (multidirectionality).

e For a given directionality, there are potentially many — or no — outputs.

A solution to those problems is to consider only the all-ground directionality [Bundy et
al. 90a]. The predicate can then be seen as a boolean valued function. This is the key idea
to transform proofs-as-functional-programs into proofs-as-relational-programs

The form of a specification conjecture to prove is largely a matter of taste. In Whelk a
new operator, 0, has been introduced with the meaning “It is decidable whether. ..” [Wiggins
et al. 91, Wiggins 92b]. To synthesize a program with vector of arguments @ of type 7 and
specification S(d), we must prove a theorem of the form

-Vd : 7. 85(@). (1)

3 The subset/2 predicate synthesis

We want to synthesize a predicate subset/2 which holds iff its first argument is a subset of
its second argument. Those arguments are lists of integers considered as sets of integers. The
specification of the subset relation can be approximated as

subset(SubL, SupL) <» (VX. X € SubL — X € SupL) (2)

(Note: this definition is an approximation because it allows multisets, which will lead to
problems in running the synthesised program later. However, the full specification, where the
arguments are forced to be sets, would make the examples opaque.)

This problem has been chosen for two reasons:

o It is simple enough (in this form) to be easily tractable.

e It is complex enough to have the possibility to synthesize (at least) two completely
different programs from its specification.

For some problems, the choice of the induction parameter is crucial since different pro-
grams can then be constructed [Deville 90, Dayantis 87]. With an induction on the sublist,
one gets:

subset(SubL, SupL) <«
SubL =[]
V SubL = [V|Vi] A member(Vp, SupL) A subset(Vi, SupL)
where SubL, SupL are universally quantified and Vj, V; are existentially quantified (as usual),
and where member(V, S) holds iff V' € S. Procedurally speaking, the outer loop is on the

sublist, and the inner loop is on the superlist through the member procedure.
Using an induction on the superlist, one obtains:

subset(SubL, SupL) <«
SupL =[] A SubL =[]
V SupL = [Vp|V1] A delete_all(Vy, SubL, AuzL) A subset(AuzL, V1)
where delete_all(Vy, SubL, AuxL) holds iff AuxzL is SubL with all occurrences of Vj deleted.
Procedurally speaking, the outer loop is on the superlist, and the inner loop is on the sublist
through the delete_all procedure.

There is a third way to construct the subset predicate, through the so-called “iteration
through negation”, using the negation-as-failure rule:

subset(SubL, SupL) «
—p(SubL, SupL)
p(SubL, SupL) <
member (X, SubL) A —member (X, SupL)
This is the program obtained by the Lloyd-Topor transformation [Lloyd & Topor 84| of
the subset specification into a logic program. This program suffers badly from floundering
in all but the all-ground mode, and so will not be considered here.

Let us now show how it is possible to synthesize the first two programs from the same
specification.

3.1 Preliminaries

3.1.1 Object Level Notation

The type “integer” will be noted nat, and the type “list of integers” Inat. We will need two
axioms to define the “€” relation used in the definition of subset:

VX :nat. =X €[] (3)
VX :nat. VHd : nat. VT : Ilnat. X € [Hd|Tl] <> X = HdV X € Tl (4)

and we also need some axioms on integers and lists of integers:

VX :nat. VY :nat. X =Y V-X=Y (5)
VK :lnat. VL : lnat. K =LV -K =L (6)
VL :lnat. L =[]V 3Hd: nat. 3T : Inat. L = [Hd|T1] (7)

The proofs will be presented as they are built in Whelk, in refinement style. In other words,

when a rule such as
B C

A

is used, it is done backwards: If A has to be proven, when using the rule, we are then left with
B and C to prove. How these rules are used by Whelk to extract a program is explained in
[Wiggins 92b]. In this paper, the automatically generated predicate names will be renamed
to improve readability.

A sequent can be written horizontally or vertically (or mixed).

H,y
H .. H,+T or
H,
LT

where H; ... H,, are the hypotheses, and T is the conjecture. To help the reader, when new
hypotheses are introduced, they are marked with a star on their left.

3.1.2 Meta-Level Notation

Meta-level annotations, which control the use of rewrite rules in CLaM, are given in the
following way. A wave front, which surrounds the part of an conjecture which must be moved
away to allow matching with a hypothesis, is surrounded by a box. Any subexpression of
that part which is required for the match, the wave hole, is underlined. The wave front is
superscripted with a direction, T when the front is to move out, and | when it is to move
in. Finally, universally quantified variables in the hypothesis are marked in the conclusion as
sinks — these are targets towards which inward wave fronts can be rippled.

An example of a step case sequent with an out-going wave-front — the list constructor and
Vo — a corresponding wave hole — V; — and a sink — SupL— is

*x Vp:nat,Vq : Inat,
* VSupL :lnat. (VX : nat. X € Vi - X € Supl)

FVSupL : inat. 0(VX : nat. X €|[W|Vi]| — X € [SupL))

This conclusion might be rewritten — rippled — by the application of the following wave
rule, which is derivable automatically from the definition of €.

X e [Y()'ﬁ] = | X=Y,WwXeV

Application of this rule will yield the conclusion

- VSupL : Inat. (VX :nat. X €[X = VoV X € Vi| X € [SupL))

Matching both the object and meta parts of the wave rule with those of the conjecture allows
us to select a rewrite rule which moves exactly the symbols we want moved, in order to match
with our induction hypothesis.

Rules which move the unwanted parts of expressions into sinks are useful because then
the universal quantification in the hypothesis can be used to allow the substitution necessary
for a successful match.

Examples of all of the above will be given in the following sections.

3.2 The Synthesis Conjecture

We start off with the specification conjecture
F VSubL : Inat. VSupL : Inat. d(VX : nat. X € SubL — X € SuplL) (8)

where SubL is the sublist and SupL is the superlist.

Whelk is orientated towards proofs by induction, and that technique will therefore be used
in the proofs. But we have here two reasonable possibilities of induction: either on the sublist,
or on the superlist.

3.3 Induction on the sublist

When proving the specification conjecture, applying induction on SubL gives us two subcon-
jectures:

Base Case
FVSupL : Inat. (VX :nat. X € [] - X € SupL) 9)

Step Case

* Vo :nat, Vi : Inat,
* VSupL:lInat. 0(VX : nat. X € Vi — X € SupL) (10)

FVSupL : inat. O(VX : nat. X €|[Wh|V4]| — X € [SupL]) (11)

At this point, the program fragment generated looks like

subset(SubL, SupL) <
SubL =[] A ...
V SubL = [Vo|VA]A ...
The base case (9) is always true, by definition (3), so Whelk replaces the first “...” in the

program by true. For the step case, we unfold X € [Vj|V1] according to the definition (4),
which is a wave rule (see section 3.1.2), and with some rewriting we get

FOo((VX :nat. X =V — X € |SupL]) A(VX :nat. X e Vi - X € |SupL])|) (12)

The outward wave front is now rippled as far as it will go.
A Introduction splits the conjecture (12) in two:

FOVX :nat. X =Vy —» X € SupL) (13)
FO(VX :nat. X € Vi - X € SupL) (14)

Using a substitution rule, the first subconjecture (13) is reduced to
Fo(Vy € SupL) (15)

This can be proven by a further application of induction, again guided by rippling. Its proof
will synthesize the member/2 predicate.

The second subconjecture (14) is trivially proven using the induction hypothesis (10)

VSupL : Inat. (VX :nat. X € Vi - X € SupL)

7

Whelk has by now replaced the second “...” in the program by

member (Vp, SupL) A subset(Vy, SupL)

Hence the synthesized program extracted from the proof is the following:

subset(SubL, SupL) <«
SubL =[]
V SubL = [V,|V1] A member (Vy, SupL) A subset(Vy, SupL)

3.4 Induction on the superlist
When proving the specification conjecture (8)

FVSubL : Inat. VSupL : Inat. (VX : nat. X € SubL — X
applying induction on SupL gives us two subconjectures:

Base Case
F VSubL : Inat. (VX :nat. X € SubL — X €

Step Case

* Vo :mnat, Vi : lnat,
* VSubL : lnat. 0(VX : nat. X € SubL — X € V)

FVSubL : Inat. (VX : nat. X € |SubL] — X €

€ SupL)

) (16)

VolVal|) (18)

Using the definition of “€” (3, 4) and an axiom on lists (7), the base case is true if

SubL = []. We now have the program fragment

subset(SubL, SupL) <
SupL =[] A SubL =[]
V SupL = [Vp|W] A ...

For the step case, guided by rippling as for the previous proof, we unfold X € [V;|V4]

according to definition (4), to give

FO(VX :nat. X € [SubL] - | X =VWVvX el

and then according to the propositional wave rule

A-[BVC] =[Ar-B] »¢C

) (19)

(20)

where the direction of the wave motion is altered because the rule is a transverse wave rule —
see [Bundy et al. 91] for more information. This leaves us with

FO(VX : nat. [X € [SubL| A—X = Vo | — X € V1) (21)

We now have a problem: it is not straightforward to use the induction hypothesis
VSubL : Inat. O(VX : nat. X € SubL — X € V1) (22)

to complete the proof. The rippling tactic used to rewrite the conjecture to match the
induction hypothesis is not immediately usable here, because there is no suitable rewrite rule.
We have two differences between the conjecture and the hypothesis:

e X € SubL (in the hypothesis) is replaced by X € SubL A =X =V}

e the presence of the quantifier VSubL : Inat in the hypothesis

This last point is expressed by the appearance of the sink annotation around SubL, and
will be used to continue the proof. The quantification can be seen as a degree of freedom for
the use of the hypothesis.

We need a wave rule which will ripple the remaining wave front as close as possible to the
sink. The obvious one is

X € [SubL| A—X = Vp| = X €[SubL o V| (23)

where © is the delete operation on lists. However, the first order nature of our proof would
favour a more relational style of rule, which is currently beyond the definition of wave rules.
In order to generate the rule we need, we must conjecture a lemma, defining an intermediate
structure AuxzL such that

X € AuzLl < X € SubLA-X =V} (24)
With such an hypothesis, the conjecture can be transformed into
FO(VX :nat. X € AuzL — X € 17) (25)

It is then straightforward to use the induction hypothesis (22). The extracted program
fragment now has the form:

subset(SubL, SupL) +
SupL =[] A SubL = []
V SupL = [Vy|Vi] A ... A subset(AuzL, V)

But how can this intermediate structure be introduced in the proof 7 We have to use the
cut rule:

TFA T,AFT
TFT

This rule is often considered as a “eureka” step in a proof, as it introduces a completely
new hypothesis, A. But here, this hypothesis can easily be deduced from the differences

between the induction hypothesis and the conjecture to prove. In the CLaM proof planner,
classes of situations such as this can be characterised in terms of blocked rippling, and a proof
critic [Ireland 92] can be triggered to suggest the necessary solution, as we did by inspection,
above.

The exact hypothesis we cut in is

JAuzL : Inat. VX : nat. X € AuzxL <> X € SubL A -X =V} (26)

and its proof will consist of the building of a witness AuxL. This will synthesize the
delete_all/3 predicate, and finally give the extracted program

subset(SubL, SupL) +
SupL =[] A SubL =[]
V SupL = [Vp|V1] A delete_all(Vp, SubL, AuzL) A subset(AuzL, V;)

3.5 The proof structure

We can abstract both proofs as follows

e Choose an induction parameter, and apply induction

e Deal with the base case, using the non-recursive part of the definition of “€”. This
involves some rewriting, and is easy to manage.

e Unfold the step case, according to the recursive part of the definition of “€”, then try to
match a part of the conjecture to the induction hypothesis. This can be guided by the
rippling paradigm. If necessary, introduce auxiliary structures, which may be suggested
by the temporary breakdown of rippling.

4 Analysis of the synthesis

From those proofs, we can see that the choice of the induction parameter has induced the
main structure of the synthesized programs: recursivity on the variable chosen as induction
parameter. This is in fact the expression of the recursion-induction parallelism in Whelk.
Such close relationships between the proofs and the synthesized programs are a great help in
mastering the synthesis of a program: if we want to generate a program with a main loop
on one of its arguments, we have to choose that argument as induction parameter. Such
relationships are not limited to induction/recursion: it is possible also to decide when to
introduce auxiliary structures, and when to split in cases; and these choices can be motivated
automatically.

But how do those programs compare with respect to some important properties in the
logic programming field ?

time complexity (in the all-ground directionality). We can calculate that the worst-case
time complexity has the same asymptotic behaviour in both cases — that is:
O(length(SubL) x length(SupL)). On average,

e in the case of success, the number of iterations is divided by two with respect to
the worst case. What will make the difference between both programs is the need
to completely build an auxiliary structure in the second case (not simply taking
the tail of a list), which will give a higher constant.

e in the case of failure, the first program will not have to loop through the whole
sublist to detect the failure, but the second will loop through both whole lists.
This will add to the previous difference to deduce that the first program will better
behave on average.

directionalities Apart from the all-ground mode, the only common usage of these programs
would be to generate sublists of a given list. Neither of them, however, will behave as
we might wish in that case: with a superlist such as [a,b,c|, they generate sublists
[1,[al,[a,al],|a,a,a],.... While there is a technique to remove infinite looping of pro-
grams called in the non-ground modes [Wiggins 92a], the problem is not in the program,
but in the laxity of the “multiset” subset specification. It can only be solved by proving
the “real” subset specification.

difficulty of the proofs The first proof is easier to manage, involving no eureka step. But
with the technique we used to introduce an auxiliary structure in the second program,
none of these proofs can be considered as really difficult. We have outlined how this
technique can be automated in terms of the rippling paradigm.

5 Conclusion

In this paper, we have explained how the Whelk logic program synthesis system has been
guided to derive significantly different programs from the same specification. This has been
illustrated by the subset example. The relationship between the structures of the proofs and
the corresponding programs has been used to guide the proofs. Such an analysis can be the
basis for automation of a synthesis process using Whelk as the synthesis engine.

We have outlined how the technique of rippling may be used to guide search for a proof in
both cases of induction variable, so that once the choice is made, the proofs may be automated.

References

[Bundy 88] Alan Bundy. The use of explicit plans to guide inductive proofs. In
R. Lusk and R. Overbeek, editors, 9th Conference on Automated Deduc-
tion, pages 111-120. Springer-Verlag, 1988. Longer version available from
Edinburgh as DAI Research Paper No. 349.

[Bundy et al. 90a] A. Bundy, A. Smaill, and G. A. Wiggins. The synthesis of logic pro-
grams from inductive proofs. In J. Lloyd, editor, Computational Logic,
pages 135-149. Springer-Verlag, 1990. Esprit Basic Research Series. Also
available from Edinburgh as DAI Research Paper 501.

[Bundy et al. 90b] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam
system. In M. E. Stickel, editor, 10th International Conference on Auto-
mated Deduction, pages 647-648. Springer-Verlag, 1990. Lecture Notes

[Bundy et al. 91]

[Dayantis 87|

[Deville 90]

[Ireland 92]

[Lloyd & Topor 84]

[Wiggins 92a]

[Wiggins 92b]

[Wiggins et al. 91]

in Artificial Intelligence No. 449. Also available from Edinburgh as DAI
Research Paper 507.

A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rip-
pling: A heuristic for guiding inductive proofs. Research Paper 567, Dept.
of Artificial Intelligence, University of Edinburgh, 1991. In the Journal
of Artificial Intelligence.

G. Dayantis. Logic program derivation for a class of first order logic
relations. In Proceedings of IJCAI-87, pages 9-14, 1987.

Y. Deville. Logic programming: systematic program development.
Addison-Wesley Pub. Co., 1990.

A. Ireland. The Use of Planning Critics in Mechanizing Inductive Proofs.
In A. Voronkov, editor, International Conference on Logic Programming
and Automated Reasoning — LPAR 92, St. Petersburg, Lecture Notes
in Artificial Intelligence No. 624, pages 178-189. Springer-Verlag, 1992.
Also available from Edinburgh as DAI Research Paper 592.

J. W. Lloyd and R. W. Topor. Making Prolog more expressive. Journal
of Logic Programming, 1(3):225-240, 1984.

G. A. Wiggins. Negation and control in automatically generated logic
programs. In A. Pettorossi, editor, Proceedings of META-92. Springer
Verlag, Heidelberg, 1992. LNCS Vol. 649.

G. A. Wiggins. Synthesis and transformation of logic programs in the
Whelk proof development system. In K. R. Apt, editor, Proceedings of
JICSLP-92, pages 351-368. M. I.T. Press, Cambridge, MA, 1992.

G. A. Wiggins, Alan Bundy, I. Kraan, and J. Hesketh. Synthesis and
transformation of logic programs through constructive, inductive proof.
In K-K. Lau and T. Clement, editors, Proceedings of LoPSTr-91, pages
27-45. Springer Verlag, 1991. Workshops in Computing Series.

10

