Improving the W helk System:
a type-theoretic reconstruction

Geraint A. Wiggins
Department of Artificial Intelligence
University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN
Scotland
geraint@ai.ed. ac.uk

April 30, 1998

Abstract

I present a reformulation of the Whelk system [Wiggins 92b], as a higher-order type
theory. The theory is based on that of [Martin-Lof 79], adapted to facilitate the extraction
of logic programs from proof objects. A notion of normalization is used to ensure that the
extracted program is executable by standard logic-programming methods. The extension
admits specifications over types and programs, and so allows modularity and the construction
of program combinators. In doing so, it demonstrates that logic program synthesis techniques
have potential for solving “industrial-strength” problems.

1 Introduction

In this paper, I present a reconstruction of the W helk proof development and program construction
system which was explained in [Wiggins et al. 91, Wiggins 92a, Wiggins 92b]. The reconstruction
uses a higher order logic which admits quantification over types, and, following the style of Martin-
Lof Type Theory [Martin-Lof 79], views sentences in the logic as types. Proofs of such sentences
are then thought of as members of the types. The addition of the higher order features means
we can now synthesise meta-programs and program modules. Making such a gain means that the
system is more complicated than before, because type membership is undecidable. However, much
of the extra proof obligation entailed may be dealt with automatically, and good heuristics exist for
those parts which are not straightforward. The correctness argument for the new system is greatly
simplified over the original W helk, because it can be given largely by reference to Martin-Lof’s
existing theory.

The paper is structured as follows. In section 2, I remind the reader of the modus operandi of the
original W helk system, and illustrate the disadvantages which led to the reconstruction explained
here; in section 3 I explain the shift from the first order logic to the type theory and outline the
changes necessary. In section 4, I give those inference figures of the reconstructed system necessary
for an example. Correctness is shown by reference to Martin-L&f original calculus, but there is
not space to cover it in depth here. Section 5 shows the synthesis of the subset/2 predicate for
comparison with the original system [Wiggins 92b]. Finally, because of space constraints, I merely
sketch the normalization process for generating the runnable programs in section 6.

2 Background

The W helk system is an attempt to bring ideas used in the domain of type theory and functional
program synthesis to bear on the synthesis and/or transformation of logic programs. We wish to



give the specification of a program in terms only of the logical relation between its arguments;
the construction of a suitable algorithm is then to be left to a process of proof that the specific-
ation can be realised. The notion on which this is based is the proofs-as-programs paradigm of
[Constable 82], in which a constructive proof of an existentially quantified conjecture is encoded as
an extract term, a function, expressed as a A-term, embodying an algorithm which implements the
input/output relation specified in the conjecture. The proofs-as-programs idea has been adapted
[Bundy et al. 90b] to synthesise logic programs. This is achieved by viewing logic programs as
functions on to the Boolean type. The synthesised relations are then Boolean-valued functions
(expressed as logic programs, called in the all-ground mode).

In [Wiggins et al. 91, Wiggins 92b], the original version of the logic system designed for this
purpose is explained. While the system does its job effectively, and is in use for teaching and
research at various institutions, the background theory is not as tidy as it might be. In particular,
the means of specifying what constitutes a synthesis conjecture leads us to convoluted correctness
proofs, which are less than elegant. Further, the original system is restricted to first order spe-
cifications, with no meta-language. Therefore, it is not possible to synthesise program modules,
or to specify meta-programs, simply because quantification over mathematical structures other
than the natural numbers and parametric lists is not allowed. (In fact, it is not clear that the
modularity issue is as important in the context of program synthesis as elsewhere; however, the
fact remains that the expressive power of modularity is desirable.)

In Whelk, the fact that we wish to synthesise a program is expressed by means of a decidability
operator, 0, which is applied to the specification of the desired program. By proving constructively
that a specification is decidable, we synthesise the decision procedure — in the form of a logic
program — for that specification. In earlier versions of the system [Wiggins 92b], 0 was defined
by reference to the existence of the extracted program, and not wvia sequent calculus rules, like
the other logical connectives. Therefore, it behaved rather like a macro, defined at the meta-
level with respect to the sequent calculus. This approach was taken because it allowed certain
restrictions to be placed on the form of the programs derived from W helk proofs, so that no
program components would be generated by parts of the proof concerned purely with verification
of correctness. In particular, the meta-flavour of the 8 definition allowed certain restrictions on the
applicability of inference rules to be hidden in a way which seems, in retrospect, undesirable. In the
reconstruction explained here, these meta-level definitions and restrictions have been abandoned
in favour of logical elegance, their respective effects being reproduced by a more conventional
sequent calculus definition and application of a simple heuristic during proof construction.

In the following sections of this paper, I will discuss the use of the reconstructed calculus,
which I will call WTT, for program manipulation, with reference to the existing example from
[Wiggins 92b], showing how the program can be modularised by type. The Whelk conjecture,
which clearly has types built in, is as follows:

b Wk :list(N).VI:list(N).0 (Vo: Nz € k —» z € I)

where € is the usual list membership; it specifies the list inclusion relation. Proof of this synthesis
conjecture is fairly straightforward, and will be outlined again in section 5. The extracted program,
expressed as a logical equivalence, may be automatically converted the Godel code, as shown in
[Wiggins 92b].

The new higher-order calculus presented here is also designed for describing and manipulating
logic programs. However, because of the first order nature of logic programs themselves, it is clear
that programs parameterised by module or type will not be expressible as such, in a strictly first-
order way. In what follows, therefore, I assume that the parameters of the modules I synthesise
will be instantiated within WTT, and the resulting Gédel program extracted subsequently, rather
than the converse.

3 Reconstruction

There are two main aspects to the type-theoretic reconstruction of Whelk. First, the decidability
operator, 8, on which the construction of logic programs rests, has been integrated into the sequent



calculus as an operator in its own right, rather than as a set of operators related to the standard
ones, as is the case in Whelk. This results in a considerable reduction in the number of rules
(roughly half), which necessarily makes things less complicated.

The second change is the raising of the calculus to higher order. This is carried out by following
the rules of Martin-Lof’s Type Theory [Martin-Lof 79], and adapting and extending them where
necessary. This approach has the advantage that correctness can be argued in terms of the original
system. The introduction of higher-order structures raises the possibility that functional terms
and variables might appear in the extracted programs, and we will need to be careful that this
does not prove to be the case — the programs would not then be logic programs. This point is
the main motivation for the building of a new calculus, from the bottom up, as it were, rather
than simply implementing the WTT logic on top of an existing type theory. In the latter of these
options, it is not clear how (or indeed if) we could guarantee the first order structures we need.

4 Whelk Type Theory

4.1 Introduction

In order to specify our type theory, we must specify what is the syntactic form of each type, and
what is the syntactic form of objects of each type. In general, there will be two forms of objects:
the non-canonical and canonical forms — i.e. forms which may be further evaluated and forms
which may not. The calculus must also supply a means of computation to enable the derivation
of canonical forms from non-canonical ones. It will be clear from the expression of the evaluation
strategy below, which follows Martin-Lof’s description closely, that the theory is extensional —
that is to say, equality of functions is expressed in terms of equality of corresponding inputs and
outputs.

Like Martin-Lof’s type theory, WTT admits four kinds of “judgement” — a judgement being
essentially what we can prove is true (i.e., the logical sentence to the right of the sequent symbol).
The four kinds of judgement I will use here relate to the formation of types and the objects which
inhabit them. In each case, entities themselves, and equality between entities is covered.

Judgement Form
A is a type A type
A and B are equal types A=B
a is an object of type A a€A
a and b are equal objects of type A | a=be A

4.2 Preamble

(First order) Whelk uses distinct languages for expression of its specification (L£s) and of its
programs (Lp). A mapping connects the two, and allows us to say what the synthesised program
means in terms of the specification — for more details, see [Wiggins 92b]. In WTT, a similar
arrangement pertains: loosely, types correspond with Lgs-formulse and objects with Lp-formulze,
and type membership replaces the interpretation. However, there is a significant difference: in
WTT, we have a type of types, known as a wuniverse, so it is possible to view a type as an
object also. For the purposes of the examples here, however, these higher-order complications
are irrelevant. (Incidentally, there is a hierarchy of universes, each containing the one “below” it,
which avoids Russell’s Paradox, while still giving all the types we need.)

The type language admits the familiar connectives (though for reasons of limited space I have
given only those necessary for the example): A (and), V (or), — (implies), V (for all). Contradiction
is denoted by {} (the empty type), and negation by implication, so the negation of A is A—{}. We
also have identity within a type, =,, (NB, this is not the same as the object equality judgement)
and the decidability operator, 8. The quantifiers are typed in the usual way, : denoting type
membership. The operators of the object language are the constructors of the members of the
types. They are best given in terms of the types they construct and destruct. To facilitate
comparison, these constructions are given in the style of [Martin-Lof 79].



Type | Canonical Form Non-canonical Form
Vz:A.B Hz:Ab c(a)
A—B z:A—b c{a}
AAB alb LA, RA)
AV B Li(4), Ru(l) Dy(§, ). T, 1)
0A ['8(_1)57?'6(_') DB (§7T)(Ja [a_])
a=qb c2d (1 2 10)
{} false
Alist | [alaltla | p(a);ple:A list) = ListC(5, [,5,5e0,C, )

The non-canonical forms operate as follows:
1. If ¢ has canonical form Hz:A.b and a € A then ¢(a) is b[a/z].
2. If ¢ has canonical form z: A — b and a € A then c{a} is b.
3. If ¢ has canonical form aMb then £LA(]) is a and RA(]) is b.
4

. If ¢ has canonical form £(-) then Dy(§,1)(],[,]) is d[a/x]; if ¢ has canonical form R(])
then Dy (5, 1)(1, [,1) is e[b/y].

5. If b has canonical form L5(-) then Dj (§,1)(|, |, [) is c[a/z]; if b has canonical form Rs(H)
then Dy (5, 1)(|, , ) is dla/y].

6. a =4 b expresses the identity relation between a and b, and is syntactically distinct from the
equality judgement a = b € A. If ¢ has canonical form p 4 g then J(|,[) is d[q/p].

7. {} is uninhabited; it has no constructors.

8. If x is []4 then ListC(8, [, 8, §c0, 5, ]) is d;
if 2 is [wo| 1] then ListC(§, [, 8§/, 800, C, 1) is e[p(z1)/v]-

The appearance of the non-canonical forms in synthesised programs corresponds with the applic-
ation of elimination rules in the proof. Similarly, the application of introduction rules in the proof
corresponds with the appearance of object constructors in the program. This will become obvious
on inspection of the example inference figures, below.

The sequent symbol is written . Non-empty formulae are represented by upper case Ro-
man letters (A,B,C,D); variables by lower case (x,y,z); types by lower case Greek letters (7); and
sequences of formulae by upper case. Hypothesis management is implicit, so the order of the hypo-
theses is insignificant; unchanging hypotheses are not shown in the figures below. As the calculus
is constructive, there is only one formula on the right of F, so no management is needed there.
Because this is a sequent calculus, the introduction and elimination rules of natural deduction
correspond with operations on the right and left of the sequent symbol, respectively.

The construction proving each formula is associated with it by €, which may be thought
of as type membership. Thus, a proof/program may be viewed as inhabiting the type which
is its specification. Note that program constructions in the inference figures, in particular those
associated with hypotheses, may contain uninstantiated (meta-)variables; the construction process
may be seen as a process of instantiation. Some cases (e.g. proofs of implications not in the scope
of 9) will lead to finished constructions containing uninstantiated variables. These constructions
may be thought of as program transformers: they take an “input”, by unification, and return a
new structure related to that input in a way described by the conjecture whose proof produced
the transformer. These ideas will be explored elsewhere.

In order to verify or synthesise a WTT program, we prove a conjecture of the general form

Ak ¢ € VaT7.0 S(@)

where A is an initial theory providing the definitions and axioms necessary for the proof; S is
the specification of the program; @7 is a vector of typed arguments; and ¢ is the (synthesised)



program, which includes an initial goal. The difference between verification and synthesis is the
instantiation level of the object ¢ — if it is fully ground, we are verifying, if it is a pure variable
we are synthesising, and correspondingly for any case in between. This is essentially the same as
W helk. However, given the improved uniformity of the reconstruction, we can now say precisely
what an object/program means for any type membership judgement which is part of a proof. If
we have a complete proof of the conjecture

AFged

so that ¢ is ground, then we know that ¢ explicitly encodes a proof of ®. The computation
rules of the calculus allow us to manipulate this proof — instantiating arguments, for example —
in a way which models the execution of the program in a higher-order functional programming
language. This is relevant to logic programs because, when executed in the all-ground mode, they
are equivalent to boolean functions. We can therefore read a subset of the proof objects produced
by the system — that subset whose member are members of 0 types — as logic programs.

4.3 General Rules

Reflexivity
Fae A F A type
Fa=a€cA FA=A
Symmetry
Fa=beA FB=A
Fb=a€c A FA=B
Transitivity
Fa=beA Fb=ceA FA=B +FB=C
Fa=ce A FA=C
Equality of Types
FaeA +HA=B Fa=beA FHA=B
FaeB Fa=beB
Substitution
Fa€e A z:Al Bla/z] type Fa€ A z:At bla/z] € Bla/z]
F B type FbeB
Fa=ce A z:At Bla/x] = Dic/z]
FB=D
Fa=ce A z:Albla/z] =d[c/z] € Bla/x]
Fb=deB
Axiom
a:AFa€e A

4.4 Dependent Function Type

Formation

F Atype z:At‘ B type FA=C z:A+-B=D
FVz:A.B type F (Vz:A.B) = (Vz:C.D)

Construction



z:AFbeB

F(dz:Ab) € (Vz:A.B)

Selection

z:AFb=c€eB

F(Hz:Ab) =(Hzx:A.c) € (Vz:A.B)

FteB b:B[t/z]FgeCG

c:(Vz:A.B) F g[c(t)/b] € G

Fce (Vz:A.B)

FteB b:Bt/z]FgeG

F gle(t)/b] € G

Evaluation

Fa€eA z:A+-beB

Fce(Vz:AB

~—

F ((Hz:A.b)(a)) = bla/z] € Bla/x]

4.5 Function Type

Formation

F Atype F B type

F((Hz:A.c)(z)) =ce (Vz:A.B)

FA=C +B=D
F(A->B)=(C—-D)

r:AFb=deB

+ A— B type
Construction

a:AFbEeB

F(z:A—b) e (A—B)
Selection
Fa:A b:BkgeG
c:(A->B) F g[c{a}/bl € G

Evaluation

FaeA +beB

Fz:A—b) =(z:A—d) € (A—-B)

Fce(A-B) Fa€A b:Bhge@G

F(@A—bla))=beB
4.6 Product Type

Fglc{a}/bl € G

Fbe(z:A— B)

F((z:A—b){z})=be€ (z:A— B)

Fa=ceA Fb=deB
F(amb) = (cnd) e (AAB)

Fc:(AAB) a:Ab:BFge@

Formation
F Atype | B type
F AN B type
Construction
FaecA +beB

FalNbe AANB
Selection

a:A,b:BFgeqd

c:(AAB) Fgla,b/LA]),RA(J)] € G

Evaluation

Fanlbe ANB
FLHM])=d€ed

Fgla,b/LA1), RA()] € G

Fanlbe ANB
FRAHD])=1€B




4.7 Disjoint Union Type

Formation
F Atype + B type FA=C +B=D
F AV B type F(AvVB)=(CVD)
Construction
FacA Fa=ce A
FLW(d)eAVB FLW()=LU]) € (AVB)
Fbe B Fb=deB
FRW(|) € AVEB FRWL) =RuUJ) € (AV B)
Selection
z:A+d:G y:BFe:G Fce(AVB) z:AFdeG y:BleeG
C(AVB)"’D\/@,T)(J,[,])EQ |_IZDV(§a-I‘)(Ja[-7-|)Eg
Evaluation

Fa€eA z:A+-deC y:BteeC
FDv(§ (L), [,1) = [[H/81 € C
FaeA z:AbdeC y:BteeC
FDy(E, DRD, [T =1[l/11 €€

4.8 Decision Type

Formation
F A type FA=B
F 0 A type F@A)=(0B)
Construction
Fae A Fa=be A
F Ea(—D €o0A F ﬁa(—D = ﬁa(l_) €0A
Fae(A—={}) Fa=be (A={})
FRo(H)edA FRo(H)=Rs(]) €A
Selection
z:AFdeG y:(A={})lFeeG Fa€dA z:AFdeG y:(A—{})Feed
a:@AI—Da (§7T)(_|7 ra-l)eg FDs (§7T)(_|7[-7-|)€g
Evaluation

FaeAd z:AFdeC y:(A->{}HFecC
F (Do (8, 1) (La(), [, 1) = [[H/8] € C
FaeAd z:AFdeC y:(A->{}FecC
F (Do (8,1 (Ra(), [, 1)) = 1lH/1] €C




4.9 Identity Relation

FA=C ta=c:A Fb=d:A

Formation
FAtype Fa:A Fb:A

Fa =4 btype
Construction

Fa=be A

F(c2d) e (a=ab)

Selection

Fee Glb/a]

c:la=2b)FI(],]) €G

Evaluation

Fa=be A

Fa=ab)=(c=cd)

Fa=be A
FeZ2d)=(c2d)e(a=ab)

Fce(a=abd) FeeGa/h]
FI(,1) €g

Fe € Cla/b]

FIEZLD=1€cC

4.10 Void Type

Formation

F{} type

Selection

F{={}

a:{} F falsee G

4.11 Parametric Lists

Formation
F A type
F A list type
Construction
F A type
= []A 1A list
Fa:A Fbe Alist
Fla|bla € Alist
Selection

F A type
F (A list) = (A list)

F A type
F[]AZ[]AEAliSt
Fa=ceA Fb=de Alist
Fla|bla =[c|dla € Alist

Fd:G[[]a/z] z0:A,z1:Alist,y:Glz1/x] e € Gl[zo|71]) /7]

x:Alist b (p(x);p(x: A list) = 1istC(§, [,8, 80,5, 1) €G
FzeAlist +d:G[[]a/z] wo:A,z1:Alist,y:Glz1/z] F e € G[[zo|z1]) /7]

E(p(@); p(a: A list) = 1istC(§, [, 8,800, 1)) € G
Evaluation
FdeG[[lajz] zo:A,z1:Alist,y:Glz1/z] F e € G[[xg|21]/2]
x:Alist b (p(z);p(z: A list) = listC([]4, [, 8,800, 5, ) =[) €G
FdeG[[la/z] =zo:A,z1:Alist,y:Glz1/z] F e € G[[xo|21]/2]

z: Alist b (p(x); p(z: A list) = listC([f)[{eo], [, 81, 800, 1)) =
e[ZO,Zl,p(.fL'l)/.’L'o,.'L'l,U] €qG



4.12 Universes

Formation
F U, type FU,=U,

Construction (similarly for all types except Up,)

FA:U, z:AFB:U, FA=U, x2:A+-B=D:U,
F (Vz:A.B):U, F (Vz:A.B) = (Vz:C.D):U,
Selection
F A type FA=B
AU, FA=B:U,
FA:U, FA=B:U,
|‘A2Un+1 l‘A:B:Un+1

5 Example: subset/2

For this example, I use the conjecture which specifies the subset/2 predicate using lists as a
representation for sets — that is, the predicate which succeeds when all the members of the list given
as its first argument are members of that given as its second. The specification is parameterised
by base type (i.e., by the type of the list elements), and, necessarily, by a decision procedure
for equality for that type. In the event that such a decision procedure is not supplied, the proof
process will not yield a logic program. I assume a background theory defining the €, (typed
member/2), as follows:

Hr:Up. Od: (Va:7.Vb:7.0 (a =, b)).
Hz:7. HBy:7 list.(m(y);
m(y:7 list) =
listC(t,
Ro(E:{} = {4/,
Yo, Y1, 7,

D@(\/I;\/oo)(l_(T)@)(Jrl):'CV('C(:?(\/I)):RV(E))))

e Vr:UpVd: Va:7.¥b:7.0 (a =; b)).
Ve :1Ny:7 list.0 (z €; y) (1)

This definition is the statement that a program implementing member inhabits the appropriate
type. It is worth mentioning at this stage that a user of WTT will not normally have to deal with
such complex constructions. Instead, we also have two logical equivalences (i.e., type equalities):

Vr:UpVe:T(z € [];) = {} (2)
V1:Up Nx: 7Ny :7.Vyo:7 list.(z €, [yo|v1]) = (=ryo VT Eruy1) 3)
It is, however, necessary to show that the type defined using €, is inhabited — so we must construct
the object; in fact, this turns out to be done via a simple proof.
Returning to the example conjecture, we start with
F Vr:UpVd: (Va:7.Vb:7.0 (a =; b)).
Vo7 listVy:7 list.0(Vz:7.2 €, =2 € Y) 4)
The proof proceeds by primitive induction on lists, first on z and then on y. Note that the proof

is presented in refinement style, with the rules applied “backwards”, and that I have omitted
unchanging hypotheses unless they are used in the current proof step. Further, since we begin



with a completely uninstantiated proof object, I have omitted it and the € symbol from the
sequents — otherwise the sequents would be completely illegible.

The first move is to introduce the universally quantified type parameters, and the quantifier
of z in 4. This yields the conjecture

7:Ug,d: (Va:7.¥b:7.0 (a =; b)),
xz:Tlist F Vy:rlist.d(Nz:tz €, 22 €, y) (5)

and the program
Hr:Up.Od:(Ha:7.8b:7.0 (a =, b)). Hx: 7 list.¢s

where ¢35 is a meta-variable which will be instantiated during the rest of the proof. Note the differ-
ence from the original Whelk here: the Hs were previously represented by a predicate definition
head and arguments. Also, we have two (syntactically detectable) higher-order arguments, whose
presence indicates that what we are synthesising here is not a logic program, but a logic-program-
valued function - i.e., a module. These, then, are the first two significant differences between this
presentation of the example and that of [Wiggins 92b].

Next, we apply list selection to z. This gives us two subconjectures:

F Vy:rlist.0(Vz:T.2 € [|r =2 €1 ) (6)
To:T,x1:T list,
viVy:Tz €, 21 —2€ry) b Vy:Tlist.0(Vz:1.2 € [mo|21] =2 €7 1) (7
and the following synthesised program, where g and 17 are the program constructions corres-
ponding with (6) and (7), respectively:
HB7:Up. Bd:(Ha:7.8b:7.0 (a =; b)).
HBa:1 list.(p(z); p(z:7 list) = listC(§,v /81,8, C, 1))

Here is another difference between Whelk and WTT: the choice between [] and non-[] lists is
built into the language as a type-selector, so no explicit disjunction appears here.

To prove the base case, (6), observe that the expression within the scope of 9 is true, because
the antecedent of the implication is always false. We can now use the new decision type rules to
introduce the @ and then show that the resulting statment is indeed true. We introduce y and
then use the first @ construction, to yield the following conjecture:

y:Tlist-Vz:irz €, [, 22 €r y (8)
and the program

HB7:Up. Bd:(Ba:7.8b:7.0 (a =1 b)).
Hz:7 list.(p(z); p(z:7 list) = listC(§, Lo( B:7 3)[Uy), 81, 800, C, 1))

where 1) is the program corresponding with (8) as before. It is the £5() operator, appearing in
the [] part of the listC selector which tells us that, when we reach this point in execution, we have
succeeded; the argument of listC is just verification proof (maybe with some embedded identity
relations, which can be extracted easily).

Proof of the remaining conjecture, (8), is trivial (from the definitions of €, in 2) and is omitted
here for lack of space. When it is finished, we have the following program.

HB7:Up. 0d:(Ha:7. 8b:7.0 (a =, b)).
Hx:7 list.(p(x);
p(x:7 list) =
listC(8,
Lo(Ot:7 DU Bf:m DIUE:(F & [I7 = {H4L/1)),

Zo, 1,7, ¢7))

10



The step case of the induction on z, (7) is harder. First, we use the definition (3) of €, rule
to unfold the leftmost occurrence in the conclusion. This gives

FVy:7list.O(Vz:1.(2 =r 2oV 2 €)= 2 €, Y) (9)

Note here that I am using the type equality rules to perform and prove correct these rewrites, and
not the evaluation rules. As such, the rewrites are effectively under equivalence, and the program
does not change.

Now, we introduce the universal quantifier of y and rewrite under logical equivalence, again
proving correctness by reference to type equality, to get:

y:1list- O(Vz:1 (2 = o2 €EY) AVz:T.(2 E21 2 €Y))

As with Whelk, the rewriting can be performed automatically, via the rippling paradigm of
[Bundy et al. 90a, Bundy et al. 90c]. Again, this step does not change the structure of the syn-
thesised program.

One more logical rewrite gives us

FOWNVz:ir.(2 =, 20—z €y))ANO(Vz:T.(2 €212 €Y))

again, not contributing to the program structure. The next step, however, A construction, does
contribute. Its sub-sequents are:
F ONVziT2=, 2022 €Y) (10)
F O(Vzitz € 2192 €EY) (11)

and the program is:

Hr:Up.Od:(Ha:7.0b:7.0 (a =, b)).
Hx:7 list.(p(x);
p(z:7 list) =
listC(8,
Lo(Ot:m PJu.bi:m PJU.C:(F & [I7 = {H1/1)),
Lo, 21,7,

Y10 M11))

We show (10) by first simplifying its conclusion:
FO(zg € y)

and then applying induction on y. This can now be demonstrated by appeal to the definition of
€., whose inhabitant proof object instantiates the program. The program now looks like this:

B7:Up. 0d:(Ha:7. 8b:7.0 (a =, b)).
Ha:7 list.(p(x);
p(x:7 list) =
listC (8,
Lo(Bt:r DU Bi:r DIUC:( € [Im = {A1/1)),
Lo, Z1,0,

M(T)(8)(F) N Pooco))

where M is the proof object of definition (1).
Finally, we appeal to the induction hypothesis of z (called v) to fill in the uninstantiated ¢11
and complete the program.

11



H7:Up.Od:(Ha:7.0b:7.0 (a =, b)).
Ha:7 list.(p(z);
p(z:7 list) =
listC(8,
Lo(dt:r PJU.Bi:r DIUC:(F € [I7 = {H1/1)),

Zo, %1, Y,

(M(E))E) M E))

6 Normalization

We now have our WTT module for parameterised subset. However, (12) is clearly a higher-
order structure, since it has two arguments which are types, 7 and d. It also has embedded
non-canonical forms, such as the application of M to its arguments. Before we can convert this
program into one runnable directly as a “normal” logic program, we must evaluate and instantiate
these structures, respectively. Evaluation of M, as far as the instantiation of its variables may
be performed immediately, in the obvious way, as licensed by the V type evaluation rules. To
instantiate 7 and d, we need another type. I will use IN here, although I have omitted its proof
rules for reasons of restricted space. All we need to know is that IN € Up, and that the type
Va € IN.Vb € N.O (a = b) is inhabited, thus:

Ha € N.Hb € N.e(a);

e(a:IN) = NC(H,
F(b);
F(b:N) = N¢(|,
Lot N 1,
bo,w,
Ro(: (1 E [(7) = {4111)),
Zo,V,
g(b);
g(b:N) = NC(|,
Ro(M:(J(1) & 7= {4211)),
bo, w,
v(bo))

FVa:IN.Vb:N.0 (a =N b)

Again, it is worth emphasising that the production of such an algorithm is a straightforward, and
in this case trivially automated, proof. This version of the equality predicate works by counting
down the natural numbers; a better version would use a decision procedure built in as a basic
type, which would yield a more efficient program.

Given this definition, the evaluation rules of the calculus may be used to reduce the original
modular specification to the following:

Va:N list.Vy:N list.0 (Vz2:N.z Ejn— 2z €N ¥)

Such an evaluation results in parallel evaluation of the proof object, so the proof object we end
up with is convertible into the subset relation for lists of naturals as required.

12



7 Conclusion

In this paper I have discussed how a higher-order extension of the Whelk system can help us
synthesise modular programs. The example has shown that the system works for programs which
are parameterised both in type and in sub-module. I have sketched the outline of an example
proof, and shown that it is essentially the same as that for the same example in the W helk
system, though the modularity of WTT makes things slightly easier, in that it is not necessary to
re-synthesised the member predicate — we can simply plug in an existing definition as a module.

The consequences of all this are significant. It has been shown elsewhere that logic program
synthesis techniques work well for compiling naive or non-executable specifications into comparat-
ively efficient programs. The question has always been: “what about scaling up?”. The modularity
of the WTT system is one answer to this important question.

8 Acknowledgements

This work has been supported by ESPRIT basic research project #6810, “Compulog II”. T am
very grateful to my colleagues in the DREAM group at Edinburgh, in particular Alan Smaill,
and in the Compulog project for their advice and support. I also thank Frank Pfenning, Andrei
Voronkov and David Basin for their comments on the original version of W helk.

References

[Bundy et al. 90a] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calculations in
automatic program synthesis. In S. L.H. Clarke, editor, Proceedings of UK IT
90, pages 221-6. IEE, 1990. Also available from Edinburgh as DAI Research
Paper 448.

[Bundy et al. 90b] A. Bundy, A. Smaill, and G. A. Wiggins. The synthesis of logic programs
from inductive proofs. In J. Lloyd, editor, Computational Logic, pages 135—
149. Springer-Verlag, 1990. Esprit Basic Research Series. Also available from
Edinburgh as DAT Research Paper 501.

[Bundy et al. 90c] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions to the
rippling-out tactic for guiding inductive proofs. In M. E. Stickel, editor, 10th
International Conference on Automated Deduction, pages 132-146. Springer-
Verlag, 1990. Lecture Notes in Artificial Intelligence No. 449. Also available
from Edinburgh as DATI Research Paper 459.

[Constable 82] R. L. Constable. Programs as proofs. Technical Report TR 82-532, Dept. of
Computer Science, Cornell University, November 1982.

[Martin-Lof 79]  Per Martin-Lof. Constructive mathematics and computer programming. In
6th International Congress for Logic, Methodology and Philosophy of Science,
pages 153-175, Hanover, August 1979. Published by North Holland, Amster-
dam. 1982.

[Wiggins 92a] G. A. Wiggins. Negation and control in automatically generated logic pro-
grams. In A. Pettorossi, editor, Proceedings of META-92. Springer Verlag,
Heidelberg, 1992. LNCS Vol. 649.

[Wiggins 92b] G. A. Wiggins. Synthesis and transformation of logic programs in the Whelk
proof development system. In K. R. Apt, editor, Proceedings of JICSLP-92,
pages 351-368. M. I.T. Press, Cambridge, MA, 1992.

[Wiggins et al. 91] G. A. Wiggins, Alan Bundy, I. Kraan, and J. Hesketh. Synthesis and trans-
formation of logic programs through constructive, inductive proof. In K-K.

13



Lau and T. Clement, editors, Proceedings of LoPSTr-91, pages 27-45. Springer
Verlag, 1991. Workshops in Computing Series.

14



