The Improvement of Prolog Program
Efficiency by Compiling Control:
A Proof-Theoretic View

Geraint A Wiggins
DAI Research Paper No. 455

April 30, 1998

Presented to META-90 Workshop,
April 1990
Leuven, Belgium

Department of Artificial Intelligence
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN
Scotland

© Geraint A Wiggins, 1990

The Improvement of Prolog Program Efficiency by Compiling
Control: A Proof Theoretic View

Geraint A Wiggins
Department of Artificial Intelligence
University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN
geraint@ed.ac.uk

Abstract

In this paper, I report on progress in applying Proof Planning techniques developed
by Bundy et al at Edinburgh to the ideas of Compiling Control proposed by Bruynooghe,
de Schreye et al at Leuven.

The overall theme of the paper is the application of a proof-theoretic view of Prolog
program execution to the issues involved in performing Compiling Control. In particular,
I show how the use of strict data-typing can help to guide an inductive proof, analogous to
the execution of a recursive Prolog program for some given computation rule, to produce
an execution tree equivalent (in many cases) to that required for the compilation of control
under the Leuven régime.

I conclude that this is a worthwhile direction to follow, though there are are some
cases not covered by the proof-theoretic approach which are dealt with by the techniques
of abstract interpretation involved in Compiling Control.

1 Acknowledgements

This paper presents work in progress under the ESPRIT “Computational Logic” project
#3012. T gratefully acknowledge the input of Maurice Bruynooghe, John Gallagher, Danny
de Schreye and Kristof Verschaetse during recent discussions in Leuven and the continuing
support of my colleagues in the DReaM!group in Edinburgh, especially Alan Bundy, Jane
Hesketh, Alan Smaill and Frank van Harmelen. The software built as part of this project is
based on work by Julian Richardson, described in [Richardson 89].

2 Introduction

In this paper, I will discuss the relationship between work carried out in the Katholieke
Universiteit Leuven on the compilation of non-standard execution rules for Prolog programs
and continuing work in the University of Edinburgh on planning for (mathematical) proofs.

I will begin with a brief exposition of the Compiling Control technique, and briefly re-
produce an example given in [Bruynooghe et al. 89]. Next, I will introduce the idea of Proof
Planning in the mathematical domain, and show how we can adapt it and the research tools
currently used to produce a theorem prover for a Prolog-like language under resolution.

I will then return to the example cited above, and show how the Proof Planning technique
can reproduce the Compiling Control results, in some cases in a more directly justifiable way
than that suggested in the Compiling Control literature. In particular, I will suggest that
the use of inductive theorem proving techniques (based on the DReaM group ideas normally
applied to general mathematical proofs) can lead to a more formal treatment of recursive

! «“Discovery and REAsoning in Mathematics”

programs than in Compiling Control. This will require the use of a type theory for Prolog,
and it will be seen that such a requirement leads to some limitations not present in the
original Compiling Control work.

The underlying theme of this presentation is the utility of the “proofs as programs”
analogy (see [Constable 82]), in reasoning about logic programs, and how we can use it to
produce improved versions of programs.

3 Compiling Control

3.1 Introduction

The primary goal of K U Leuven’s Compiling Control work ([De Schreye & Bruynooghe 88,
Bruynooghe et al. 89, De Schreye & Bruynooghe 89]) is to improve the execution speed
of a given Prolog program, by manipulation only of the computation rule under which it is
executed, and not by logical transformation like that between naive and accumulating reverse.
The execution tree obtained includes co-routining behaviour based on instantiation, which
is not available under the standard computation rule. The computation rule corresponding
with the new tree is implemented as a meta-interpreter specialised to admit only the efficient
execution of the program, even under the standard computation rule. (An alternative, rather
more straightforward, view to this is that the method produces a transformed program which
runs directly, under the standard computation rule.)

The procedure we must follow to perform this transformation is in two phases. First,
we must produce a symbolic trace tree (like that shown in figure 2 representing the efficient
execution). Second, we must produce a new program, the meta-interpreter mentioned above,
which runs under the standard computation rule to give the same success set as the original?.

A noteworthy point about the Compiling Control approach is that it involves a good
deal of guidance from a user. Results are not in general, if at all, available without such
intervention.

3.2 The “Symbolic Trace Tree”

The process of producing the symbolic trace tree is fundamental to the Compiling Control
approach. Tools exist to aid in producing the tree; however, as noted above, considerable
user intervention is required. Building the tree involves successive execution of the program
to be improved for a (small) number of concrete queries. At each step in the execution
of a particular query the user decides which of the current subgoals should be dealt with
next, and whether it should be unfolded (in the usual sense) or fully executed. Each time
a new query is executed, the new execution tree is combined with that (if any) already
existing, in some abstraction including both, which is generated on the fly. If the queries
are well chosen, the abstraction introduced covers all the data for which the program can
succeed, and the resulting tree is a correct abstract representation for all possible successful
executions of the program (and possibly non-terminating ones, as well). In the event that
the abstractions chosen are too general, datatyping implicit in the program code will often
prevent overgeneration of results.

?Execution of the new program is only non-deterministic where branches guided by data content (eg a
choice between empty and non-empty lists) or undecidable branches (eg where two clauses have the same
head) occur in the symbolic trace tree; such branches are obviously unavoidable in general. This will become
clear in the forthcoming example.

3.3 Generating a Specialised Meta-Interpreter

Once such a tree has been produced (manually or semi-automatically), we can use a fairly
simple mechanical procedure to generate the new program from it. By representing each node
in the tree (viz each state in the execution) by a distinct predicate, whose arguments are the
subgoals to be proved at that state, we can represent state changes by Prolog predicates
mapping from a state (the clause head) to an immediate successor (the clause body) in the
usual Prolog way. We can subsequently improve on this in two ways. Firstly, if there is a
sequence of more than two states which includes no branches, we can collapse it into a single
state change (in a sort of weak partial evaluation), which causes more efficient execution of the
new program because fewer resolution/unification steps are involved. Secondly, if any part
of the new program represents an execution equivalent to that derived under the standard
computation rule, that part can be replaced by a direct call to the (original) predicate(s)
involved, giving a “full execution”, which removes the interpretation overhead for that section
of code.

Currently, Leuven’s incremental trace tree construction algorithm requires that these “full
execution” sections are labelled as such by the user during the initial construction phase —
therefore, the user must exercise intelligent choice in determining the correct option before
the complete trace tree has been seen.

3.4 An Example — Permutation Sort

Let us now clarify all of this with an example: the “slowsort” or “permutation sort” algorithm.
The example is taken directly from [Bruynooghe et al. 89].

sort(X, Y) - perm(X, Y), ord(Y).

perm([],]).

perm([H|T] [UQ]) = del(U, [H|T}, W), perm(W, Q).
del(X, [X]|Y], Y).

del(X, [Y|U], [Y|Q]) - del(X, U, Q).

ord([]).

ord([X]).

ord([X,Y|Z]) - X <Y, ord([Y|Z]).

Figure 1: The Standard Slowsort Program

Figure 1 shows the Prolog Slowsort program, which runs inefficiently under the standard
computation rule. Figure 2 is the tree representing in abstract terms (the abstraction being
simply to the domain {ground, variable} with some extra structure for representing lists) the
most efficient execution tree for the Slowsort program called with a ground first argument
and a variable second — that is, with the query pattern:

:- sort(ground, variable).

Ground terms and functors are represented by lower case letters, and variables by upper
case. At each state, the next is produced by unfolding an underlined subgoal or fully executing

sort(x, Y)

L

pern(x, Y), ord(Y)

x=[1, Y=[] *\\\\\\\\\§f£?1|k1], Y=[V1] L1]

ord([]) del (V1, [ul|k1], W), |pernm{ W, L1), ord([V1|L1])

T
0

pernm(wi, L1), ord([vl|L1l]) £ ~-=--=--=--=----~

wi=[], L1=[] W:[ua k2], L1=[V2|L2]
ord([vi]) del (V2, [u2|k2], W2), |pernm(W, L2), ord([vl,V2|L2])
L] perm(w2, L2), ord([v1,v2|L2])

pern(w2, L2),[vl =< v2,{ord([Vv2|L2])

perm(w2, L2), ord([v2|L2])=~~~ """ "~ """ ~"------------

Figure 2: The Symbolic Trace Tree for Slowsort

a boxed subgoal. Assignments taking place as part of a state change are attached to the arc
connecting the states; as variables become (partially) ground, they are change to lower case.

As part of the process of creating the tree, we have somehow to notice that the final state
is an alphabetic renaming (equivalent here to subsumption), with the same instantiation
pattern, of the state pattern connected to it in the figure by the broken-line arrow. We
therefore assume that we can view the computation as looping and that we need not expand
the trace tree any further. We also need to know that we can allow full execution of the del/3
calls.

Once we have produced the tree, we can apply the mechanical procedure outlined above
to produce the set of meta-program clauses representing the state changes. After applying
the optimisations suggested above, we are left with the efficient specialised meta-interpreter
for the specified query shown in figure 3. Note that the sl clause exactly represents the

sl(sort(K, L)) - s2(perm(K,L),ord(L)).

s2(perm([],]), ord(])).
s2(perm([UL[K1], [V1|L1]), ord([VI|L1])) = del(V1, [U1|K1], W1),
s5(perm(W1, L1), ord([V1|L1]).

s5(perm([],]), ord([V1])).
s5(perm([U2[K2], [V2|L2]), ord([V1,V2|L2]))

del(V2, [U2|K2], W2), V1 < V2,

a

sb(perm(W2, L2), ord([V2|L2])).

Figure 3: The Specialised Interpreter for Slowsort(Ground, Variable)

transition between the first and second states, and that the fully executed predicate, del/3, is
included as a normal Prolog call and not meta-interpreted. The call to </2 is also executed
by the standard Prolog interpreter, because </2 is a system predicate.

The small number of clauses has been achieved by collapsing together sequences of states
containing only one choice point — this is the most complete collapsing possible. Thus, the
only states requiring explicit clauses in the new program are those at which the tree branches,
and we need to express the corresponding disjunction in the execution of concrete queries.

4 Oyster/CAM and Proof Planning

Proof Planning has been developed in Edinburgh University’s Department of Artificial In-
telligence by the DReaM Group [Bundy et al. 91]. The technique is a means of applying
high-level strategies to the elaboration of mathematical proofs. A proof planner, CIAM, has
been designed to work in conjunction with a proof development system, Oyster [Horn 88],
which in turn was based on the NuPrl proof development system implemented by Constable
et al [Constable et al. 86]. Oyster uses Martin-Lof Type Theory to express theorems and the
steps in their proofs.

Proof steps are applied (manually or automatically) in Oyster by starting with a goal
theorem, and applying rules and tactics to perform logical transformations on it. (Note
that this is the reverse of Gentzen Sequent Calculus notation: the Oyster proof tree grows
backwards from the goal, reducing the theorem to axioms. Therefore rules such as introduction
work in the opposite way from what might be expected.)

Standard proof rules such as V-introduction and V-elimination may be applied at any stage
in a proof, and are mostly initiated with one word commands, Oyster usually determining
the meaning of the command from the particular context.

A tactic is a more complex rule, defined in terms of the basic rules built into Oyster, but
with the potential inclusion of arbitrarily complex Prolog code. Inference steps applied by
tactics are applied only through basic rules. Tactics are often used as procedures or macroes
to encapsulate complex manipulations which happen frequently, such as the application of
particular induction schemes.

Tactics and rules may be manually applied to nodes in the (partial) proof tree individually
or combined together by tacticals, or by means of the application of a proof plan. Proof plans
are currently automatically generated by the proof planner, CIAM [vanHarmelen 89]. To
enable CIAM to operate, methods are used to specify tactics in meta-logic; they include pre-
and post-condition information. CIAM is able to use this information to form plans (via the
user’s choice from a number of planning strategies) about how best to perform a proof. The
search space for the planner has usually proved to be considerably smaller than that for the
object-level language of a given proof; moreover, plan steps in the mathematical domain are
generally considerably cheaper to execute than object-level steps.

In particular, current work concentrates on middle-out proof planning, guided by the
process of rippling out. In this approach, proof plans are formed by the proposition of a
general form of induction containing meta-variables. The movement of the symbols in the
proof around these variables (characterised in general as rippling out and described by a small
number of wave rules at the meta-level) can suggest the particular form of the induction —
see [Bundy 88] for more detail.

A part of the on-going work concentrates on program synthesis using these techniques.
In Martin-Lof Type Theory, each application of a rule (proof step) corresponds exactly with
a step in the construction of a functional term, representing in some constructive sense the
force of the proof. In particular, in a proof of an existential proposition this eztract term is a

program which constructs the item proved to exist. Therefore, if we prove a theorem of the
general form
hypotheses & Vinput.Joutput.specification(input, output)

(where specification logically defines the program, and hypotheses are the logical precepts
required for proof — eg knowledge about properties of types) we simultaneously produce a
program that generates the output specified for all (well-typed) input. See [Constable &
Bates 83, Constable 71, Madden 89] for more detail.

5 Prolog as a Typed Constructive Logic

Since the essential goal of this research is to apply proof planning techniques to the compiling
control domain, let us now consider how to do so in more detail. In particular, we must
consider the issue of datatype marrowing which typically takes place in the execution of a
Prolog program, because of datatyping implicit therein. I will outline two possible solutions
to this problem.

In this reconstruction of the Compiling Control work, we wish to view a Prolog program as
a specification of the logic of a program (abstracted from any algorithm), and then reasoning
is used to derive the appropriate solution set from that specification, given a set of queries
from which can be inferred the general form of a query. In a proof system using resolution
(~ unfolding) as its proof step, there is a fairly obvious (but naive, for reasons covered later)
analogy between the existential form (shown above) used in Oyster program synthesis (where
the specification includes all of the information about the logic of the program we wish to
synthesise) and the combination of the program specification and general query (where the
hypotheses constituting the program clauses are used to expand the top level goal):

F Vinput.Joutput.specification(input, output)

Logic Program b P(ground, variable)

The proof of or reasoning about these entities proceeds in both Oyster work and Compiling
Control by stepwise reduction to some other entity(ies) which are in some sense generally
provable: basic sequents in Martin-Lof, and an empty subgoal set (or subsumed goal, as we
will see later) in Prolog. Note that the query here is viewed as a positive logical expression,
and not as the usual denial. This is the intuitive view in a proof-theoretic framework, and is
logically correct: pure Prolog (which we are using here) is a subset of AProlog, for which the
positive expression of queries is acceptable — see [Miller & Nadathur 88].

One approach to this problem, then, might be to cast the program specification in Martin-
Lo6f Type Theory, specify the mode in terms of universal (~ ground) and existential (~
variable) quantifiers, and synthesise an efficient program (which would, presumably, reflect
the structure of the Compiling Control solution) with the technique described above.

This approach, however, is not suitable. It presents us with two serious problems. The
first is the functional nature of the extract term in Martin-Lof Type Theory. The properties
of such an extract term mean that external non-determinism in a Prolog program is not
expressible in the synthesised program. Thus, the success set of the original Prolog program
is not in general preserved, a drawback which does not arise in Compiling Control. This
problem is reflected in the looseness of the variable-existential analogy; strictly speaking
the existential proof only has part of the force of the Prolog goal, which implies universal
quantification over the solutions. It seems that the only way to deal with this problem is to
use a different language in our proof system.

Secondly, (and in some cases more problematically), specification of such a query in
Martin-Lof Type Theory normally requires that the exact datatype of the input be known
in advance. Now, it is not in general true that the datatypes of a program input are easily
visible from inspection of the program, and in general, they may not be so at all — consider,
for example, the N-queens problem, which has no solution for N € {2,3}, so the (sub)type is
{1}U{x|integer(x) & x > 3}. Because of the abstraction involved in Compiling Control, this
problem does not arise: a correctly chosen abstraction will normally cover a superset of the
necessary datatype, and execution of the improved program will simply fail for input data
for which no solution exists. In proof theoretic terms, this solution is clearly unacceptable.
Thus, the analogy between groundness and universal quantification breaks down.

There are two possible solutions for this latter problem. The first is the use of explicit
specification of subtypes (ie types with domain restrictions) as implications in the top-level
goal, like this:

F InType(input) — P(input, output).

where InType is well-typedness predicates on the input which may include arbitrarily complex
logical expressions. At first sight, this solution seems not to address the issue, because the
type predicates are defined in advance. In principle, however, this is a classic application of
middle-out proof planning (see [Bundy et al. 89]) — the type predicate name can be viewed
as a meta-term and instantiated as appropriate as the planning proceeds.

Give this solution, the type hierarchy shown in figure 5 is adequate (the detail of this are
covered below), since any type inferences made during the proof planning may be included
in the type predicate at proof time.

Alternatively to the choice of Martin-Lof Type Theory we might use a proof system which
is capable of type-inference, or, rather, is able to construct and justify suitable sub-types (eg
all integers other than 3) for a given proof on the fly. This is in principle possible in Martin-Lo6f
Type Theory, and will be the subject of future work in this project; the implications, however,
in terms of complexity of the well-typedness checks occurring in the proof, are formidable.
Nevertheless, unless some equivalent type checks are made, a proof including type inference
becomes less than a proof: given any step involving the narrowing of a type without some
account for the subtype excluded by the narrowing, any universal quantification in the initial
goal may become partly uncovered by the proof, which is therefore invalid.

Another problem is that it will often be desirable, when working with “real” programs,
to specify extra information about built-in predicates — in particular, the instantiation states
and input datatypes required for error-free success. This is not possible in Martin-Lof Type
Theory.

As a first step towards a working system which will deal with these problems, I have
replaced Martin-Léf Type Theory in Oyster/CIAM with a language equivalent to pure?Prolog
(viz specification of a program in Horn Clauses, with execution viewed as proof by unfolding
and symbolic evaluation). Given the specification of appropriate methods, CIAM can plan
over the proof search space in exactly the same way as it can over mathematical proofs in
ordinary Oyster. The theorem (program) to be proven (executed) is specified as a set of Horn
clause hypotheses, and a Prolog-style goal expressed in abstract, typed terms. This will be
made clearer by the example below, which is output by this new system, Prolog-Oyster/CIAM
(PClam for short).

3With the addition of knowledge about object-level built-in predicates.

6 Specifying Programs in Prolog-Oyster/CltM

To begin with, we must specify the program we wish to improve, and the abstracted query (ie
query with mode and type information) for which we wish to optimise it. In Prolog-Oyster,
the slowsort program and query from the Compiling Control example given before look like
figure 4 (except that some minor syntax has been changed to improve readability).

sort(var x, var y) < perm(var x,var y),ord(var y).
perm([], [])-
perm([var x| var y],[var u| var ql) + del(var u,[var x| var y|,var w),

perm(var w,var q).
del(var x,[var x| var y],var y).
(

del(var x,[var y| var ul,[var y| var q])] + del(var x,var u,var q).
ord(]).
ord([var x]).
ord([var x,var y| var z]) +— varx < vary,
ord([var y| var z)).
var x < var y < sys(gnd a:number struct < gnd b:number struct,

gnd a:number struct < gnd b:number struct,
predicate)

F sort(gnd x:number list, var ans:term).

Figure 4: The Slowsort Specification in Prolog-Oyster/CIAM

Most of this specification is self-explanatory to those familiar with Prolog. The two parts
requiring explanation are the specification of the behaviour of </2 and the mode and type
information in the goal.

The </2 specification means the following. The appearance of the sys functor in the body
denotes a built-in predicate. The first of its arguments specifies the call-time instantiation
state required for error-free execution of the predicate. The second indicates the output
instantiation state (which is the same as at call time, in this case). The third argument,
“predicate”, indicates that this call makes no change to the data involved — it merely succeeds
or fails, and thus is easy to deal with in a proof.

The mode abstraction used here is simply {gnd, var} for {ground, variable}. The system is
capable of reasoning about constants, too, but this facility is not required by this example. In
performing an inference step, we are required to ensure that no term becomes less ground*than
before — if any one did, the inference would imply an unmotivated generalisation.

Datatypes in the current implementation are organised in a partial lattice as shown in
figure 5. (This would need to be extended considerably, were we to take the sub-type approach
described above.) Type inference from the program corresponds with narrowing, that is,
moving down the tree. X is a variable over types. The type and mode inferences together
correspond with “one-way unification” in [Verschaetse et al. 88]. The containment of all
types X by the type struct X captures Prolog’s representation of expressions as structures —
for example, we wish to be able to view 3 as equivalent to 2 + 1

4variable is less ground than ground is less ground than constant.

term

T

X list at om X struct
[1 [X X list] literal nunber X X struct

Figure 5: Type Hierarchy in Prolog-Oyster/CIAM

7 The Nature of a Proof Tree in Prolog-Oyster/CIAM

As T mentioned before, one of the problems with the Martin-Lo6f system in Oyster is its inab-
ility to represent non-determinism in the way we need for reasoning about Prolog programs.
The problem, essentially, arises from the functional nature of the extract term — functions
are deterministic.

One of the consequences of this arises in the constructive view of disjunction: namely,
that a proof of a disjunction is a proof of one disjunct associated with some indication of
which disjunct has been proven. If we wish to synthesise programs directly from a proof
of a disjunctive goal (which is certainly a possibility in general Prolog usage), this view of
disjunction leads to a problem. We cannot in general decide at proof time (ie in the abstract
domain) which path will be taken at a disjunctive branch when we come to run the program
with a concrete query.

More generally, the same feature appears when we have a choice of clauses in our program
with which to resolve a particular goal. In a proof system with resolution as its basic proof
step, we would not normally expect to apply more than one resolution at once during a
proof of an existential proposition — that is to say, only one clause of each predicate would
be used. Now, this is fine for a system reasoning about concrete queries, but will not do in
the abstract domain, because it is often possible that, for example, a ground term can be
ground in different ways. Those different groundings may unify with different clause heads
within a given predicate, and thus give rise to the need for different proofs, depending (as
we would expect) on the values of the data. An example of this appears in the expansion of
the perm/2 predicate in the next section. The effect becomes more pronounced in the case
where a given resolvent unifies with more than one clause in all cases; here we have genuine
inclusive disjunction at the concrete level (as in the expansion of the del/3 predicate in the
next section).

One way of allowing the representation of non-determinism in the way we need is to
change our view of the Prolog-Oyster proof tree. Rather than viewing it as a straightforward
proof tree, we view it as a tree of partial proofs. Then, all our inference rules operate over
sets of partial proofs, represented by (abstract) nodes in the proof tree. Therefore, at any
node in the tree we are finding all the proofs of the (sub)goal corresponding with that node,
which are given by the choice of a particular resolvent within it. This means that, given a
means of synthesising program sections corresponding with proof steps, we are performing
all the proof steps necessary to construct, in principle, a non-deterministic extract term. The
detail of these ideas will be covered in future publications.

It is important to understand that there is a distinction between non-determinism within
proofs and non-determinism between proofs. The former is accounted for by the argument
above; the latter corresponds with the production of different algorithms. This is character-
ised in the distinction between covering all the possible ways to execute a predicate (necessary

because of our abstraction) and choosing different resolvents within (sub)goals.
The change of viewpoint to the tree of partial proofs leaves us with a tree expressing a
superset of the information in Compiling Control’s symbolic trace tree.

8 Compiling Control by Proof Planning

8.1 Inference Rules

Now, in order to analyse the behaviour of the program, we need some inference rules based
on resolution. The fundamental one of these will be the conventional unfold, for the obvious
reasons. However, as I explained in the last section, because we are working with abstractions,
even a superficially straightforward unfolding step actually corresponds with a set of unfolds,
one for each possible grounding of the abstracted data. By extension, if we call a predicate
with separate clauses for input of (say) empty and non-empty lists (ie a disjunctive branch
in a concrete Prolog execution) we need to create a tree of proofs for each possibility. Thus,
the branch rule we require in the Prolog-Oyster system always creates a conjunctive split in
the tree to represent a disjunction in a program specification.

Given such a branching rule, we have all the mechanism we need manually to repro-
duce and account for the trace tree shown in figure 2, except for the fertilisation of the
loop indicated there by the broken arrow (by the loop rule) and the “full execution” of the
del/3 predicate. The former is dealt with by induction, and the latter by a quasi-inductive
technique, both of which will be detailed later, in the example.

Assuming for the moment that we can deal with loops, we now need to be able to perform
planning for the execution. For the moment, I will defer discussion of the input typing issue,
and assume (in the case of slowsort, correctly) that the proof we perform will not involve
datatype narrowing. The rules will be explained as they arise in the example.

In order to guide our planner, we have methods, corresponding one-to-one with the rules
which describe their behaviour, in terms of pre- and post-conditions.

8.2 Planning Strategy

For efficiency’s sake (at the planning level) we generally want to find the shortest tree of
correct proofs for a given specification®. For this purpose CIAM’s iterative deepening planner
is ideal: it produces the same result as an exhaustive breadth first search, but is rather faster,
because the implementation currently includes an optimisation based on the independence
of proof sub-trees. In the final analysis, goal-directed planning, including heuristics about
predicates appearing in the subgoals to be proven, will be an ideal solution. For the moment,
and certainly for this example, iterative deepening is adequate.

Planning follows the following procedure. At each node in the (growing) plan, the available
methods are tried, one by one, on the unproven subgoal. The first to be tried is the loop
method, so that any well-formed recursion (see below) will be found before other expansions
are performed. The other methods, are mutually exclusive with respect to applicability
(again, see below), so their order is theoretically unimportant.

® This is a heuristic inherited from the mathematical work for which Clam was originally designed — clearly
it is not meaningful for general analysis of logic programs which involve loops. However, for experimental
purposes this is an acceptable stop-gap, until better heuristics are developed. In particular, this result allows
us to produce the same result as the Compiling Control work for most examples, and so is useful in making
the current comparison.

10

8.3 The Slowsort Example

Let us take a few steps through the planning of the execution for slowsort. Remember that
we are aiming for the same tree of inference steps that is produced by the Compiling Control
approach (except for the full execution of del/3).

8.3.1 Unfolding a Linear Tree Segment
At the top of the tree, with goal

F sort(gnd x : number list, var y : number list). (1)

we first look for applicable methods. The loop method is inapplicable, because there is no
suitable (quasi-)induction hypothesis on which to base a loop (see below). The branch method
(see below) is inapplicable because only one program clause will unify with the subgoal and so
we do not have a branch in the tree, by definition. The only method we can apply here, then,
is the unfolding of the single subgoal with the first clause of the program. This application
then leaves us with the subgoals

F perm(gnd z : number list, var y : number list), ord(var y : number list). (2)

8.3.2 Introducing a Branch

By applying the same sort of reasoning about applicability as before, we find that the first
successful possibility at this new node is a branch between the perm/2 subgoal, and the
two clauses of the perm/2 program (branch is selected rather than wunfold, here, because
there is more than one unifiable program clause — a branch in the abstract tree is formed
by unification of a subgoal with clauses which are alternatives at the concrete level). In the
current implementation, the perm/2 option is selected in preference to the ord/1 because this
leads to a proof involving fewer steps®.
Now, then, we must consider in detail what this branch option really does.

8.3.3 Dealing with Recursion by Induction

As was mentioned before, the point of this work is to apply existing techniques in Proof
Planning to the domain of Prolog execution. In particular, expertise exists in dealing with
inductive proof. The point at which the inductive ideas become most obviously useful is when
we attempt to reason about recursive predicates whose definition provides a base case and a
step case for structural induction. One easily detectable such predicate is perm/2. When we
unify the two clauses of perm with our subgoal in the branch above, we are left with two new
subgoals (which must both be proven by our execution plan), thus:

Fooord(]]). 3)
F del(var vl : number, [gnd ul : number | gnd k1 : number list], var w1 : number list),
perm(var wl : number list, var l1 : number list),

ord([var vl : number | var l1 : number list]). 4)

The first sub-tree, executing the isolated ord/1 call in (3), is a trivial unfold, leaving us
with no subgoals left to prove — which means success. The more interesting part is dealing
with the second branch, (4). In the trace tree reproduced in figure 2, this first call, of the

5See note (5) on the reasons for this choice.

11

del/3 predicate, is “fully executed”, and, as mentioned before, there is no clear motivation
for this. However, in the theorem proving framework, we can explain the situation in a more
motivated way. First, though, let us consider the full extent of the main program loop, given
by the recursion on the perm/2 predicate.

It happens that this branch on perm/2 mentioned above is insufficient, as the foundation
for a terminating loop, to describe the full behaviour of the program: subgoal (3), the base
case, covers the input of empty lists, but subgoal (4), the recursive case, does not cover the
rest of the list type — it cannot produce a solution for singleton lists. This fact is deduced
during planning (because plans involving the contrary assumption are unsuccessful), and
need not be known in advance. This is so, because the loop rule requires the existence of a
hypothesis based on a non-recursive branch of a tree, exactly like the induction hypothesis
derived from the base case in an inductive proof. The hypothesis suggested by this branch,
shown in (5),

F perm(gnd z : number list, var y : number list), ord(var y : number list). (5)

is not the correct one to achieve the inductive proof required: it is not specific enough to
account for the subgoal, as will become clear below. Therefore, after the complete del/3
execution, mentioned above, we need to perform another branch on perm/2. This takes us
from (6) to (7).

F perm(wvar w1 : number list, var 1 : number list),

ord([gnd v1 : number | var l1 : number list]). (6)

F ord([gnd vl : number]). (7)
F del(var v2: number, [gnd u2 : number | gnd k2 : number list], var w2 : number list),
perm(var w2 : number list, var 12 : number list),

ord([gnd vl : number | var v2 : number | var 12 : number list]). (8)

Now, since we are trying to find a tree of inductive proofs for this execution, we want to
find a justified means for doing so. We have, here, a branch which will enable us to cover the
type of lists (w2 being the induction term, and being instantiated to empty and non-empty
lists respectively in the two branches), so one possible approach might be induction on that
type. To perform proof by induction, we need an induction hypothesis (added to our existing
hypothesis list) in addition to the existing base case, generated as the first subgoal of the
branch application — one such can be generated by applying the list destructor function to
w1, to give [_|var w2:number list], like this:

perm(var w2 : number list, var 1 : number list),

ord([gnd v1 : number | var l1 : number list]). (9)

8.3.4 Fertilising a Loop

We can proceed from here with our execution, and, when we reach the final node of figure
2, we will find that it matches exactly, except for renaming of variables, with the induction
hypothesis. At this point we can fertilise the recursive loop, using the loop rule. The renaming
is explained neatly as part of the induction, by the definition of perm/2: whenever the list
destructor is applied to perm/2’s first argument, it is also applied to the second. We can
easily see, then, that the recursion in perm/2 is fully captured here. So now we have the tree
of inductive proofs we wanted, subject to the considerations about well-typedness mentioned
before.

12

8.3.5 Dealing with Other Kinds of Recursion

Let us return to the del/3 execution, above, and consider why, as I suggested above, it is
different from the simple inductive form explained in the last section. The applicable method
leading to the correct proof at this point is the branching of the del/3 subgoal, (10), by
unfolding with the two clauses of its definition.

F del(var vl : number, [gnd ul : number | gnd k1 : number list], var w1 : number list),
perm(var wl : number list, var l1 : number list),

ord([var vl : number | var l1 : number list]). (10)
This yields the two subgoals, (11) and (12):

F perm(gnd k1 : number list, var l1 : number list),

ord([gnd ul : number | var l1 : number list]). (11)
F del(var vl : number, gnd k1 : number list, var yI : number list),

perm([gnd ul : number | var w1 : number list], var l1 : number list),

ord([var vl : number list | var 1 : number list]). (12)

Now, observe that the relationship between the second new node and the parent node,
is similar to that in the perm/2 case: a destructor function has been applied to the second
argument, changing it from a list of the form [|T] to simply T. The same destructor has
been less obviously applied to the third argument. Now, because we have two clauses in the
definition of del/3, one of which contains recursion, and one of which does not, we can say
that we have something similar to a base case and a step case in induction.

However, there are two differences, here. First, the two cases of the branch are not
mutually exclusive. Second, on inspection, we can see that this quasi-induction is, as it were,
well-founded in the sense that the “inductive” step (defined by the recursive clause of the
del/3 predicate) can never produce a subgoal containing a call to del/3 which will not unify
with the “base case”. Therefore, we have something which looks like an induction over non-
empty lists, but with an infinite set of base cases; The structural behaviour thus described
can (easily, in this case) be shown to terminate the recursion for any given member of the type
of non-empty lists. Therefore, the initial call of del/3, above, (after the application of the
list destructor) may be viewed as something like an induction hypothesis on the assumption
(which must be justified by further proof) that the first subgoal generated by this application
of branch is provable. Therefore, we require that application of the branch method and
rule causes introduction of a new hypothesis in our proof, corresponding with this induction
hypothesis.

The difference between the del/3 analysis and the straightforward induction in the perm/2
analysis is mirrored by the non-determinism occurring in the actual execution of the del/3
predicate. This is one focus for interesting further work in this project.

8.4 Finding and Applying (Quasi-)Inductive Executions

Now, armed with the kind of inductive view of recursive loop checking outlined above, we are
able to proceed in the same way throughout our execution tree. Using the iterative deepening
planner, we arrive first” at the same tree as that given by the Compiling Control approach.
The final node (marked as a loop by the broken arrow in figure 2) is no longer viewed as

"Though there are obviously equivalent executions, involving more steps in the main inductive loop.

13

a renaming of the state at which the loop begins, but as a goal which is proved from the
existence of a matching induction hypothesis.

The output of the CIAM planner is of the form shown in figure 6 — uninteresting details are
omitted. The planner takes 6.4 cpu minutes on a Sun 3/60 to reach this plan by brute force
search with the simple pruning optimisation described above, including showing that there is
no shorter proof plan for the same theorem. The meanings of the method specifications are

Planning to depth of 8 with optimisation

unfold(1,1) then
branch([2],[3],1,v416,F1) then
[unfold(6,1)
branch([4],[5],1,v436,F2) then
[branch([2],[3],1,v448,F3) then
[unfold(7,1)
branch([4],[5],1,v468,F4) then
[unfold(8,2) then
unfold(9,2) then
loop(v448,wave(...))
loop(v468,wave(...))
]
]
loop(v436,wave(...))
]

Figure 6: The Prolog-CIAM Plan for Slowsort

as follows. The arguments to unfold are a program clause number and a subgoal number, the
latter being unfolded in the usual way according to the definition given by the former. Branch
takes a list of (possible) base case clause numbers, a list of (possible) recursive case clause
numbers®, a subgoal number, a label, which is used to mark the “induction hypothesis”
introduced by the branch, and finally an “induction form” which describes the induction
scheme used in the execution. When the branch method is called, this induction form is an
uninstantiated variable: the application of the corresponding loop method fills in the form
later, in a degenerate version of middle out proof planning, detailed below. Loop takes as
argument a label — that of the induction hypothesis justifying the loop — and an inductive
form specifying the scheme to be used. Succeed merely terminates a successful (sub-)tree.

The optimisation referred to in the heading of the output relies on the independence of
the sub-trees at a branch node. This independence means that if a first sub-tree executes to
success, but a subsequent one fails, there is no point in retrying the first sub-tree, because
the subsequent one is not affected by such a resatisfaction. The proof search space can be
considerably reduced by this optimisation, even when using a planner (such as our chosen
iterative deepening planner) which uses depth-first search as its sub-strategy.

Finally, the wave(...) arguments to the loop methods in the figure describe transforma-
tions taking place between the arguments of the induction hypothesis, in the form of ordered

8Currently naively predicted by search for occurrences of calls to a predicate in the body of one of its own
clauses.

14

pairs of “before” and “after” arguments. These transformations can guide us to the correct
inductive form for the proof, and, in the process of planning the execution, will become bound
to the “inductive form” variables in the corresponding branch methods. This is the “middle-
out” aspect of the planning. (Note that the association of this information with the branch
methods is important because of the stepwise proof-time construction of the extract term.
All the information necessary must be available to Oyster when it constructs the branch.)

9 Future Directions

9.1 Generalising Inductive Behaviour — Wave Rules

The outline above has a distinct flavour of the ad hoc. In order to generalise the idea to more
forms of recursion control, we need to apply the ideas of rippling out and the associated wave
rules (as introduced in Section 4). Let us now look closely at the behaviour involved, and try
to generalise it.

Consider again the two sets of subgoals at the “beginning” and “end” of the execution
loop of del/3. The initial state is:

F del(var vl : number, [gnd ul : number | gnd k1 : number list], var w1 : number list),
perm(var wl : number list, var 11 : number list),

ord([var vl : number | var U1 : number list]). (13)
and the final state is:

F del(var vl : number, gnd k1 : number list, var y1 : number list),
perm([gnd ul : number | var yl : number list], var 11 : number list),

ord([var vl : number list | var l1 : number list]). (14)

Now, examine the difference between the del/3 subgoals in (13) and (14). We have one
argument (the first) invariant, one (the second) clearly showing the effects of a list destructor
application, and one (the third) transformed by alphabetic renaming, which we can see on
closer inspection to be the result of a less obvious list destruction. As it happens, we have an
obvious corresponding construction in the first argument of perm/2. Because of the nature
of the unfolding transformation in this simple recursive case, only the instantiations in the
two goals will have changed, and functors must be invariant. The transformation has the
form

del(X, S(Y), S(Z)), perm(S(Z), A), ord([B|A])

1
del(X, Y, Z), perm(S(Z), A), ord([B|A])

where S is (informally) a function on lists of the form Ax.[ul|x].

Now, let us generalise this transformation in the following way. We separate the predic-
ate(s) in which the recursion-limiting transformation occurs from the others, and cast the two
(Main and Aux, below, respectively) as single predicates of higher arity. Then, we rewrite
these two predicates as predicates of two arguments, these being lists of input and output
variables, respectively. Then, we have

Main([S(Y)], [X,5(2)]), Aux([S(Z),[BA]], [A])

!
Main([Y], [X,Z]), Aux([S(Z),[B|A]], [A])

15

Generalising this further, we can remove the specific arguments, and build S into four
functions, S1, So, S3, S4, over lists of arguments:

Main(8;(P), S2(Q)), Aux(R, T)

!
Main(P, Q), Aux(S3(R), S4(T))

Now, the generalisation describes not only this particular application of the recursive del/3
clause, but also that clause itself, called as in slowsort with the first and third arguments
being output. The concrete clause is this:

del(A, [B|C], [BID]) « del(A, C, D).

so if we replace Main (in the generalisation) with “del”, Aux with “true”, Q with [A,D], P
with [C], S1 with (Ax.[B|x]), and S with (A[x,y].[x,[B|y]]), we confirm the generalisation for
a trivial case — that of an isolated call to del/3. Note that the arrow is reversed because the
generalisation expresses a step in the inference, which is in the reverse direction from the
implication expressed in the recursive defining clause of del/3.

The point of all this is that this generalisation describes wave rules — the recursive cases
of del/3 and perm/2 (which also fits the generalisation) are instances of wave rules. Wave
rules are used to rewrite an induction conclusion so that it matches an induction hypothesis.
They do so by moving out of the way those subexpressions which would prevent the match
succeeding. In general (by inspection), we see that the form of the wave rule is as given
above, where S; are functions related to S, but not in general all the same, and reading —
as “becomes”. Some of §; are usually identity.

We are now in a position to specify generalisations about the behaviour of inductive proofs
of recursive predicates for each of our datatypes. Since we are still within the planning part of
the process, we are able (trivially) to instantiate the hitherto free “induction form” argument
in each branch method to the form produced by the corresponding application of loop. Thus,
when we complete our plan, as we apply each step in it, we have all the information encoded
in our tree, and therefore all we need to generate an extract term representing the behaviour
of the program under the (improved) execution rule.

9.2 Producing a New Execution Rule

It is not yet clear what is the “correct” way of specifying the extract term in the Prolog-
Oyster system. (Recall that an extract term is a step-wise constructed algorithm, the steps
being in 1-1 correspondence with the application of the rules in the plan to the Prolog-Oyster
proof-development system.)

One likelihood is that we would want to represent the unifiers at each stage — and certainly,
this, coupled with information about state changes (viz which nodes this step is from and to),
is exactly equivalent to the information produced by the Leuven Compiling Control method,
before the application of the state-collapsing optimisation mentioned before. Such an output
is, of course, amenable to the same optimisation as the Compiling Control output, and also to
ideas like the removal of redundant variables (ie entities whose value is at all times equivalent)
which can make great savings in the time spent on unification.

Indeed, given the execution plan, the production of the appropriate (Compiling Control
style) specialised meta-interpreter is almost trivial — all the information required is contained
explicitly in the plan.

Also, running under the standard computation rule, such a meta-interpreter admits the
backtracking behaviour which we would lose in the Martin-L6f functional style of extract
term.

16

What is more, because of our proof-theoretic approach, we are guaranteed a successful
execution for any query covered by the specification of the abstract goal (because of the
completeness of inductive methods over types), which is not the case with the Compiling
Control approach.

10 Conclusion: Advantages and Disadvantages of the Proof
Theoretic Approach

In summary then, the Prolog-Oyster/CIAM system constitutes in general terms a rational
reconstruction of the Compiling Control ideas. The main theoretical differences are the re-
placement (or, rather, implementation) of abstraction and execution of recursive programs
from renaming by strict typing and proof by induction, respectively. The result of applying
a proof development system like Oyster-CIAM to such an application is the complete auto-
mation of the development of improved execution rules; and the use of a constructive logic
means that the production of an equivalent program can be (therefore) automatic and fairly
straightforward. However, for this gain in automation and formality, there is a price to be
paid.

Even in simple examples, like slowsort, we run into the need to restrict the datatypes over
which (sub-)programs work, as we perform our analysis. This is in principle easy for some
cases (eg when the sub-type misses, say, the bottom two members of the type), but can be
arbitrarily difficult for others — for example, a program working over lists of length less than
N, where N is determined by user input. There is a precedent for this kind of mechanism,
built into Oyster by Colin Phillips and reported in a forthcoming DReaM group publication,
in the form of the Acc type; this could in principle be introduced into Prolog-Oyster. The
implications, though, in terms of proof complexity, are formidable.

Even so, I suggest that the inductive view is preferable to the less formal Compiling
Control view (especially with the addition of such an Acc type), particularly given that
Compiling Control’s solution to this type-coverage problem is depth-bound abstraction, which
merely defers the problem to run-time in a particularly arbitrary way. This is a particularly
confident suggestion, since the use of middle-out proof planning to infer the types needed for
well-founded inductive proof can resolve the most serious of the difficulties presented here —
viz the need to know types in advance of starting the proof. Further, the use of techniques
related closely to existing work in mathematical theorem proving enable us to remove most,
if not all, of Compiling Control’s reliance on the user — the slowsort example given here
was derived completely automatically, as were other standard examples (eg primes/2). The
problem described of loss of output non-determinism in the Martin-L6f proofs need not be a
problem in the specially designed proof system outlined here.

In order to make Prolog-Oyster/CIAM a fully useful and formal system, the current type-
inference system must be augmented with automatic proof of type completeness, and the
whole must be cast into a proven proof system. This will shed some light on the correct form
of the of extract term. In the current system, the quasi-extract term mechanism (to produce
Compiling Control-style clauses) is not implemented, but it has been shown that such an
implementation is a matter of trivial programming.

References

[Bruynooghe et al. 89] M. Bruynooghe, D. De Schreye, and B. Krekels. Compiling
control. Journal of Logic Programming, pages 135-162, 1989.

17

[Bundy 88]

[Bundy et al. 89]

[Bundy et al. 91]

[Constable & Bates 83]

[Constable 71]

[Constable 82]

[Constable et al. 86]

[De Schreye & Bruynooghe 88]

[De Schreye & Bruynooghe 89]

[Horn 88]

[Madden 89]

Alan Bundy. The use of explicit plans to guide inductive
proofs. In R. Lusk and R. Overbeek, editors, 9th Conference
on Automated Deduction, pages 111-120. Springer-Verlag,
1988. Longer version available from Edinburgh as DAI Re-
search Paper No. 349.

A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps
into calculations in automatic program synthesis. Research
Paper 448, Dept. of Artificial Intelligence, University of Ed-
inburgh, 1989. In proceedings of UK IT 90.

Alan Bundy, Frank van Harmelen, Jane Hesketh, and Alan
Smaill. Experiments with proof plans for induction. Journal
of Automated Reasoning, 7:303-324, 1991. Earlier version
available from Edinburgh as DAI Research Paper No 413.

R. L. Constable and J. L. Bates. The nearly ultimate pearl.
Technical Report TR-83-551, Department of Computer Sci-
ence, Cornell University, January 1983.

R. L. Constable. Constructive mathematics and automatic
program writers. In Proc. of IFIP Congress, pages 229-233,
Ljubljana, June 1971. IFIP.

R. L. Constable. Programs as proofs. Technical Report
TR 82-532, Dept. of Computer Science, Cornell University,
November 1982.

R. L. Constable, S. F. Allen, H. M. Bromley, et al. Im-
plementing Mathematics with the Nuprl Proof Development
System. Prentice Hall, 1986.

D. De Schreye and M. Bruynooghe. The compilation of
forward checking regimes through meta-interpretation and
transformation. In J. Lloyd, editor, Proceedings of the
Meta88 Workshop, pages 169-184. University of Bristol,
1988.

D. De Schreye and M. Bruynooghe. On the tranformation of
logic programs with instantiation based computation rules.
Journal of Symbolic Computation, (7):125-154, 1989.

C. Horn. The Nurprl proof development system. Working
paper 214, Dept. of Artificial Intelligence, University of Ed-
inburgh, 1988. The Edinburgh version of Nurprl has been
renamed Oyster.

P. Madden. The specialization and transformation of con-
structive existence proofs. Research paper 416, Dept. of
Artificial Intelligence, University of Edinburgh, 1989. Also
available in Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, 1989 (IJCAI-89).

18

[Miller & Nadathur 88]

[Richardson 89]

[vanHarmelen 89]

[Verschaetse et al. 88]

D. Miller and G. Nadathur. An overview of AProlog. In
R. Bowen, K. & Kowalski, editor, Proceedings of the Fifth
International Logic Programming Conference/ Fifth Sym-
posium on Logic Programming. MIT Press, 1988.

J. D.C. Richardson. The application of proof plans to prolog
program transformation. Unpublished M.Sc. thesis, Dept of
Artificial Intelligence, University of Edinburgh, 1989.

F. van Harmelen. The CLAM proof planner, user manual
and programmer manual: version 1.4. Technical Paper TP-
4, DAI, 1989.

K. Verschaetse, D. De Schreye, and M. Bruynooghe. Auto-
matic control generation in five steps. Technical Report CW
79, Department of Computer Science, Katholieke Universiteit
Leuven, October 1988.

19

