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Abstract

I discuss issues of control and floundering during execution of automatically synthesised
logic programs. The process of program synthesis can be restricted, without loss of generality,
so that the only negated calls appearing in a program are unifications, as in [10]. If called
non-ground, these predicates are delayed in a logic programming language with a flexible
execution rule. [10] presents proposals for automatically delaying calls to predicates until they
are instantiated appropriately. This can be implemented easily and safely in my synthesis
approach, using meta-level knowledge about inductive proof. This technique is more general,
more reliable and less laborious than the original.

1 Introduction

In this paper, I discuss an aspect of my work on the Whelk logic program synthesis system, which
is further explained in [3], [13] and [12].

An important assumption made in the synthesis process is that one is synthesising predicates
in the all-ground mode (ie with all arguments fully instantiated), and that a predicate synthesised
in this way will be usable in other less fully instantiated modes. In general, this is not a safe
assumption, because the synthesised program may contain calls which lead to unbounded recursion
as a result of the presence of unbound variables in the top level conjecture.

Floundering under negation is a related problem. If programs are called in the all-ground
mode, floundering is minimised. Nevertheless, the problem can still arise, and is exacerbated by
use of the synthesised predicates in other modes.

This paper explains how these two problems can be solved through the use of meta-knowledge
about inductive proof, which is the basis of the Whelk system. Section 2 outlines the Whelk
system. Section 3 covers floundering under negation and the realisation of a solution originally
proposed by [10], as a user-independent side effect of the synthesis technique. Section 4 shows
that automatic generation of delay declarations can be more general and more reliable in the
proof-based synthesis paradigm than when working with a priori existing programs. Section 5
summarises, draws conclusions and outlines future research.

Note that, while the examples here demonstrate the technique at work in Whelk synthesising
Godel programs, its operation is general, and is dependent on neither system.

2 Program Synthesis and Transformation in Whelk

2.1 Introduction

Whelk is a Gentzen Sequent Calculus proof development system for a first order typed logic with
equality. An adaptation of the proofs as programs paradigm [9, 6] to synthesise functional programs
allows us in certain circumstances automatically to derive programs from the proofs elaborated in
Whelk; the necessary changes to the technique are detailed in [3, 13]. We call the adapted version
proofs as relational programs.



The synthesised relational programs stand in a close structural relationship to the correspond-
ing proofs. In the longer term, this will allow us to plan the construction of proofs which will lead
to particular kinds of program (eg ones which use efficient algorithms), using adaptations of proof
planning techniques described in [5, 2, 4, 8].

The key idea is to view the execution of our desired logic program with no uninstantiated
arguments as evaluation of a boolean valued function. Then, we prove a specification conjecture
which postulates that for all possible arguments of the correct type, there exists some truth value
logically equivalent to the truth of the specification of that program. This is equivalent to proving
that the specification is decidable, which we write thus, reading 9 as “It is decidable whether. ..”
(T have omitted the types here to avoid clutter):

F va.05 (@)
where S(@) is the specification of the program we wish to synthesise, and
FVa.dS(a) iff F3IPVa.S(a)+<+ P(a) and P, a relation, is decidable

Various other ways of expressing the conjecture are discussed in [13]. A fuller description of the
system is given in [12].

2.2 Example: zero/1

For example, a specification conjecture which, when proven in Whelk, would lead to the construc-
tion of the zero/1 predicate, which is true iff its argument is zero, would be:

F Vn.0(n = 0)

While this example is sufficiently simple to make the synthesis procedure unnecessary, it still serves
as a useful example of the general framework in which synthesis is performed. See [13] for the full
elaboration of the synthesis proof.

The resulting pure logic program [3] is

zero(n) < n=0 A true V "'n=0 A false.

and (automatic) conversion to Godel [7] yields:

MODULE Zero.

IMPORT Naturals.
PREDICATE Zero : Natural.
Zero(n) <- n=0.

2.3 Induction and Recursion

The proofs as programs technique relies on an intimate relationship between proofs by induction
and recursive programs. The Whelk logic is arranged so that the identification of a subconjecture
with an induction hypothesis leads to the inclusion of a recursive call in the synthesised program.

In the current Whelk prototype, we are limited to primitive and two-step induction on natural
numbers and parametric lists. In principle, however, there is no reason for such a restriction —
later, we will extend the system to include more powerful induction schemes. This will allow us to
generate various algorithms for a given specification; for example, while bubble sort corresponds
with primitive inductive proof of the sorting specification, quicksort corresponds with course-of-
values induction. Thus, correct selection of induction schemes is crucial to the successful operation
of the technique, and work is proceeding on its automation.



2.4 Non-ground use of synthesised programs

The introduction of recursive calls raises a problem. In synthesising programs this way, we suppose
that we are using the all-ground mode, and assume that calls to the synthesised predicates which
are not fully instantiated will work.

Given a language with a fixed computation rule, like Prolog, it is easy to give a counterexample
to this supposition. Consider the following (logically correct) program and call.

append ([H|T1],L, [H|T2]) :- append(T1,L,T2).
append([],L,L).

7- append(X,[],Y).

This is clearly a logically correct specification of the append/3 relation, but the program never
terminates, because the base case appears after the step case.
A safer specification and call might be given in Godel:

MODULE Append.

IMPORT Lists.

PREDICATE Append: List(Integer) * List(Integer) * List(Integer).
DELAY Append(X,Y,Z) UNTIL NONVAR(X) \/ NONVAR(Z).

Append([h|t1],1, [h|t2]) :- Append(t1,1,t2).
Append([],1,1).

[1 <- Append(x,[],y).

in which case the program terminates with the message “Floundered”. We would like the delay
declaration which causes this (desirable) behaviour to be generated automatically.

I will address this problem in Section 4. First, let us consider a related problem to do with the
use of negation as failure in logic programming languages.

3 Prevention of Floundering under Negation

3.1 The Problem

In his PhD thesis, [10], Lee Naish discusses the problems with the idea of negation in logic program-
ming languages. It is unnecessary here to repeat that detail; I merely summarise by reiterating
that there is a serious problem in languages involving negation but no explicit quantifiers. To
borrow and slightly adapt Naish’s example, consider the goal

?7- not(X=a), X=b.

in Prolog. If not is called first, as one would normally expect, the goal fails — incorrectly — whereas
otherwise it succeeds with an instantiation of b for X. In Gd&del, on the other hand, the negated
conjunct is delayed until X is ground, so the rightmost conjunct is executed first, giving the correct
result.

The problem is that, by not (X=a), we mean Jz.xz # a. What actually happens, because of
negation as failure, is that we evaluate —3z.z = a (ie Vz.z # a). This is only a problem if we
bind variables in the goal; for example, a call of not (X=X) evaluates to the negation of Vx.x = z,
ie ~Jz.x # x.

This problem generalises to the floundering of arbitrary negated goals, if any variable in the
scope of a negation is bound during evaluation. The worst case is where a variable thus bound is
later used outside the negation (where it remains unbound). Some languages partly defuse this
problem by use of the unnamed variable “_” to mean a variable which is universally quantified, and
therefore unimportant in terms of floundering due to any binding of that variable under negation.
I find this solution unsatisfying, especially in a language like Gédel whose syntax already contains
the necessary quantifiers.



3.2 The Solution

In [10, p19ff], Naish proposes an elegant means of removing floundering under negation. The
solution is simply partially to evaluate and replace the negated predicates with new positive ones
which compute the negated original. The # predicate is then used to ensure failure where the old
(unnegated) version would succeed and vice versa.

By removing negated goals other than =, we restrict the problem of floundering under negation
to those goals, thus improving things greatly. However, it was shown in Section 3.1 that floundering
can still be a problem even with such a restriction. Fortunately, a complete solution to this problem
was also proposed in Section 3.1: we simply delay the negated goals (viewing them, if we wish, as
constraints) until they can be executed without resulting instantiation of the variables in them. A
less refined, but substantially easier to implement, approach is to require that the negated goals
are delayed until either they are fully ground or there are no other goals to execute. In this case,
we would wish the program to terminate with an error message warning of floundering.

Naish has already shown this approach to be correct. However, its implementation in Whelk
is of interest as it neatly demonstrates the system at work.

3.3 The Implementation

Negation is Whelk is as in other constructive logic systems. The Law of the Excluded Middle does
not in general hold, and —P means that, if P is true, a contradiction can be derived. The two
sequent calculus rules governing negation may be written thus:

TAF{} e . I''-AAFA
= elimination

= introduction TEoA TA'—{}

where T'; A are sequences of formulae, A is a formula, and {} is contradiction.

The point about these rules is that they operate only on conjectures and hypotheses whose
negation is the outermost operator. The result of this is that the negated formula (A in the rules
above) must be evaluated by rewriting or in some other way before the operations involving the
negation itself. Further, the negation is not reflected into the synthesised program by explicit
introduction of —, but by switching the boolean value associated with the formula from true to
false or vice versa. An example will help here.

3.4 Example: notmember/2 (base case)

[10] gives the example of negating the member/2 predicate. This example serves nicely both here
and in Section 4 so I use it too. We start off with the specification conjecture:

F Vn.VI.0—-member(n,l)

We also need the definition of member/2 (which is logically equivalent to the completion of the
more familiar Horn clause member/2 definition):

Vz.~member(z,[]) (1)
Vz.Vh.Vt.member(z, [h|t]) < z = h V member(z,t) (2)

The proof is by induction on [. I give the rules of the calculus as I use them. Here, I explain
only the base case of the induction; the step case is left for Section 4. I present the full detail of
the proof here so that the reader may form an intuition for how the technique works; the reader
not needing such an intuition may skip to Section 3.5. Again, I omit types for legibility. The proof
is presented in refinement style (ie effectively backwards). Note that I use A{z/y) to mean “A
with z replaced by y” because the more usual notation is ambiguous with Prolog’s and Godel’s
list notation.

Proof (Base Case):
F Vn.Vl.0—~member(n,l)



vk A

Apply V introduction TEvo A

on n and [, synthesising the program fragment

notmember(n,l...) < ...
and leaving us with the subconjecture
n,l F 0—member(n,l)
v, A+ A([]/v) v, A, vo,v1, A{v1 /v) F A{[volvi]/v)

Iv,AFA
cases: base case (3); and step case (4), which I defer to Section 4.4:

Apply list induction on [, to give two

n,l = 0—-member(n,[]) (3)

n,l, vg,v1, 0—~member(n,vi) = 8—~member(n, [vo|v1]) 4)
and with the following constructed program fragment:

notmember(n,l,...) <+ notmember;(n,l,...)
notmembery(n,l,...) <+ n=[]A...VIv.Fvg.y = [volor] A ...

The auxiliary predicate, notmember;, is introduced as a result of the induction rule application;
auxiliaries are required in the synthesis of recursive predicates, because, in the absence of explicit
higher-order induction terms (such as are used in type theory), we need names by which to refer
to them when we come to the recursive call.

Next, on subconjecture (3), above, rewrite using definition (1) to give the subconjecture:

n,l,Ve.~member(z,[]) F 0—-member(n,[])

P,Uo,VUl.A,A,A<’U0/’IJ1) + B
P, Uo,vvl.A,A B

Apply V elimination with n on the lemma to give:

n,l,Vz.~-member(z,[]), ~member(n,[]) F d—~-member(n,[])

Apply O4pye introduction % giving subconjecture

n,l,Vz.~member(z,[]), "member(n,[]) b -member(n,[])

and constructed program
notmember(n,l) <  notmember;(n,l)
notmember;(n,l) <+ n=[]AtrueV Jv;.Jvg.y = [volv1] A ...

Apply axiom which completes this branch of the proof.

T,AAFA

3.5 How does the method work?

The proof above may be divided into two distinct sections: before the application of 9 introduction,
and after it. These are called the synthesis and verification parts of the proof. In the synthesis
part, many of the rules contribute to the construction of the new program; in the verification part,
they show that synthesised program is correct.

Now, recall from Section 3.3 that the rules for negation are defined thus:

AF{} o I,-A,AF A
= elimination

= introduction TEoA TA'—{}



and that I have chosen to give no rule which will allow us to introduce = under 8. Therefore
negation must be left until the last step in the synthesis part of the proof; this is the point
at which the “witness” for the decidability of our specification is supplied: either true or false.
Appropriate rewrite rules (eg de Morgan’s Laws) are allowed, so that a conjecture may be rewritten
into a suitable form for this to be possible. The choice of true or false determines the polarity
of the part of the synthesised predicate corresponding with the current branch of the proof, using
the 9 introduction rules (one of which was used above)

T A 90 introduction - 74
"THOA false HETOCUCHOR T 54

Otrue introduction
The rule will introduce a — if appropriate, and proof proceeds with the verification that the
“witness” was the correct one. The “witness”, and not the —, will appear in in the synthesised
program, controlling its success or failure in the way we want — this is why we need two rules to
introduce one operator.

Because of the restrictions on proof rules for negation explained above, it is impossible to
introduce a negation into a synthesised program by application of a proof rule. However, it might
still be possible to do so by introduction of lemmas, or by cutting in generalisations, and so on, if
this were to involve insertion of part of a synthesised program from “outside” a given proof.

To plug this loophole, we require that any formula introduced into the system and used in
program construction, unless it is a formula decidable by first order unification without reference
to external definitions (eg an equality between canonical terms), must be elaborated in the above
style, with synthesis and verification proof. This approach is enforced by the proof system and
cannot be circumvented. Since the proof system is restricted to handling negation in the way
demonstrated above, it is impossible for negations other than # (between canonical terms and/or
variables) to appear. These goals are acceptable, as we are able to deal with them by delaying
(and/or by viewing them as constraints) in any reasonable logic programming language.

Finally, note that the initial conjecture of the above example need not be the top level con-
jecture of a theorem, but may be produced by prior application of rules to a more complicated
conjecture. Similarly, it is possible in many circumstances partially to evaluate such conjectures
as parts of larger formula; this generally produces interleaving as in [1], which I discuss in [11].

4 Automatic Generation of Delay Declarations

4.1 More General Delay Declarations

Having suggested how we may go about using the built-in delay capability of (eg) Godel, it is
now appropriate to ask how we might go about extending the idea to generating our own delay
declarations.

The idea is that we want to prevent unbounded recursion in our synthesised programs by
preventing predicates from being called before the arguments which control their recursion are
sufficiently instantiated so to do.

The approach I will propose in this section is closely related to that suggested in [10, p26f],
in that it uses meta-knowledge about the recursive structure of programs and data-types to infer
which arguments to a predicate are significant in controlling recursion. In my approach, however,
because of the extra meta-knowledge contained in a Whelk proof, we can be definite about which
the significant arguments are, and we can reach this conclusion much more easily and reliably, as
a side-effect of the proof process, requiring no post hoc analysis.

4.2 Detecting Recursive Arguments

Naish’s approach to detecting recursive arguments in a predicate is based on post hoc analysis of
an existing program. This carries with it all the implications of any technique founded on the same
precepts: even if the recursive structure is obvious to the informed human reader, an automated



analysis may be laborious and difficult. In arbitrary programs, the significant arguments may be

very hard to spot, even for experienced programmers. Naish presents a compact algorithm to

carry out the process, but acknowledges that its worst case complexity is exponential with the size

of the input (with the comment that this seems in practice not to be significant, and that linear

behaviour is the norm; other authors have more efficient algorithms based on the same idea).
Naish’s summary of the algorithm runs thus ([10, p34]):

for-each pair L, of unifiable clause heads and recursive calls do
if the head is as general as the call then
terminate with failure
else
for-each argument I, less general in the head do
add a wait declaration to wait group L,
with 0 in argument [ and 1 in all other arguments
end-for
end-if
end-for
Allwaits = { W | Wis the intersection of one wait from each group }
Waits = { W | W € Allwaits ANVV.V € Allwaits - W ¢ V'}

Waits is the value we want here. It is a set of wait declarations. A wait declaration is a specification
of which arguments must be non-variable for a given predicate to be called. For example:

?7- wait p(0,1,1).

states that the predicate p/3 must only be executed when its first argument is at least partly
instantiated. The algorithm generates a number of wait declarations for each predicate in the
program over which it works - some of these can usually be discarded because they are subsumed
by others. When applied to an appropriate logic programming language, the wait declarations
change the order of execution, delaying the analysed predicates until their significant arguments
are non-variable.

Generation of these declarations is based on the structurally recursive data-types in the argu-
ments to the program being analysed: this can be seen in the inner for-each loop — the instan-
tiation of the clause head and the recursive call are compared and it is required that the head
argument be less general — that is, more instantiated. Thus, if the predicate is called with this
argument instantiated, the data is broken down by unification; given a well-founded recursive
datatype in the argument position, this gives well-founded recursion in the predicate. For ex-
ample, list destruction involves an argument in the head of the form [H|T], and a corresponding
recursive argument of the form T. Note, incidentally, that Naish’s algorithm does not require that
the recursive call be on the same variable as named in the head variable — ée in this example,
the variable need not be T; any variable will do. This causes over-generality in the loop checking
and thence over-caution in the wait declarations — sometimes perfectly executable programs are
delayed so much that they flounder.

Naish’s algorithm cannot deal with recursive datatypes whose constructors are not explicit in
a program (eg integers); nor is mutual recursion apparently covered (unless this is included in the
“recursive calls” in the first for-each of the algorithm, which would be begging hard questions).

Naish demonstrates his algorithm working with two quite hard examples: n-queens, and a
term-ordering predicate. It works well in these restricted cases.

4.3 Delay Generation from Inductive Proof Structure

While the technique I propose is very similar to Naish’s in its theoretical basis, in terms of execution
it is fundamentally different. As I mentioned in Section 2, inductive proof and the construction
of recursive programs in Whelk correspond one-to-one — if we prove a synthesis conjecture by
induction, we necessarily get a recursive program.



Now, “recursive” datatypes are defined inductively. Thus, they are known a priori to be well-
founded, and so can be used to control recursion in the same way as they provide a basis for
induction. What is more, when we choose a particular variable as the induction variable (as with !
in Section 3), we always construct a corresponding argument position in the synthesised program
— as a direct result of applying the induction rule. Therefore, it is trivial to generate a wait
declaration (or, better, a more general delay declaration as in Godel), for that argument.

4.4 Example: notmember/2 (step case)

I now return to the notmember/2 example, starting from where we left off: conjecture (4) in Section
3.4. T will use the definition of member/2 given in Section 3 and an axiom about the decidability
of equality:

FVeVyx=yV-z=y (5)

Recall that the proof of the base case (from Section 3.4) has given this constructed program
fragment:

notmember(n,l) <  notmember;(n,l)
notmember;(n,l) < n=[]AtrueV Iv.Fve.y = [volv1] A ...

We reached this stage by application of induction on I, and proof of the resulting base case.
Because our synthesised program arises from a proof by induction on [, its recursion is necessarily
controlled by any argument(s) corresponding with /. Therefore, we can generate a simple delay
declaration (here in Godel):

DELAY Notmember (n,1) UNTIL NONVAR(1)

The proof now proceeds as follows. Again, I present the full detail of the proof; the reader not
interested in that detail should skip to Section 4.5.

Proof (step case):
n, 1, v, v1, 0—member(n,vy) F d—~member(n, [volv1])
Rewrite according to definition (2):
n,l, v, v1,0—member(n,v1) b d(—=(n = vo V member(n,v1)))
Rewrite under de Morgan law:

n,l,vo,v1, 0—member(n,v1) F d(—n = vg A ~member(n,vy))

. . I'+oC T'+oD . . .
Apply A introduction under 0 TFa(CAD) giving subconjectures
n,l,vg,v1, 0—member(n,v1) F 0-n = v (6)
n, 1, v, v1,0—-member(n,vi) F 0—-member(n,v1) (7)

and constructed program fragment

notmember(n,l) < notmember;(n,l)
notmember;(n,l) < n=[]AtrueV Iv;.Fug.y = [volri] A... A ...

On subconjecture (6) (omitting the induction hypothesis, which we do not need here), introduce
decidability axiom (5):

n,l,v9,01,...,VZ2Vyx =yVx=ykF dmn =1



Substitute values by V elimination, as before:
n,l,vo,v1,VeVy.x =yV-x=yn=vV-n=vk0-n=uv

IAVB,A,A+-C T,AVB,AB+C

Apply V elimination to give subconjectures

T,AVB,AFC
n,l,vo,v1,VeVyx =yV -2z =y,n=v9V-n=1vy,n=1vF0n=ug (8)
n,l,vg,v1,VeVy.z =yV -2z =y,n=v9V-n=uvy,n=1vF 0-n=nu 9)

and constructed program fragment

notmember(n,l) < notmember;(n,l)
notmember;(n,l) < n=[]AtrueV
Fv;.Fvo.y = [volvi] A
(m=wvA...Vm=voA...)A...

Apply 9 introduction, as before, with false in (8) and true in (9):

n,l,vg,v1,VeVy.r =yV-2x=y,n=v9V-n=uv9,n =19 F N =1

n,l,vg,v1,VeNyx =yV-z=y,n=v9V-n=wvy, n=vy bk -mn=nu

The constructed program fragment is now:

notmember(n,l) <  notmember;(n,l)
notmember;(n,l) < n=[]AtrueV
Fv1.Tve.y = [volv1] A
(n=wo A false V -n = vo Atrue) A ...

This part of the program is now complete; the rest of this branch of the proof is trivial verification,
using rules already demonstrated above.
Finally, to subconjecture (7), above:

n,l,vp,v1,0—~member(n,v1) b d—~member(n,v;)

apply axiom as before. Note that in this case, the application of the induction rule causes an
appropriate recursive call to be associated with the induction hypothesis. This is now inserted
into the constructed program, to give the finished article:

notmember(n,l) <+ notmember;(n,l)
notmember;(n,l) <+ n=[]AtrueV
Fuy.Fvg.y = [volv1] A
(n =wo A falseV —m = vy A true) A
notmember;(n,vy)

4.5 The Notmember/2 Module

The proof gives rise, automatically, to the G6del module shown in Figure 1. Consider the behaviour
of the program called with the goal

[] <- Notmember(0,[0]t]).

We wish this to fail, and indeed it does so. Now, suppose we give the following goal, which we
would like explicitly to flounder, with an error message:

[1 <- Notmember( O, [h|t] ).



MODULE Notmember.

IMPORT Lists.
IMPORT Naturals.

PREDICATE Notmember: Natural * List(Natural).
Notmember (n,1) <- Notmember_ 1(n,1l)
PREDICATE Notmember 1: Natural * List(Natural).
DELAY Notmember (n,1) UNTIL NONVAR(1).

Notmember_1(n,1) <- 1=[] & true \/
Some [v1] Some [v0] y=[vO|vi] & "n=v0 &
Notmember_1(n,v1)

Figure 1: The Godel Module for Notmember /2

Our delay declaration admits this, as far as the first call to Notmember_1/2, because the second
argument is non-variable. However, at this point there will be a call to =/2 with one argu-
ment uninstantiated. Then, the default behaviour is to delay, so the recursive call is made to
Notmember/2. This time, however, the second argument is a fully uninstantiated variable, so this
call too is delayed. Therefore, the whole computation flounders, explicitly, as we would wish, and
an error is reported.

4.6 More Subtle Control Generation

While this approach will work well for many cases, some similar problems are harder. Let us
return now to the append/3 definition I gave in Section 2. I gave the delay declaration

DELAY Append(x,y,z) UNTIL NONVAR(x) \/ NONVAR(z).

requiring that either the first or the last argument be instantiated before the predicate is executed.
The append/3 predicate is different from member/2 in that its recursion is controlled by either
of two variables — x or z in the declaration above. How can we spot this? Simply enough, it
arises from the use of a more powerful induction scheme: simultaneous primitive recursion on two
variables, as defined by the following rule (writing the preconditions of the rule vertically):

Lou,v,A B A([]/u)
F7U7U7A7u07u1 F A([u0|u1]/u)([]/v)
F7u7U7A)u07U07u17v17A<u1/u)<v1/U) F A([u0|u1]/u)([v0|v1])/v)
Tuv,AF A

This scheme is equivalent to primitive induction on z, followed by primitive induction on y in z’s
step case. Use of such a scheme begs the question: how do we know which scheme to use? This
is outside the scope of this paper, but is addressed in [4].

There follows a sketch of the proof. Note that we are synthesising the program from an
equivalent definition of append/3 here. This is not a failure of the technique — it is impossible to
specify the simple example program in any other logical terms. We gain from the proof process
because the delay declarations are generated for us, and because our specification is shown to be
realisable.



4.7 Example: append/3

Lemmas:
F Vzapp([],z) ==z (10)
F Vh.Vt.¥y.app([hlt],y) = [hlapp(t, y)] (11)
F VeVyox=yV-z=y (12)
F VhVE=[hE] =] (13)
F Vh; Vha Vit .VtQ.[hlltl] = [h2|t2] S hi =ha ANt =19 (14)
Proof:

F Va.Vy.Vz.0(app(z,y) = 2)

Introduce z, y and z. Apply simultaneous primitive induction on z and z:

z,y,2 k= Oapp([],y) = 2) (15)
T,y,%,%0, 71— O(app([zola1],y) = []) (16)
'Z'Jy7z7$07$17z07Z176(app($17y) = zl) F a(app([xdwl]ay) = [z0|zl]) (17)

In (15), and use (12) above to case split on equality:
z,y,z,y =2 F 0(app([],y) = 2) (18)
z,y,z,y =2z F Oapp([],y) = 2) (19)

(18) is completed by Oyrye introduction, (19) by Otqise, verified using (10).
For (16), rewrite under = using (11); then Os4;5 introduction can be verified by (13). In (17),
the step case, rewrite the left hand side of the equation in the conjecture according to (11):

T,Y, 2,0, T1, 20, 21, O(app(z1,y) = 21) F O([wolapp(w1,y)] = [20]21])
Next, rewrite using (14) to give:
Z,Y, 2, To, L1, 20, 21, 0(app(z1,y) = z1) F O(xo = 20 A app(z1,y) = 21)
Finally, A introduction gives us two subgoals:

d(zo = 20) (20)
O(app(z1,y) = 21) (21)

(20) is solved with a case split on (12), as for conjecture (15). (21) is identical to the induction
hypothesis, and so we have finished the whole proof. The finished program then looks like this:

m,y,Z,ﬁl’o,ﬁI}l,Zo,Zl,a(app(ml,y) = Zl)

'_
mayvzv$07$17z07'z176(app($17y) 22’1) F

append(z,y,z) <+ appendi(z,y,2)
append;(z,y,2) < z=[]A(y=zAtrueV -y =2zA false) V
Jug.Avy.x = [’U0|’l)1] A
(z=[]A falseVv
3’[)2.31]3.2 = [1)2"1}3] A
(vo = vy Atrue V —wg = vy A false) A
append;(v1,y,vs)

Since we performed the proof by simultaneous induction on z and z, we can generate the delay
declaration we need in the same way as before, disjoining the requirements that each argument
be non-variable since clearly either induction variable, and not necessarily both will be enough to
control the recursion. Thus, the general form of delay declarations generated by Whelk will be
disjunctive. Conjoined delays will never arise, because of the form of the programs; each argument
is represented by exactly one variable, and each induction corresponds with the introduction of a



new recursive predicate. Since it is not possible to apply two proof rules at once, only disjunctive
delays can be generated.

Finally, it is worth mentioning that the technique will still work even if the proof is elaborated
by two separate applications of ordinary primitive induction on z and then z — though the program
produced will be slightly uglier. This, however, is not important, as we still have the specification
to work with.

5 Conclusion and Further Work

In this paper, I have explained how an existing technique may be applied in a new way within my
program synthesis system to allow the automatic generation of delay declarations, thus allowing
my synthesised programs to benefit from facilities for control within modern logic programming
languages.

The new approach to the technique relies on meta-knowledge about the synthesised program
encorporated in the synthesis proof, and not on post hoc analysis. Thus, the information it has to
work with is complete and correct, and need never be guessed by analysing the syntactic form of
a program. Therefore, the technique applies to datatypes which do not have explicit constructor
functions, unlike earlier approaches. It is trivial to generate delay declarations for many recursive
programs synthesised by the proofs as programs technique, modulo the question of choosing the
right induction scheme which is addressed elsewhere.

This approach is possible only because of the initial decision to reason with specifications
instead of programs. It is just one of several areas (see eg [8]) where this approach facilitates
program construction and manipulation.

The next step in this work will be to build these ideas into the existing Whelk system. This
begs a question of the level at which such reasoning should take place: either at the object level, in
Whelk, or at the meta-level, in the CLaM proof planner, with which we will automate the search
for synthesis proofs over the next few years. It seems likely that the latter option is best, in which
case a full implementation will be some time away.
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