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Abstract

In any automated tool designed for use in a musical context, the choice of repres-
entation language is crucial. The Charm system, as presented in [Wiggins et al.,
1993], was designed as a general purpose musical representation system. In this pa-
per we consider how a system intended to foster the creative exploration of a mu-
sical soundworld could make use of such a representation. The ability to support
multiple perspectives upon musical material is thought to be important, and we ex-
plain how this is supported. We also indicate how to incorporate automated support
for the process of generalising from musical examples to a higher-level description.

1 Introduction

There is a growing interest in the use of Artificial Intelligence techniques in musical do-
mains, from musical cognition to composition tools (see [Laske et al., 1992]). In con-
structing Al systems, the problem of designing a suitable representation is always im-
portant. In this paper we describe an approach to music representation that we believe
is appropriate for a wide range of musical systems.

In previous papers |[Wiggins et al., 1989, Harris et al., 1991, Smaill et al., 1993,
Wiggins et al., 1993), we have attempted to build a framework for the representation of
music that would be useful for a wide range of musical tasks, from composition to ana-
lysis. Our aim has been to provide a description of a system that the user can config-
ure to the purpose at hand; user configurability is crucial given the disparate range of
activities we want to support. The system should also support the automated manip-
ulation of music objects and structures in a way that is intuitive to the musician. Fi-
nally, we aim to remain neutral between the description of musical phenomena as pro-
cesses in the physical world, and music as perceived by the musician and listener.

In this paper, we first describe properties that we believe are needed in a system to al-
low non-expert users to explore the process of combining musical elements, going bey-
ond simple juxtaposition. We then review our proposal for an absiract musical repres-
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entation, and its configurability by an appropriate hierarchical organisation of the mu-
sical material. We indicate how these ideas can be used in constructing such explorat-
ory musical systems. A partial implementation of the system exists, and could easily be
linked up to a sound generation device, yielding a basic musical exploratorium. Systems
such as Xenakis’s graphical upic system ([Xenakis, 1992]) suggest that with appropriate
technological support, musical creativity outwith conventional styles can be encouraged
without needing a deep musical background. We believe that the capability to move
between different underlying pitch and rhythmic perspectives would encourage such
openness, and that the proposed representation provides the basis for such a system.

Such systems aim to allow the user to communicate with the system in terms as close
to a natural musical vocabulary as possible, that is to say allowing the user to use
something close to the vocabulary that she would use to communicate her musical ideas
to fellow musicians.

To support this, we also indicate how Machine Learning techniques may be used to al-
low the system to infer abstract musical concepts from a set of examples.

2 A tool for musical invention

We now outline briefly what capabilities we believe should be present in a tool for mu-
sical exploration.

The user should be able to:

e enter simple musical objects (notes, motifs, ...),

¢ transform the objects, using some system-provided routines,
e group together objects by fiat,

¢ build new ways of grouping and characterising objects, and

¢ build new ways of transforming objects.

Of these, the last is probably the hardest to come to terms with, both for the user and
for the provision of automated support. But we believe it is an important feature for a
system aimed at encouraging exploration.

What sort of representation language is appropriate for such a tool?

3 Languages for music

A good knowledge representation language lets the user express knowledge of a given
domain naturally and concisely, and supports an efficient reasoning regime to retrieve
and manipulate the knowledge encoded. The expression should be natural in that the
formalism used to express the knowledge should correspond closely to a description that
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the user might employ spontaneously in the course of communicating with others in-
formation about the domain.

Much work has gone into the development of such formalisms, which allow a declarat-
ive reading of the encoded knowledge [Brachman and Levesque, 1985, Brachman and
Levesque, 1992].

General purpose Knowledge Representation systems can be used for musical applica-
tions: for example, KL-ONE [Brachman and Schmolze, 1985] has been used as the basis
for the system described in [Camurri et al., 1992]. We have chosen to develop a repres-
entation system specifically for musical applications, where certain musical parameters
receive special treatment.

It is notoriously hard to find a vocabulary to describe musical experience. Supposing
we want to start by paying attention to some note-like events (rather than, say, look-
ing primarily into the timbre of individual sounds). We propose to take such notes as
the building blocks of our representation — yet we do not want to be committed to any
particular organisation of pitches or rhythms. Our primary interest is in the music it-
self, either considered as a physical phenomenon, or as experienced by the listener; our
interest is not (for example) the scores of the classical music tradition (which form one
particular way of notating some aspects of a piece of music).

The Charm system (Common Hierarchical Abstract Representation for Music) is an
attempt to free the representation of music from application- or domain-specific influ-
ence. The proposal (based on the notion of abstract data types from computer science)
is that we need to know only some underlying properties of the pitch and time organ-
isation for the representation to function. In different instances, we might work with a
classical even-tempered semitone scale, or with a quarter-tone scale, or with some non-
regular scale, or indeed with a notion of pitch where intermediate pitches are always
available. Each one of these is a realisation of the abstract data type of pitch that we
have adopted for the Charm system.

In Charm, what we require of the pitch organisation is

e a pitch value corresponding to each note, and

¢ a notion of interval between notes,

together with ideas of how these fit together. We suppose that temporal information
is organised in a similar way, with points in time, and time intervals corresponding to
pitches and pitch intervals respectively; there is provision too for description of timbre
and dynamics.

A piece of music is then represented as a set of events, each of which is characterised
according to pitch, time and timbre characteristics. Note that this is done without any
commitment to some particular organisation of pitch (say), so that manipulation of
pitches can be arranged as appropriate for the case in hand.

This provides us with a representation of the musical “surface”, in the sense of Jackendoff
([Jackendoff, 1987]). Music as experienced and constructed involves of course a lot more
than a set of isolated and independent events. The next representational problem is
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how to deal with the enormous range of ways of thinking about music that are possible,
in such a way that the power of the computer can be harnessed to musical description
and invention.

4 Hierarchical structures

So far, we have described music in terms of individual notes arranged in a space of
pitch and time. The performer and listener have a richer idea of music than this, and
we describe a very general mechanism for the grouping of musical events that can be
used both for representing salient features in some given musical experience, and as
the basis for the creation of new experiences. It is widely agreed that the use of hier-
archical descriptions is especially important for music representation ([Balaban, 1992,
Buxton and others, 1978], so as to allow expression of local stylistic features as well as
global structuring properties.

Organisation at this level is something that systems like the uric do not support well.
Yet the organisation of music around notions of similarity and contrast is basic to mu-
sical understanding.

Charm events can be grouped by the construction of “constituents”. These are arbit-
rary collections of “particles”, that is of events (which do not have to be contiguous), or
of other constituents. Each constituent has a unique name, and may be labeled with a
set of first order logical formulae describing the properties of its particles or of the con-
stituent as a whole.

The idea is that formal logic gives us a language to describe the particles of a constitu-
ent, and to state properties of the particles that justify grouping them together. For ex-
ample, two groups of notes can be said to overlap if some note from one group and some
from the other sound at the same time; this relation can be captured by a logical formula.

It is also possible to label a constituent “definitionally” — to state that a particular col-
lection of particles should be considered as a unit (e.g., a piece or motif. Thus proper-
ties without a basis in deductive logic can be represented by associating a label with a
particular set of musical structures.

We thus have two ways of building up our higher-level descriptions, corresponding to
the two ways in which sets of objects are commonly defined in mathematics. Sup-
pose we have already some notes ny, n,,...and some constituents based on these notes
Cy,C,, ... We could then form a new constituent based on logical properties of the n;
and C;; for example:

Dy ={x:P(x)},
where P is a logical formula, gives a constituent that picks out those n; and C; that
make P true. We can also pick out some combination explicitly:

DZ = { T‘L],TL5,C2,C3 }

Because of the use of logical formulae in the constituent specification, Charm allows
the expression of complex relationships between different musical objects. It is also im-
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portant that these relationships can not only be expressed, but that automated tech-
niques are available to manipulate such representations, and to construct objects with
the required properties. (This is, of course, the basis of Logic Programming (see [Kow-
alski, 1979)).)

To take a simple example, the following fragment of Webern can be analysed in several
ways.
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Figure 1: Webern, Op 27, bars 1-4

e( €00, (ff, 4),1/4,1/2,10/1,...)
e( €01, (ef, 5), 1/4,1/2,10/1, ...)
e( €02, (bt 3),1/2,1/4,10/1, ...)
e( €03, (f,4,3), 3/4, 1/4, 10/1, ...)

e( 04, (g, 4), 3/4,1/4,10/1,...)
e( €05, (c,4,5), 1/1,1/4, 10/1, ...)

e( €06, (a)f, 2),3/2,1/2,10/1,...)
e( €07, (b)b, 3), 3/2, 1/2, 10/1, ...)
e( €08, (e)h, 4), 7/4, 1/4, 10/1, ...)
e( €09, (cf, 4),4/2,1/4,10/1, ...)
e( €10, (d,f, 5), 4/2, 1/4, 10/1, ...)
e( ell, (g,4,4),9/4, 1/4,10/1, ...)

Figure 2: Webern, Op 27, bars 1-3

The figures 1 and 2 show a conventional score representation, and an instantiation of
Charm’s basic event representation for the same fragment. This takes the form a set
of note descriptions, where the arguments shown are successively identifier, pitch, start
time, duration, and dynamic.

The passage can be thought of (and heard) in several ways — in terms of texture, or
pitch symmetry, or temporal symmetry, or as a series. Our contention is that the am-
biguity that allows this passage to be heard in many ways is central to this musical ex-
perience, and that our representation language should support such multiple viewpoints
upon a single musical surface (to use the term of [Jackendoff, 1987]).

Many people have stressed the importance of multiple viewpoints in computational
descriptions of music (for example, [Minsky, 1981, Lerdahl and Jackendoff, 1983,
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Ebcioglu, 1988, Holland and Elsom-Cook, 1990, Conklin and Witten, 1991]). We would
like not only to be able to translate easily between different representations, but even
more — to have a single representation in which the multiple viewpoints can be expressed
and compared.

The constituent mechanism allows just this. For example, various constituent are shown
in figure 3.

Constituent c00 is an enumerated constituent that we have chosen to call subject. Con-
stituent cO1 contains the same notes, but satisfies the logical specification of a series.
c03-c06 satisfy the logical specification for chord, and so on.

k( 00, _, subject, { €00 €01 €02 €03 €04 €05 €06 €07 €08 €09 €10 ell }, _)
k( 01, (series,{}), -, { €00 €01 €02 €03 €04 €05 €06 €07 €08 €09 €10 ell }, _)
k( 03, (chord,{}), -, { €00,e01 } , _)

k( c04, (chord,{}), -, { €03,e04 } , _)

k( 05, (chord,{}), -, { €06,e07 } , _)

k( 06, (chord,{}), -, { e09,ell }, _)

k( 07, (alternation,{}), -, { c03, €02, c04, €05, c05, €08, c06, ell } , _)
k( c08, (triple,{}), -, { €00, e01, €02 } , _)

k( 09, (triple,{}), -, { €03, €04, €05 } , _)

k( c10, (triple,{}), -, { €06, €07, €08 } , _)

k( 11, (triple,{}), -, { €09, €10, €11 } , _)

Figure 3: Constituents for Webern Op 27

This brief description is intended to show that this approach allows the flexibility of
multiple representations of the musical material. Such flexibility should subsequently
allow high-level manipulation of the musical material in ways that make sense to the
musician, who will have tailored the system to her way of thinking in the course of col-
lecting together salient groupings, and indicating which logical descriptions are relevant.

5 Using the representation

We now show how the capabilities set out in section 2 can be built on top of this rep-
resentation system.

e Simple musical objects can be built up from a repertoire of provided ingredients,
preferably using a visual interface like the system upic, as developed by Xenakis.
At this point, the higher level structuring properties are not in play, and vpic has
shown the effectiveness of this approach at this level.

¢ Simple transformations (repetition, augmentation, transposition, inversions, etc)
are easily written in terms of the underlying abstract representation and provided
to the user.

e Collecting objects together is a matter of simply indicating which among the full
set of objects under consideration are to be taken. Again, mouse clicking on a
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graphical representation is an obvious approach.

¢ Building descriptions of new groupings, and new ways of transforming objects, are
two faces of the same problem in this approach. However, we do not necessarily
expect the user to write logical specifications directly. A more intuitive approach
would allow a mixture of two sorts of user input, as follows.

— On the one hand, the user can ask the system to generalise from a set of ex-
amples — “here are three motifs — give me a description of a class of motifs
that they come from.” This is a problem in Machine Learning, and there are
several well-known techniques available. We discuss this further in section 6.

— On the other hand, the user should be able to require that parts of a full
logical specification hold — for example, Boolean combinations of previously
defined relations should be made available to the user.

These facilities together allow in principle the construction of musical objects with great
flexibility, as is possible in systems that incorporate the computational power of a full
programming language ((e.g. [Vercoe, 1991, Pope and others, 1992]). We believe it
could also provide a good intermediary between the manipulative power of the com-
puter and the intuition of the musician.

6 Assistance in concept formation

In this section we discuss a possible role for inductive machine learning in systems in-
tended to aid musical invention. We will focus here on the modelling of a particular as-
pect of human cognition which is believed to play an important role in musical creativ-
ity: the generalisation of perceptual attributes. By this we mean the process by which
the listener, when confronted with a series of sounds, instead of hearing each sound as
unique, tries to find common features, perhaps of timbre, or pitch, or rhythm.

For the particular example we will describe, the object of attention is the timbre or
tonal quality of particular sounds. This has not so far been integrated into the Charm
representation. However, the example has been implemented in the context of a sys-
tem we have built for musical exploration (of timbre), and the general approach applies
equally to a system based on Charm.

We introduce below the fundamentals of inductive machine learning followed by the
presentation of a example inductive learning engine as well as a brief concluding remark.

6.1 Inductive learning fundamentals

Inductive learning is to do with making generalisations, or classificatory rules, out of a
collection of examples given in a training set. In our case the training set is constituted
of sounds described by means of their perceptual attributes.

Broadly speaking, the problem of learning concepts from examples can be formalised
as follows: let U be the universal set of objects, — that is, all of the objects that the
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learner may encounter. There is in principle no limitation on the size of U. A concept
C is formalised from a subset of objects in U. That is to say that the elements of a cer-
tain subset of objects in U share certain features (or properties) that can be formalised
by a concept C. We say that the formalisation of a concept C defines a class C of ob-
jects in U. To learn a concept C means to learn to recognise objects in the class C. In
other words, once C is learned, the system is able, for any object O in U, to recognise
whether O belongs to class C or not.

Let U be the set of all sound events able to be produced by a certain digital instrument.
Suppose C corresponds to a certain class of soundsin U. Once C is learned, the system
can decide whether any sound event SE from U isin C.

The task of generalising a class C from a training set can now be stated as follows: given
a training set S of examples, find a description F expressed in an appropriate language,
such that for all objects X, if X is a positive example in training set S then X satisfies F,
otherwise X does not satisfy F. As a result of learning, F is the “system’s understand-
ing” of the class C.

Inductive learning in our case is aimed at learning how to recognise novel sounds with
respect to C, that is, sounds contained in U but not contained in the training set S.
Consequently, the learned concept description F should be more general than the train-
ing elements themselves.

6.2 The example inductive machine learning engine

We have implemented a machine learning engine which uses two inductive learning al-
gorithms: the ISCD (for Induction of the Shortest Concept Description) and the IDT
(for Induction of Decision Trees). Detailed algorithm specifications are not within the
scope of this paper, and can be found in [Bratko, 1990, Miranda, 1992]. In this paper,
we describe how the first method functions.

We have implemented a timbre generation program which builds up sounds according to
a user specification, which involves specifying values for attributes in a relatively high-
level language, for example vibrato, openness, attack, smoothness ...(see [Miranda,
1992, Miranda et al., 1993, Miranda, 1994] for a discussion of the meaning of these at-
tributes). Each of these is implemented in the lower-level terms of the sound synthesis
algorithm. The user may, however, be interested in describing sounds with a different
vocabulary. Having designed a number of sounds (by experimenting with the values of
the attributes available), the user can then specify that some number of these sounds
have the quality the user is looking for, say being an “open vowel”. The learning sys-
tem will attempt to discover what combinations from the given attributes are import-
ant in differentiating between the sounds in this set that are and are not “open vowels”
according to the user’s classification.

The result of learning here is a set of rules which characterises the sounds of the train-
ing set that are positive examples of the concept in question. The main requirement of
ISCD is that the rule set exactly matches the positive examples. Such a rule set is said
to be complete and correct: complete because it includes all the positive examples and
correct because it includes no negative examples.
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Learning in ISCD is viewed as a search among possible rules with the objective of min-
imising the number of attributes in it. In other words it searches for the shortest concept
description. Because of the high combinatorial complexity of this search, the ISCD re-
sorts to a heuristic of scoring functions.

An example ISCD rule, when looking for a description for “open vowel” on the basis of
some examples, is as follows

A sound event is “open vowel” if
it has “normal vibrato”,
and “high openness”.

(Recall that “normal vibrato” and “high openness” are terms from our given sound de-
scription language.) No matter how many attributes an “open vowel” has in the train-
ing set, according to the above ISCD rule the most relevant attributes for this sound
class are “vibrato = normal” and “openness = high”. “Most relevant” here means what
is most important to distinguish an “open vowel” from other sound classes.

This algorithm has been used to construct a number of similar generalisations, as de-
scribed in [Miranda, 1994]. Once the concept has been learned, the user may use the
description directly in specifying new sounds, different from those that were originally
picked out as typical of the new sound description.

6.3 Concluding remark

Our main reason for inducing rules about sounds is that the computer now can aid the
user to explore among possible alternatives to accomplish a goal, namely in this case to
design a certain sound. The user can ask the computer to “play something that sounds
similar to a bell sound” or even “play a kind of dull sound”, for example. In these cases
the engine will find out rules for deducing which attributes are relevant for synthesising a
bell-like sound or a sound with a dull colour attribute and which values they should take.

As for knowledge representation, we believe that supporting multiple perspectives upon
learned musical material is important in the case of timbre, just as it is for the notions
discussed earlier. This explains why we use more than one inductive learning algorithm
in our machine learning engine.

The Machine Learning approach thus allows us to include logical descriptions of more
abstract musical concepts, without requiring the user to formulate such descriptions ex-
plicitly, by generalising from examples.

7 Summary

We have indicated how a suitable representation language can play a central role in
automated systems aimed at the encouragement of musical creativity and the explora-
tion of the possibilities inherent in musical material, here considered at the level of notes



Music Representation — between the musician and the computer 10

and above. Similar considerations apply to organisation of timbre and “non-musical”
sounds, though our underlying basic representation is not aimed at that sort of explor-
ation. We have shown how the automated construction of musical descriptions from ex-
amples can be carried out.

At this stage, our conclusions can only be speculative. While we have implemented
some of the representational background required, the worth of this approach can only
be properly evaluated after a system along these lines has been built and used in a con-
trolled way. We hope to be able to do just this in the future.
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