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Abstract

This paper describes how a backpropagation neural network learnt and reproduced harmonic patterns. These
patterns were related in learning and production to musical tension. The neural network thus learnt to produce
the next chord in a sequence such that listeners perceive a given degree of musical tension. During this
research, it was confirmed that musical tension is measurable and that harmony conveys tension. Ultimately,
the results pragmatically show that harmonic tension patterns exist, can be found and reproduced within the
style defined by adequate pieces of music.

1 Introduction

The original intention of this project was as a step to pro-
duce music in real time—achieving a balance between the
unity and variety in the output. The idea is that a neural
network provides the unity by learning the harmonic con-
text from a given piece of music. This harmonic context is
further related to a measure of musical tension. By vary-
ing the tension level in the input, the output would be ex-
pected to stay within the harmonic context of the original
(providing unity), and the tension would drive the har-
mony, thus becoming the source of variety.

1.1 Tension in music

Tension can be seen as the incompleteness of the music
at any one point. More intuitively, the degree of tension
can be related to how unfinished the piece of music would
sound if it stopped at the point. Tension thus changes dy-
namically as the piece of music progresses (Krumhansl,
1997).

Tension has been studied for different aspects of pieces
of music. Significantly, Narmour (1990) approaches the
effect of melody in tension has been approached analyt-
ically. The concept of tension is opposed to that of re-
laxation, and derives from certain patterns in the melodic
lines that produce or solve expectancy.

As for harmony, Krumhansl (1997) measured tension
and found that the predictors of chord distance defined
by Lerdhal (1988) related to the tension curves well for a
piano sonata of Mozart. This suggests that harmony has
an effect on tension that is composed with the tension re-
sulting from the melodic lines and presumably from other
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aspects of the music.

1.2 Machine learning

Machine learning has been previously used to learn from
a set of examples to predict the next chords in a sequence
(Bharucha and Todd, 1989; Berger and Gang, 1997). This
work extends the concepts by testing whether a backprop-
agation neural network can learn patterns of tension in
harmony and use them to generate sound sequences with
new, specific tension curves.

Machine learning requires examples of the behaviour
the system is expected to learn. It is in fact ideal when
examples are easier to find than rules (Dolson, 1989). Ex-
amples of real pieces of music are of course available in
various formats, and the choice of a representation will
have an effect on the learning curve. The representation
used should favour harmony over other aspects of the mu-
sic used.

Tension curves that run in parallel to the music exam-
ples are required as well in this case, as they are part of
the behaviour that the network should learn. In this case,
the data needs to come from human listeners (rather than
from theoretical models), as part of the interest in this
work is in letting the network find patterns in the raw ten-
sion curves rather than reproducing rules that were stated
by the models in the first place.

The results of neural networks tend to be pragmatical,
and so they tend to be considered to be black boxes. The
primary analysis of the results is thus whether the be-
haviour wanted—the production of a sequence of chords
that produces a given tension curve—can be reproduced
by the network. However, backpropagation networks al-
low analysis and rule extraction to some degree. This is
achieved by analysing the weights of the links, compar-
ing the performance of different architectures and repre-



sentations, and by simulation of basic cases. In this case,
the information provided by the network will suggest the
tension patterns present in the music used in the training
example.

1.3 Procedure

This paper concentrates on the results obtained with a mu-
sical piece: the fourth movement of Prokofiev’s Classical
Symphony. This musical piece was selected because the
rhythmical and melodic patterns are relatively uniform,
and the chords change frequently (often every other bar)
and its harmony appears to drive the tension. Its duration
(about four minutes) is substantial, but without compro-
mising seriously the attention of the listeners.

This work consisted of three distinct stages:

1. elicitation of tension curves,

2. development and training of the neural network, and

3. evaluation of the output of the neural network.

The following sections address each stage separately.
Melo (1998) presents further detail of the first two stages.

2 Stage 1: Eliciting tension curves

To obtain tension curves for the musical piece, ten West-
ern listeners were asked to indicate the tension they per-
ceived while listening to it. They indicated the tension by
rotating a sprung wheel (Figure 1). The reaction of the
spring provides feedback on the position of the wheel, so
the listeners have to apply more force to indicate higher
tension, or no force for no tension. Before the Prokofiev
piece of music, listeners used the equipment to record the
tension in one to four pieces of music (according to ran-
dom settings of the test), to make sure that they felt com-
fortable with the equipment and task.

Figure 1: Settings for measuring tension

Before starting the measurement, the concept of ten-
sion was explained to the listeners as the uneasy—as op-
posed to relaxed—sound of the music, and as how “unfin-
ished” the piece would sound if it stopped at that precise

moment. Some of the listeners expressed having initial
doubts about their ability to perform the task, but felt con-
fident that they could do it after the first trial.

The music used was a quantised MIDI file in which all
the instruments were set to piano and the dynamic was
set to be constant. This insures that changes in volume,
colour and interpretation are not factors in the perceived
tension.

2.1 Raw tension curves

The tension curves given by the listeners were different
from each other in that some used the whole range of the
wheel whereas others would indicate changes in tension
with very slight movements. This was to be expected, as
the measure of tension is not defined in absolute terms.
Still, the listeners seemed to react at the same points and
in the same ways, reacting is the same points, increasing
or decreasing the tension at the same time. Visually, the
peaks and valleys in the curves appear to coincide (see
Figure 2).

The agreement among the curves was confirmed us-
ing using Friedmans test of rank correlation. Friedman’s
test compares a number of data series for monotonic be-
haviour, that is, tests whether the series increase (or de-
crease) values at the same points (Brownlee, 1965; Hol-
lander and Wolfe, 1973). This test differs from correlation
analysis in that it is non-parametric: it does not assume
that the data series have the same distribution. This al-
lows for the fact that the tension curves provided by differ-
ent listeners may be expressing their perception of tension
in different ways—that is, not necessarily proportionally.
Friedman’s test showed that the possibility of the curves
not being correlated is under 10−6.

2.2 Obtaining a single tension curve

The ten tension curves obtained have to be condensed into
one to be used for training. Condensing the data is ex-
pected to make up for differences in the ”style” of the
curves provided by different listeners, as well as for er-
rors in the curve because of a listener losing attention.

The median is used to condense the data series. The
argument is the same as when choosing Friedman’s test:
that the interest is to show that the curves are monotonic.
The median is non-parametric because it does not assume
a data distribution in the series. To apply it, however,
it was found appropriate to normalise the ten curves ob-
tained by scaling them between 0 and 100.

Figure 2 shows the way the median represents the ten
curves in a section of the piece of music. This figure il-
lustrates how the median represents the general tendency
of the ten curves and how each one of the curves con-
tributes to the resulting curve in the measure that it agrees
with the majority of the other curves. The median for the
whole piece is shown in Figure 3. The curve reflects the
underlying structure of the piece: AABA ′. A goes ap-
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Figure 2: Ten tension curves and their median

proximately from bar 0 to bar 90, then repeats from 90 to
180, and then its variation A′ begins at approximately bar
240. This and the statistical agreement in the responses of
the listeners give confidence in the curve as a representa-
tive indication of the development of the piece.

3 Stage 2: Training neural net-
works to produce chords based on
given tension curves

The concept of this system is that it should produce the
chord that continues a sequence to convey a given degree
of tension. The input of the neural network is thus the set
of preceding chords, and the degree of tension. With the
piece of music chosen, time slices of one bar are appropri-
ate, as in most cases in it, the chords take integer numbers
of bars. The set of chords used in the input is then the n
chords in the preceding n bars (where n is the size of the
time window).

Besides the structure of the network itself and the learn-
ing parameters, the main variables in the definition of the
system were the representation of the chords and the win-
dow size. Different representations of chords and window
sizes (n) were tried, to find those with which the network
could produce the best results.

The chord representations tried were based on the oc-
currence of each one of the twelve tones in each bar.
Some variations in the representation included the spe-
cific identification of the lowest tones in the bar and the
consideration of the percentage of time that each tone oc-
curred in the bar.

In each case, the architecture of the neural network was
optimised. The training procedure was standard: one fifth
of the data from the musical piece was chosen at random
and used for testing the network (and excluded from the
data used for training). Each datum contained an output
chord, its average tension, and the n preceding chords.

Training data was presented to the network at random.
Training stopped when the accuracy of the network on
the testing data started to decrease—which means that the
network is starting to memorise more than it is generalis-
ing.

3.1 Parameters of the best network built

The representation found to be the best indicated the frac-
tion of time that a given tone would sound during the bar.
Doubling was considered in the representation, so if, for
example, the same tone is being played simultaneously in
two different octaves, that would count twice. Each chord
would thus be represented by twelve parameters, one for
each of the 12 tones.

The ideal window size for this representation was of
13 bars. It was found to be ideal because the median of
the error with the test data with three different random
seeds was lower than for other window sizes. These two
properties—especially the window size—relate directly
to characteristics of the piece of music used, as will be
discussed later.

3.2 Analysis of the trained network

Neural networks behave like black boxes in the sense that
the knowledge is distributed rather than localised, so rules
cannot be extracted by looking at the network itself. How-
ever, it is possible to gain some knowledge about the be-
haviour learnt by the network by 1) training different net-
works with different information and representations, and
comparing their performance; 2) analysing the weights of
the links in a trained network to find out the relative im-
portance of the input factors; and 3) testing the trained
network for different kinds of input and finding the sen-
sitivity of the outputs. All these functions can be seen
as a statistical analysis of the input data; because what
the network does during learning is generalising from the
training data.
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Figure 3: Tension curve for the fourth movement of Prokofiev’s Classical Symphony

In this case, the training data was harmonic information
from Prokofiev’s Classical Symphony, and so the analysis
of the properties of the network relate to this piece and do
not necessarily apply to other pieces of music.

A close-to-best performance was obtained by the rep-
resentation that included information about doubling, but
that the addition of the bass line does not produce sig-
nificant improvements. Including doubling information
makes the identity of the chord clearer, as this would be
expected to scale down the relative occurrence of aux-
iliary notes. This may also suggest that the density of
the sound is a general factor that affects the chord se-
quence; i.e., some chords sequences appear to be reserved
for denser parts of the piece of music.

It is possible to perform sensitivity analysis on the net-
work to determine the effect of changing the inputs. This
was done by recording the differences in each output node
after varying each input datum for each example by 5 and
-5 percent of the range of values the corresponding input
node can take. The results for all the examples are av-
eraged, producing values representing the sensitivity of
each output to changes in each input.

Figure 4 shows the average of the absolute values of the
effects of each input chord to the output chord. It indicates
the relative relevance each bar has in the chord the net out-
puts. The chord in the last bar (column 13 in the figure),
for example, has the strongest effect. This is reasonable
considering that the output is its immediate continuation,
probably similar in density and often continuing the same
chord. It is significant that the even numbered columns
tend to have a stronger effect than their neighbours, as
this suggests a harmonic rhythm.

By considering the effect of tension on each one of the
tones of the output chord (Figure 5), some insight can
be gained as to the way harmonic tension behaves in the
piece. In the figure, column 1 relates to the sensitivity of
the output c to tension, column 2 relates to c�, column 3
to d, and so on.
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Figure 4: Average absolute sensitivity of the output chord
to the input chords
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Figure 5: Sensitivity to the tones in the output chord to
tension



As can be appreciated in the sensitivity values, tension
has an important influence in the output of the net. Con-
sidering these values, it becomes apparent that high ten-
sion biases the output towards the A major (columns 2, 5
and 10). This is not surprising, since A major is the dom-
inant of the main key. Low tension is more ambiguous, as
its main effect is biasing to g, b and d� (tritone). This sug-
gests that the subdominant (G major) is produced for low
tension effects. It is even more surprising, however, that
the tonic, D major, seems not to be related to low tension.

High tension in the dominant, ambiguity in the tonic
and low tension in the subdominant appears to be counter-
intuitive. In this context the piece would appear to be
written in G major (rather than D major), as it makes
more sense to consider that low tension is associated to
the tonic, some ambiguity in tension to the dominant, and
high tension to the dominant of the dominant.

This result has an explanation: many phrases of the
piece of music used for training are—on first listening—
harmonically ambiguous. It frequently uses plagal ca-
dences (progressing from the subdominant to the tonic),
which would seem to have been interpreted as half ca-
dences (in the subdominant key) by the listeners1.

4 Stage 3: Testing whether the net-
work’s output fits the given ten-
sion curves

What would be expected at this point is that by giving 13
preceding bar-chords to the network and a desired degree
of tension to the network, it will output the chord for the
next bar. The chords for the 13 preceding bars are inter-
preted in the context of the musical piece used for train-
ing, and the chord output by the net would be expected to
produce the degree of tension wanted. In this way, it may
be possible to obtain a sequence of chords that is within
the harmonic context of the training piece and that has the
wanted tension curve. The next stage is to test whether the
tension obtained is actually the one given to the network.

To test this, random initial chords and two tension
curves were used to initialise the system. The objective is
to measure the tension in these sequences (using the same
procedure as in Stage 1) and compare it to the two ten-
sion curves used. In this way, it can be found whether the
sequences produced by the network actually produce the
wanted tension curves. However, the procedure described
in Stage 1 requires a piano-roll (or a similar representa-
tion).

1This ambiguity was reportedly introduced intentionally, as it was
frequently exploited by Haydn, who was one of the models Prokofiev
used for the Classical Symphony.

4.1 Obtaining a piano-roll version of the
network’s output

A second backpropagation neural network was used to
produce a piano-roll version of each bar output by the
network. Each column in the piano-roll contains 70 tones
(the range of the original piece) and has a duration of one
quaver (the minimum duration in the piece). Each tone in
the column will be either on or not.

The input of this second network is the chord of the
current bar, four piano-roll columns (i.e., a time window
with the previous four quavers), and the desired tension.
Its output is the following two piano-roll columns.

A small time window was chosen because the pur-
pose of this network is to convert chords into piano-roll
columns rather than to memorise melodies or the piece of
music. The output contains two columns to exploit the
fact that the first quaver is on the beat while the second is
not.

This network was trained using data from the original
piece. The output nodes represent notes in the piano-roll
columns; but their values are real numbers between 0 and
1—not binary. The original piece was used to determine
the thresholds for each output node that maximise the ac-
curacy of its output.

The whole system is illustrated in Figure 6. The main
network (”bar-scale net”)is used at the beginning of each
bar to generate the chord (the ”bar suggestion”) that will
produce the degree of tension in the input. The piano-roll
network is used every two quavers to produce the follow-
ing two piano-roll columns (”next two quavers”), based
on the chord, the four previous piano-roll columns and
the tension.

At the end of the bar, after eight piano-roll columns
have been generated, the chord equivalent to these eight
columns (rather than the chord output by the main net-
work) is used to update the time window at the input of
the main network. This is to allow for the fact that the
piano-roll network may distort the chords in the main net-
work output.

For testing purposes, two sets of pieces were created
using this system. All sound sequences were under 80
seconds long. The first set consisted of two pieces gener-
ated to produce a section of the tension curve of the orig-
inal piece. The second set consisted of eight pieces gen-
erated using a skewed sinusoidal wave as tension curve.
The chord and piano-roll windows were initialised with
random data for each one of the pieces. Importantly, the
random seeds and the resulting sound sequences were not
evaluated or selected before the experiment.

As expected, the piano-rolls produced by the system
described are not melodic, and listeners expressed that
they sounded almost like random music, while admitting
that some “order” and even “style” could be noticed in
them.
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Figure 6: System to produce piano-rolls

4.2 Test procedure

At this stage, 16 Western subjects listened to the original
piece of music and recorded the tension they perceived us-
ing the sprung wheel—both to let them get used to the ex-
perimental settings and to find differences between their
response and the original tension curve used to train the
network. After this, each participant recorded the tension
for the two pieces in the first set and for four of the pieces
in the second set. Listeners heard the sound sequences
generated by the system in random order.

The data obtained was normalised and processed in the
same way as in Stage 1, scaling the individual curves from
0 to 100 and extracting the median.

4.3 Results and analysis

Figures 7, 8 and 9 illustrate the results of Stage 3. Figure
7 shows the tension curve obtained for sequence A of the
first set. In this case, the fitness of the resulting curve to
the input tension is quite clear.

Figure 8 shows the tension curve obtained for sequence
B of the first set. In this case, even though at some points
the resulting curve moves in the same direction as the in-
put tension, their fitness is poor. The problem in this case
is that the random seed used to initialise the piano-roll
produced very dense columns which were unconfortable

to the listeners and allowed no noticeable changes in the
chords or piano-roll.

Figure 9 shows the input tension curve used for the sec-
ond set and the average of the tension curves obtained for
its eight sequences. This curve has a good correlation in
the first half and a tendency to a steady state in the sec-
ond half. This curve is an average, and reflects the results
obtained from the eight sequences in the set. Individual
pieces fall into one of the following categories:

• Good fitness, with an obvious relation between the
input and the resulting curves.

• Good fitness at the beginning, but tension falls into a
steady state by the end.

• Delayed response: the resulting curve is an offset of
the input tension.

The system can enter a stable state of saturation in
which the inputs and outputs maintain high values, and
this clearly depends on the random data used to initialise
the input piano roll columns and chords.

4.4 Statistical analysis of the results

To test the fitness of the tension curves, they were com-
pared to the tension curves used to generate the sound
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Figure 7: Input tension and perceived tension for sequence A, first set
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Figure 8: Input tension and perceived tension for sequence B, first set
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Figure 9: Input tension and average perceived tension for the second set

sequences. The comparison was done using the test of
rank correlation (which is equivalent to applying Fried-
man’s test to two data series only). The choice of a non-
parametric test is once again justified by the fact that a
distribution of tension cannot be assumed.

The rank correlation between the input tension curves
and the tension indicated by the listeners was statistically
significant in all the cases, but suspected not to be as
strong as that found among the listeners in the original
test.

The tension curves recorded for the original piece of
music can be used as reference to test whether these dif-
ferences could have originated from the different set of
listeners that participated. The procedure for this com-
parison involves calculating the rank correlation for the
tension curves obtained in Stage 1 and Stage 3 for the
original piece. This value is then compared to each one
of the correlations, considering the degrees of freedom in
the data seried. The results indicate that the correlation
between the two sets of listeners is better by far—so the
perception of tension of the listeners that participated in

Stage 3 is similar enough to that of the listeners in Stage
1.

In most cases, the correlation between the input ten-
sion and the perceived tension has high statistical signif-
icance nonetheless. The results are encouraging in that
they show that the network learnt to reproduce aspects of
the harmony to produce a given tension. The network in-
terpreted the random input data in terms of the harmonic
context it learnt, and produced the sound sequence based
on it. In some cases, however, the initial random data
forced the system into a stable state of saturation.

5 Discussion

The backpropagation network appears to have learned
patterns that exist between harmonic information and the
tension measured, within the harmonic context of the mu-
sical piece used. In some cases it is able to produce sound
sequences that produced responses in the users equivalent
to those measured for the original musical piece. These



“successful” sequences are new as they are clearly distinct
from the original musical piece. However, they are copies
in the sense that they are based on the harmonic context
of the original. What was not learnt from the original was
the result of random factors that affect the neural network
or of external inputs.

The random factors in this case are the data that is re-
moved for testing purposes and the order in which the
training data is presented to the network. These factors
affect the way it contains the patterns harmony-tension
patterns. Once training has finished, the network can be
considered to be deterministic, but still its structure and
outcomes will be affected by the random factors in its
training.

The chords used for initialisation and the input tension
curve are inputs to the system and not necessarily ran-
dom. They affect the resulting sequence, probably at the
same level that the musical piece used for training does,
as they represent the material that goes through the har-
monic context learnt by the network. The novelty of the
sequence produced by the network could thus be traced
back to the random factors during learning and the inter-
action of the system inputs and the systems complexity.

At a more basic level, the results showed that listeners
tend to agree in what they understood as musical tension.
The tension they perceived in the musical piece used was
found by the neural network to correlate to the harmony,
to the point that it could produce chords appropriate for
the context and desired tension. The resulting structure of
the backpropagation network reflects important features
of the way harmony is perceived by listeners. The results
ultimately suggest that the concept of tension can be used
to drive the production of musical sequences.
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