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Abstract

N-gram models have been employed for a number of musical tasks including the development of practical
applications providing computational support for creative individuals as well as theoretical studies of cre-
ative processes. Our goal in this research is to evaluate, in an application independent manner, some recent
techniques for improving the performance on monophonic music of a subclass of such models based on the
Prediction by Partial Match (PPM) algorithm. These techniques include the use of escape method C, inter-
polated smoothing and unbounded orders. We have applied these techniques incrementally to eight melodic
datasets using cross entropy computed by 10-fold cross-validation on each dataset as our performance met-
ric. The results demonstrate statistically significant performance improvements afforded by the use of all three
techniques. We discuss these findings in terms of previous research carried out in the field of data compression
and with natural language and music corpora and present some directions for future research. It is our hope
that these improvements may be applied usefully to specific musical tasks.

1 Introduction

N-gram models have been employed for a number of re-
search tasks in music including the development of practi-
cal applications providing computational support for cre-
ative individuals as well as theoretical studies of cre-
ative processes. In the former category, we cite models
for computer-assisted composition (Ames, 1989; Assayag
et al., 1999; Hall & Smith, 1996), automatic improvisa-
tion (Lartillot et al., 2001) and music information retrieval
(Pickens et al., 2002); in the latter category, n-gram mod-
els have been used for stylistic analysis of music (Con-
klin & Witten, 1995; Dubnov et al., 1998; Ponsford et al.,
1999) and cognitive modelling of music perception (Fer-
rand et al., 2002; Reis, 1999).

Our goal here is to investigate the performance of a sub-
set of such models on a range of monophonic music data
in an application independent manner. We are concerned,
in particular, with the application to music data of a par-
ticular technique for combining the predictions of n-gram
models called Prediction by Partial Match (PPM – Cleary
& Witten, 1984) which forms the central component in
some of the best performing data compression algorithms
currently available (Bunton, 1997). PPM has previously
been applied to natural language data (Chen & Goodman,
1999) and to music data (Conklin & Witten, 1995). Since
its introduction, a great deal of research has focused on
improving the compression performance of PPM mod-
els and our specific aim is to evaluate the performance of
these improved models on a range of monophonic music.
It is our hope that these improvements, evaluated here in

an application independent manner, may then be applied
usefully to some of the specific musical tasks cited above.

The paper is organised as follows. In §2, we introduce
n-gram modelling in general and the PPM scheme in par-
ticular, as well as the information-theoretic performance
metrics we shall use. Much of the background for this
research is drawn from the fields of statistical language
modelling (Manning & Schütze, 1999) and text compres-
sion (Bell et al., 1990). We hope to demonstrate that prac-
tical techniques and methodologies from these fields can
be usefully applied in the modelling of music. As noted
above, n-gram models have been applied to a number of
musical tasks and in §3, we discuss research in the mu-
sical domain which uses related models and methodolo-
gies. The data and experimental methodology employed
are described in §4. The results of our experiments are
presented in §5, discussed in §6 and, in §7, we conclude
by presenting a number of useful directions for future re-
search.

2 Background

2.1 N-gram Models

For the purpose of describing this research we shall char-
acterise the acquisition of knowledge about melodic mu-
sic as a sequence learning problem (Dietterich & Michal-
ski, 1986). The objects of interest are sequences of events
where each event consists of a finite set of attributes and
each attribute may assume a value drawn from some fi-
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nite alphabet ξ. Here our events are musical notes as no-
tated on a score and we restrict ourselves to the attribute
of chromatic pitch. We shall use the notation e j

i ∈ ξ∗ to
denote a sequence of events ei . . .e j where i, j ∈N

+ and ξ∗
denotes the set of all sequences composed of members of
ξ including the empty sequence ε. The goal of sequence
learning is to derive from example sequences a model
which estimates the probability function p(ei|e

i−1
1 ).

If we make the assumption that the probability of the
next event depends only on the previous n−1 events, for
some n ∈ N

+:
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then we have an (n−1)th order Markov model or n-gram
model. An n-gram is a sequence ei

i−n+1 consisting of a
context ei−1

i−n+1 and a single-event prediction ei. Since the
use of a global order bound imposes assumptions about
the nature of the data, the selection of an appropriate n is
an issue when designing and building n-gram models. If
the order is too high, the model will overfit the training
data and fail to capture enough statistical regularity; low
order models, on the other hand, suffer from being too
general and failing to represent enough of the structure
present in the data. The appropriate order for any particu-
lar corpus of data can only be determined experimentally.

An n-gram parameter is the probability of the predic-
tion occurring immediately after the context. The parame-
ters are typically estimated on some corpus of example se-
quences. Of several different means of estimating n-gram
parameters, the simplest is maximum likelihood (ML) es-
timation which estimates the parameters as:
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where c(ei
i−n+1) denotes the frequency count for n-gram

ei
i−n+1.

Due to data sparseness, problems arise when using
fixed order ML models due to the occurrence of as yet
unseen n-grams. In particular, if a novel n-gram con-
text is encountered or a novel symbol occurs in an exist-
ing context (the zero-frequency problem – see Witten &
Bell, 1991), the ML estimate will be zero. In these situa-
tions, the estimated probability of a novel n-gram will be
too low and consequently the estimated probability of n-
grams with non-zero counts will be too high. In addition,
the information theoretic performance measures that we
shall use (see §2.2) require that every symbol is predicted
with non-zero probability.

In statistical language modelling, a set of techniques
known collectively as smoothing are commonly used to

address these problems. The central idea of smoothing
is to adjust the ML estimates in order to generate prob-
abilities for as yet unencountered n-grams. This is typ-
ically achieved by combining the distributions generated
by an h-gram model with some fixed global order bound
h with distributions less sparsely estimated from lower or-
der n-grams. Most existing smoothing techniques can be
expressed using the framework described in Equation 1
(Kneser & Ney, 1995).

If an n-gram ei
i−n+1 occurs with a non-zero count
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i−n+1) = 1. Recursion

is typically terminated with the zeroth order model or by
taking a uniform distribution over ξ. Different smooth-
ing algorithms vary in the methods used for computing
α(ei|e

i−1
i−n+1) and γ(ei|e

i−1
i−n+1).

An alternative to backoff smoothing is interpolated
smoothing in which the probability of an n-gram is always
estimated by recursively computing a weighted combina-
tion of the (n− 1)th order distribution with the (n− 2)th

order distribution as described in Equation 2.
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Detailed empirical comparisons of the performance of
different smoothing techniques have been conducted on
natural language corpora (Chen & Goodman, 1999; Mar-
tin et al., 1999). One of the results of this work is the find-
ing that, in general, interpolated smoothing techniques
outperform their backoff counterparts. Chen & Good-
man (1999) found that this performance advantage is re-
stricted, in large part, to n-grams with low counts and sug-
gest that the improved performance of interpolated algo-
rithms is due to the fact that low order distributions pro-
vide valuable frequency information about such n-grams.

2.2 Performance Metrics

It is common in the field of statistical language modelling
to use information theoretic measures to evaluate statisti-
cal models of language. Given a discrete random variable
X distributed over an alphabet ξ according to a probabil-
ity distribution P such that the individual probabilities are
independent and sum to one, the entropy H(P) is defined
as:

H(P) = −∑
e∈ξ

p(e) log2 p(e) (3)



Shannon’s fundamental coding theorem (Shannon, 1948)
states that entropy provides a lower bound on the average
number of binary bits per symbol required to encode an
outcome of X . The corresponding upper bound occurs in
the case where each symbol in the alphabet has an equal
probability of occurring: ∀e ∈ ξ, p(e) = 1

|ξ| .

Hmax(ξ) = log2 |ξ| (4)

Entropy has an alternative interpretation in terms of the
degree of uncertainty that is involved in selecting a sym-
bol from an alphabet: greater entropy implies greater un-
certainty.

In practice, we rarely know the true probability distri-
bution of the stochastic process and use a model to ap-
proximate the probabilities in Equation 3. Cross entropy
is a quantity which represents the divergence between the
entropy calculated from these estimated probabilities and
the source entropy. Given a model which assigns a prob-
ability of pm(e j

1) to a sequence of outcomes of X , e j
1,

we can calculate the cross entropy Hm(e j
1) of model m

with respect to event sequence e j
1 simply by having very

large sequences of outcomes available. In particular, if
we make some assumptions about the stochastic process
which generated the sequence, the cross entropy Hm(e j

1)
may be calculated as:1

Hm(e j
1) = −

1
j

j

∑
i=1

log2 pm(ei|e
i−1
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Since Hm(e j
1) provides an estimate of the number of bi-

nary bits required on average to encode a symbol in e j
1

in the most efficient manner and there exist techniques,
such as arithmetic coding (Witten et al., 1987), which can
produce near optimal codes, cross entropy provides a di-
rect performance metric in the realm of data compression.
However, cross entropy has a wider use in the evaluation
of statistical models. Since it provides us with a measure
of how uncertain a model is, on average, when predict-
ing a sequence of events, it can be used to compare the
performance of different models on some corpus of data.
In statistical language modelling, cross entropy measures
are commonly used: “For a number of natural language
processing tasks, such as speech recognition, machine
translation, handwriting recognition, stenotype transcrip-
tion and spelling correction, language models for which
the cross entropy is lower lead directly to better perfor-
mance.” (Brown et al., 1992, p. 39).

1In particular, we assume that the process is stationary and ergodic.
A stochastic process is stationary if the probability distribution govern-
ing the emission of symbols is stationary over time (i.e., independent of
the position in the sequence) and ergodic if sufficiently long sequences
of events generated by it can be used to make inferences about its typical
behaviour.

2.3 The PPM Algorithm

2.3.1 Overview

Prediction by Partial Match (Cleary & Witten, 1984) is a
data compression scheme the central component of which
is an algorithm for performing backoff smoothing of n-
gram distributions. Variants of the PPM scheme have
set the standard in lossless data compression since its in-
troduction (Bunton, 1997). We shall describe several of
these variants in terms of Equations 1 and 2 where recur-
sion is terminated with a model which predicts each event
e ∈ ξ with equal probability mass, 1

|ξ| . This model is usu-
ally referred to as the order−1 model and allows for the
prediction of events which have yet to be encountered.

2.3.2 The Zero-frequency Problem and Escaping

We shall now describe how the probability estimates
α(ei|e

i−1
i−n+1) and γ(ei|e

i−1
i−n+1) in Equations 1 and 2 are

computed in PPM models. The problem is usually char-
acterised by asking how we estimate γ(ei|e

i−1
i−n+1) – the

amount of probability mass to assign to events which are
novel in the current context ei−1

i−n+1. α(ei|e
i−1
i−n+1) is then

set such that the distributions sum to one. As noted by
Witten & Bell (1991), there is no sound theoretical basis
for choosing these escape probabilities in the absence of
a priori knowledge about the data being modelled. As a
result, although several schemes exist, their relative per-
formance on any particular task can only be determined
experimentally. In the following discussion, t(e j

i ) denotes
the total number of symbol types that have occurred in
context e j

i .

Method B (Cleary & Witten, 1984) classifies a symbol
occurring in a given context as novel unless it has already
occurred twice in that context. This is achieved by sub-
tracting one from all the counts and has the effect of filter-
ing out anomalies. In addition, the escape count increases
as more types are observed.
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Method C (Moffat, 1990) retains from method B the
effect that the escape count increases as more types are
observed but symbols are predicted immediately.
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One particular smoothing technique called Witten-Bell
smoothing, often used in statistical language modelling, is
based on escape method C (Manning & Schütze, 1999).

These escape methods have been subjected to empir-
ical evaluation in data compression experiments which
demonstrate that method C typically yields better perfor-
mance than method B (Bunton, 1997; Moffat et al., 1994).

2.3.3 Interpolated Smoothing

We have discussed the difference between backoff and in-
terpolated smoothing in §2.1 and shown how they can be
described within the same framework. While the origi-
nal PPM algorithm uses a backoff strategy (called blend-
ing), Bunton (1997) has experimented with using inter-
polated smoothing within PPM. Bunton notes that for
blending (and other backoff methods), the estimates for
novel events are slightly inflated while the estimates for
events which are not novel are slightly deflated. Re-
placing blending with interpolated smoothing remedies
this and yields significant and consistent improvements
in compression performance (Bunton, 1997).

2.3.4 Unbounded Length Contexts

One of the goals of universal modelling is to make mini-
mal assumptions about the nature of the stochastic pro-
cesses responsible for generating observed data. As
we discussed in §2.1, n-gram models make assumptions
about these processes to the effect that the probability
of an event depends only on the previous n− 1 events.
Cleary & Teahan (1997) describe an extension to PPM,
called PPM*, which eliminates the need to impose an ar-
bitrary order bound. The policy used to select a maximum
order context can be freely varied depending on the situa-
tion.

A context e j
i is said to be deterministic when it makes

exactly one prediction: t(e j
i ) = 1. Cleary & Teahan

(1995) have found that for such contexts the observed fre-
quency of novel events is much lower than expected based
on a uniform prior distribution. As a consequence, the en-
tropy of the distributions estimated in deterministic con-
texts will tend to be lower than in non-deterministic con-
texts. Since the event will have occurred at least as many
times in the lowest order matching deterministic context
as any of the other matching deterministic contexts, it will
produce the lowest-entropy probability distribution (Bun-
ton, 1997). Cleary & Teahan (1997) exploit this in PPM*
by selecting the shortest deterministic matching context
if one exists or otherwise selecting the longest matching
context. Unfortunately, the original PPM* implementa-
tion provided modest improvement in compression per-
formance over the original order bounded PPM. When
combined with interpolated smoothing, however, PPM*
does outperform the corresponding order bounded PPM
models in data compression experiments (Bunton, 1997).

2.3.5 Implementation Issues

Since PPM* does not impose an order bound, all sub-
sequences of the input sequence must be stored which
makes for increased demands on computational re-
sources. Suffix-tree representations provide a space-
efficient means of achieving this end (Bunton, 1997; Lars-
son, 1996). We have implemented our PPM models as
suffix trees using the online construction algorithm de-
scribed by Ukkonen (1995). The application of this al-
gorithm to the construction of PPM models was first de-
scribed by Larsson (1996) and the construction devel-
oped independently by Bunton (1997) is similar to the
Ukkonen-Larsson algorithm in many respects. In addi-
tion to being online, these algorithms have linear time and
space complexity and, as demonstrated by Bunton (1997),
the resulting models have optimal space requirements (in
contrast to the original PPM* implementation). The ex-
istence of path compressed nodes in suffix trees compli-
cates the storage of frequency counts and their use in pre-
diction. We have followed the strategies for initialising
and incrementing the counts employed by Bunton (1997)
to address these complications.

2.4 Long- and Short-term Models

In data compression, a model which is typically empty
initially is constructed incrementally as more of the input
data is seen. However, experiments with PPM using an
initial model that has been derived from a training text
demonstrate that pre-training the model, both with related
and with unrelated texts, significantly improves compres-
sion performance (Teahan & Cleary, 1996). A comple-
mentary approach is often used in the literature on statis-
tical language modelling where improved performance is
obtained by augmenting n-gram models derived from the
entire training corpus with cache models which are con-
structed dynamically from a portion of the recently pro-
cessed text (Kuhn & De Mori, 1990).

Conklin (1990) has employed similar ideas with mu-
sic data by using both a long-term model (LTM) and a
short-term model (STM). While the LTM parameters are
estimated on the entire training corpus, the STM is con-
structed online for each composition in the test set and
is discarded after the relevant composition has been pro-
cessed. The predictions of both models are combined
to provide an overall probability estimate for the current
event. The motivation for doing so is to take advantage
of recently occurring n-grams whose structure and statis-
tics may be specific to the individual composition being
predicted.

A simple way of achieving the combination of predic-
tions from the LTM and STM is to use a weighted average
of the individual predictions (Conklin, 1990). Let e∈ ξ be
the current symbol to be predicted, M be a set {ltm,stm}
containing the LTM and STM and pm(e) be the probabil-
ity assigned to symbol e by model m ∈ M. The weighted
mean of the two predictions is:



p(e) =
∑m∈M wm pm(e)

∑m∈M wm
(6)

Conklin describes a method for calculating the weights,
wltm and wstm based on the entropies of the distributions
generated by the LTM and STM such that greater entropy
(and hence uncertainty) is associated with a lower weight.
Let Pm be the probability distribution generated by model
m. The relative entropy of a model is:

Hrelative(m) =

{

H(Pm)/Hmax(ξ) if Hmax(ξ) > 0
1 otherwise

where H and Hmax are as defined in Equations 3 and 4
respectively. The weight wmof model m is computed as
wm = Hrelative(m)−b where b ∈ N is a parameter giving an
exponential bias towards models with lower relative en-
tropy. The combined use of long- and short-term models
yields better prediction performance than either the LTM
or STM used individually (Conklin, 1990). Finally, Con-
klin & Witten (1995, p. 61) have used a different scheme
based on the Dempster-Schaffer theory of evidence for
combining the predictions of long- and short-term mod-
els “with some success” but do not provide any details of
the scheme or the performance improvements it yielded.

3 Related Work

N-gram models have been used for music related tasks
since the 1950s when they were investigated as tools for
composition and analysis (see e.g., Brooks Jr. et al., 1957;
Hiller & Isaacson, 1959; Pinkerton, 1956). Since exten-
sive reviews of this early research exist (Ames, 1989;
Hiller, 1970), we shall focus here on more recent ap-
proaches.

Ponsford et al. (1999), for example, have applied tri-
grams and tetragrams (without smoothing) to the mod-
elling of harmonic movement in a corpus of 84 seven-
teenth century sarabandes. The aim was to find out how
adequate a simple n-gram model would be for the de-
scription and generation of harmonic movement in the
style. Higher order structure was represented in the cor-
pus through the annotation of events delimiting bars,
phrases and entire pieces. A number of pieces were gener-
ated from the models and subjected to an informal stylis-
tic analysis. The generated harmonies were “characteris-
tic of the training corpus in terms of harmony transitions,
the way in which pieces, phrases and bars begin and end,
modulation between keys and the relation between har-
mony change and metre” (Ponsford et al., 1999, p. 169).
The generation of features such as enharmony, which was
not present in the corpus, and weak final cadences was
attributed mainly to the use of low order models.

Conklin & Witten (1995, see also Conklin 1990) de-
veloped PPM models of the soprano lines of 100 of the

chorales harmonised by J.S. Bach. The escape method
used was B and both long- and short-term models were
employed. The global order bounds of the LTM and STM
were set at 3 and 2 respectively and the predictions com-
bined using a Dempster-Schaffer scheme. One of the cen-
tral features of this work was the representation of multi-
ple attributes, or viewpoints, of a melodic sequence. Con-
klin & Witten (1995) describe a number of multiple view-
point systems consisting of several PPM models trained
on different viewpoints whose predictions were combined
in the same manner as described in §2.4. Several evalu-
ation techniques were employed. First, split-sample val-
idation with a training set of 95 compositions and a test
set of five compositions was used to compare the perfor-
mance (in terms of cross entropy) of different multiple
viewpoint systems. Conklin & Witten were able to de-
rive multiple viewpoint systems whose entropy was sig-
nificantly lower than that of a single viewpoint system
modelling chromatic pitch. The second means of evalu-
ation was a generate-and-test approach from which Con-
klin & Witten concluded that the generated compositions
seemed to be “reasonable”. Finally, Witten et al. (1994)
conducted an empirical study of the sequential chromatic
pitch predictions made by human listeners on the same
test set of compositions. The entropy profiles derived
from the experimental results for each composition were
strikingly similar in form to those generated by the model.

Hall & Smith (1996) have extended the approach used
by Conklin & Witten (1995) to a corpus of 58 twelve-bar
blues compositions. The aim was to develop a compo-
sitional tool that would automatically generate a melody
when supplied with a twelve-bar blues harmonic struc-
ture. In order to model pitch, zero, first and second order
models were derived from 48 compositions in the corpus.
Separate first and second order models were derived for
each individual chord occurring in the corpus. Rhythm
was represented using an alphabet of short rhythmic pat-
terns (e.g., two semiquavers followed by a quaver) and
zero, first and second order models were derived from
the training set over this alphabet. The model was eval-
uated by asking 198 human subjects to judge which of a
pair of compositions (of which one was human- and the
other machine-composed) was machine-generated. The
data consisted of the ten remaining compositions in the
corpus and ten compositions randomly selected from the
model’s output all of which were played to the subjects
over a standard harmonic background. Statistical analysis
of the results demonstrated that the subjects were unable
to distinguish reliably between the human and machine
generated compositions.

Reis (1999) has extended the work of Conklin & Witten
(1995) in a different direction through the incorporation
of psychological constraints in n-gram models. In partic-
ular, he argues that storing all n-grams (with order less
the the global bound) which occur in the data is highly
inefficient and unlikely to accurately depict the manner
in which humans represent melodies. Reis describes a



ID Description

0 Folk songs and Ballads from Nova Scotia, Canada
1 Chorale soprano melodies harmonised by J.S. Bach
2 Alsatian folk songs from the Essen Folk Song Collection
3 Yugoslavian folk songs from the Essen Folk Song Collection
4 Swiss folk songs from the Essen Folk Song Collection
5 Austrian folk songs from the Essen Folk Song Collection
6 German folk songs from the Essen Folk Song Collection (kinder dataset)
7 Chinese folk songs from the Essen Folk Song Collection (shanxi dataset)

Table 1: Melodic datasets used in this research.

model which segments the data according to perceptual
cues such as contour changes or unusually large pitch or
duration intervals. The order of the n-grams stored by the
model is then determined by the sequence of events back
to the previous segmentation point. If a novel n-gram is
encountered during prediction, the distribution delivered
by the variable order model is smoothed with a uniform
distribution over the alphabet. The model also incorpo-
rates perceptually guided predictions for more than one
step ahead. The performance of the model was evaluated
on the chorale dataset used by Conklin & Witten (1995)
and folk melodies from the Essen Folk Song Collection
(Schaffrath, 1995) using entropy as the performance met-
ric with a split sample experimental design. Although the
results demonstrated that the model failed to outperform
that of Conklin & Witten (1995), the work is useful since
it addresses the question of which segmentation and mod-
elling strategies work best when model-size is limited.

4 Experimental Methodology

4.1 Model Parameters

A PPM model has been implemented in Common Lisp
such that each of the variant features described in §2.3
are accepted as parameters to the top-level call. We shall
use the following shorthand to refer to each of the model
parameters: the model type is indicated by ’LTM’ and
’STM’ for the long- and short-term models respectively;
the escape method is indicated explicitly by ’B’ or ’C’;
the order bound is indicated by an integer or ’*’ if un-
bounded; and interpolated smoothing is indicated by an
’I’ (blending is the default). Thus, for example, a PPM
long-term model with escape method C, unbounded or-
der and interpolated smoothing is denoted by ’LTMC*I’.
When combined with a short-term model with the same
parameters, the model would be denoted by ’LTMC*I-
STMC*I’ (for readability the two models are separated
by a hyphen).

4.2 Data

The aim of this research was to assess the performance
of PPM variants over a range of different musical styles.

The datasets used were all obtained in the **kern for-
mat (Huron, 1997) from the Centre for Computer As-
sisted Research in the Humanities (CCARH) at Stanford
University, California (see http://www.ccarh.org) and
the Music Cognition Laboratory at Ohio State Univer-
sity (see http://kern.humdrum.net). During prepro-
cessing, tied notes were collapsed together and the chro-
matic pitch of each event was converted into a MIDI note
number where 60 represents middle C. Each composition
therefore consists of a sequence of integers each of which
represents a chromatic pitch.

The datasets themselves contain purely melodic mu-
sic. The first is a collection of 152 folk songs and ballads
from Nova Scotia, Canada collected between 1928 and
1932 by Helen Creighton. The dataset is freely available
from the Music Cognition Laboratory at Ohio State Uni-
versity. The second dataset contains 185 of the chorale
soprano melodies harmonised by J.S Bach (BWV 253 to
BWV 438) and is freely available from CCARH. The re-
maining datasets come from the Essen Folk Song Col-
lection (EFSC – Schaffrath, 1992, 1994). The collec-
tion comprises 6,252 (mostly) European folk melodies
collected and encoded under the supervision of Helmut
Schaffrath at the University of Essen in Germany be-
tween 1982 and 1994. A dataset containing all the com-
positions in the collection is published and distributed by
CCRAH (Schaffrath, 1995) and an additional dataset of
2580 Chinese folk melodies is available on request. The
six datasets from the EFSC used in this research con-
tained respectively 91 Alsatian folk melodies, 119 Yu-
goslavian folk melodies, 93 Swiss folk melodies, 104
Austrian folk melodies, 213 German folk melodies (from
dataset kinder) and 237 Chinese folk melodies (from
dataset shanxi).

Each dataset is assigned a natural ID as shown in
Table 1 and will be referred to henceforth by this ID.
More detailed information about each dataset, including
the number of compositions and events contained in the
dataset and the number of chromatic pitches from which
the dataset is composed, can be found in Table 2.



ID No. Compositions No. Events Mean Events/Composition Alphabet Size

0 152 8553 56.270 25
1 185 9227 49.876 21
2 91 4496 49.407 32
3 119 2691 22.613 25
4 93 4586 49.312 34
5 104 5306 51.019 35
6 213 8393 39.403 27
7 237 11056 46.650 41

Table 2: Detailed information about the datasets used in this research.

4.3 Performance Evaluation

Many methods have been used to evaluate the perfor-
mance of statistical models of music, some of which have
been described in §3. We have followed the resampling
approach using entropy as a performance metric for two
reasons: first, entropy has an unambiguous interpretation
in terms of model uncertainty on unseen data (see §2.2);
and second, entropy bears a direct relationship with per-
formance in compression and indirectly correlates with
the performance of n-gram models on practical natural
language tasks and is widely used in both these fields.
These factors support its use in an application indepen-
dent evaluation such as this.

Conklin & Witten (1995) used a split-sample (or held-
out) experimental paradigm in which the data is divided
randomly into two disjoint sets, a training set and a test
set; the n-gram parameters are then estimated on the train-
ing set and the cross entropy of the test set given the re-
sulting model is computed using Equation 5. Conklin &
Witten used a training set of 95 melodies and a test set of
5 melodies. Although commonly used, split-sample vali-
dation suffers from two disadvantages: first, it reduces the
amount of data available for both training and testing; and
second, with small datasets it provides a biased estimate
of the true entropy of the corpus. A simple way of ad-
dressing these limitations is to use k-fold cross-validation
in which the data is divided into k subsets of approxi-
mately equal size. The model is trained k times each time
leaving out a different subset to be used for testing and
an average of the k cross entropy values thus obtained is
then computed. In machine learning research, differences
in model performance as assessed by resampling tech-
niques, such as cross-validation, are often analysed for
significance using statistical tests such as the t-test (Diet-
terich, 1998; Mitchell, 1997).

5 Results

To illustrate the performance improvements obtained with
the PPM variants discussed in this paper, we have succes-
sively applied escape method C, unbounded orders and
interpolated smoothing to our emulation of the model
used by Conklin & Witten (1995) which is described in

our framework as LTMB3-STMB2 (see §2). The results
are shown in Table 3 where each result was obtained us-
ing ten-fold cross-validation. Paired t-tests confirmed the
significance of the improvements afforded by incremen-
tally applying escape method C [t = 32.53,d f = 79, p <
0.001], unbounded orders [t = 7.34,d f = 79, p < 0.001]
and interpolated smoothing [t = 24.57,d f = 79, p <
0.001].2

6 Discussion

Before discussing the results presented in §5, some words
on the methodology employed are in order. Our goal was
to demonstrate that a number of techniques improve the
prediction performance of PPM models on monophonic
music data. We have approached this task by using cross
entropy of the models as our performance metric and
applying ten-fold cross validatory resampling on eight
monophonic datasets. Since we have been concerned with
optimising average performance over all eight datasets,
the best performing model will not necessarily correspond
to the best performing model on any single dataset. How-
ever, the results increase our confidence that this model
will perform well on a given dataset without requiring fur-
ther empirical investigation of that dataset.

Furthermore, since we have applied the variant tech-
niques incrementally, there is no guarantee that the result-
ing model reflects the global optimum in the space of pos-
sible LTM and STM parameterisations. Once again, we
note that our aim was to demonstrate how some variant
techniques can improve the performance of PPM models
and consequently our interest is in the relative, rather than
absolute, performance of the PPM variants.

In our experiments, escape method C yielded consis-
tent improvements in model performance over method B.
Although, as noted in §2.3.2, there is no principled a pri-
ori means of selecting the escape method, these results
are consistent with those obtained in data compression
experiments (Bunton, 1997; Moffat et al., 1994; Witten &
Bell, 1991). The use of unbounded orders, as described in
§2.3.4, improves the average performance of PPM models

2These tests were performed over all 10 resampling sets of each
dataset (n = 80) which are not shown in Table 3.



Dataset LTMB3-STMB2 LTMC3-STMC2 LTMC*-STMC* LTMC*I-STMC*I

0 2.901 2.604 2.585 2.465
1 2.665 2.470 2.451 2.327
2 3.080 2.759 2.705 2.602
3 2.960 2.686 2.643 2.558
4 3.007 2.671 2.556 2.483
5 3.284 2.852 2.728 2.661
6 2.536 2.249 2.167 2.085
7 3.060 2.762 2.770 2.642

Average 2.937 2.632 2.576 2.478

Table 3: Performance improvements to our emulation of the model used by Conklin & Witten (1995).

though to a lesser extent and with less consistency across
the datasets than applying escape method C. This finding
agrees with those obtained in experiments on data com-
pression (Bunton, 1997) and is likely to be due to the
fact that the optimal order bound varies between datasets.
As noted by Bunton (1997, p. 90), order bound experi-
ments “provide more information about the nature of the
test data, rather than the universality of the tested algo-
rithms.” Finally, the use of interpolated smoothing con-
sistently improves model performance regardless of the
dataset. This is in agreement with results obtained in ex-
periments in data compression (Bunton, 1997) and on nat-
ural language corpora (Chen & Goodman, 1999; Martin
et al., 1999). The reason appears to derive from the fact
that backoff smoothing (of which blending is an example)
consistently underestimates the probabilities of non-novel
events (Bunton, 1997) for which the low order distribu-
tions provide valuable frequency information.

7 Conclusions

By way of conclusion, we would like to present some
directions that we feel would be profitable to explore
in future research. The first set of suggestions concern
model development. First, an empirical comparison of
the performance of the Demster-Schaffer scheme used
by Conklin & Witten (1995) to combine the predictions
of the LTM and STM with other techniques (including
the weighted mean employed here) would be useful for
future model developers. Second, Bunton (1997) de-
scribes an information-theoretic state selection mecha-
nism which replaces the original state selection used in
PPM* (see §2.3.4) and which consistently improves per-
formance in data compression experiments. It remains to
be seen whether this mechanism can be fruitfully applied
with music data. Finally, the extension of the method-
ology used in this research to comparisons between dif-
ferent modelling approaches could yield interesting re-
sults. It would be useful, for example, to compare the
performance of the PPM variants analysed here with that
of models using other smoothing techniques commonly
used in statistical language modelling, such as Katz back-
off (Katz, 1987) and Kneser-Ney smoothing (Kneser &

Ney, 1995), and models based on the Lempel-Ziv dictio-
nary compression algorithm as used by Dubnov, Assayag
and their colleagues (Assayag et al., 1999; Dubnov et al.,
1998; Lartillot et al., 2001), the prediction suffix automata
used by Lartillot et al. (2001) and Triviño-Rodriguez &
Morales-Bueno (2001) and the neural network models de-
scribed by Mozer (1994).

Our second set of suggestions concern the data used. It
should be emphasised that we have restricted our atten-
tion to a single attribute of musical sequences: chromatic
pitch. None of the conclusions reached in this research
can be guaranteed to hold for other attribute domains and
representations; we shall need similarly detailed experi-
ments to assess whether the performance improvements
recorded here remain valid with these new representa-
tions. Therefore, an important consideration is the exten-
sion of the approach to other attributes of musical events
and more sophisticated representations of musical works.
Conklin & Witten (1995), for example, describe several
means of deriving more abstract representations of the
musical surface as well as developing methods for com-
bining the predictions of n-gram models of these repre-
sentations. In a similar vein, we consider it important to
extend the approach to homophonic and polyphonic mu-
sic. The issue of representing such music for training
statistical models is discussed by, for example, Assayag
et al. (1999), Conklin (2002), Pickens et al. (2002) and
Ponsford et al. (1999). Since the results obtained here
are in broad agreement with those obtained in data com-
pression and statistical language modelling experiments,
we expect the performance improvements to hold some
degree of generality and to carry over to these more so-
phisticated representations of music.

Our final suggestions are methodological. The first
concerns the fact that many of the directions cited above
concern comparisons between different models. Standard
corpora exist for comparing model performance in both
the data compression and statistical language modelling
communities: e.g., the Calgary corpus (Bell et al., 1990)
and LOB corpus (Johansson et al., 1986) respectively.
Such standardisation facilitates the objective and empir-
ical comparison of different models and would be highly
beneficial to the music processing community. Another



methodological issue concerns the validity of entropy as
a measure of performance; in order to address this ques-
tion we need detailed empirical studies of the relationship
between entropy measures and model performance on a
range of musical tasks such as those outlined in §1. In the
meantime, we hope that the techniques described in this
paper can be profitably applied to practical musical tasks
and that the consequent reduction in cross entropy will
translate into actual performance improvement on these
tasks.
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